

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

Subject Code:

17431

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking			
No	Q.N.		Scheme			
· 1.	a)	Attempt any <u>SIX</u> of the following:	12			
	(i)	State the functions of temporary registers of 8085	2M			
		microprocessor.				
	Ans.	Temp Register (8 bits) is also called as operand register as it is used	Correct			
		by μp for storing one of the operands during an operation and also	function			
		for storing the result of any execution temproary.	2M			
	(ii)	State the functions of following pins of 8085				
		1) SOD				
		2) HLDA				
	Ans.	1) SOD: Serial Output data SOD pin is used to transmit data serially				
		from accumulator to the external devices connected to the pin.				
		2) HLDA: Microprocessor generates HLDA signal to acknowledge				
		requesting device after HOLD signal.	<i>1M</i>			
	(iii)	Define pipelining.	2M			
	Ans.	Pipelining: Process of fetching the next instruction while the current	Correct			
		instruction is executing is called pipelining which will reduce the	definitio			
		execution time.	n 2M			

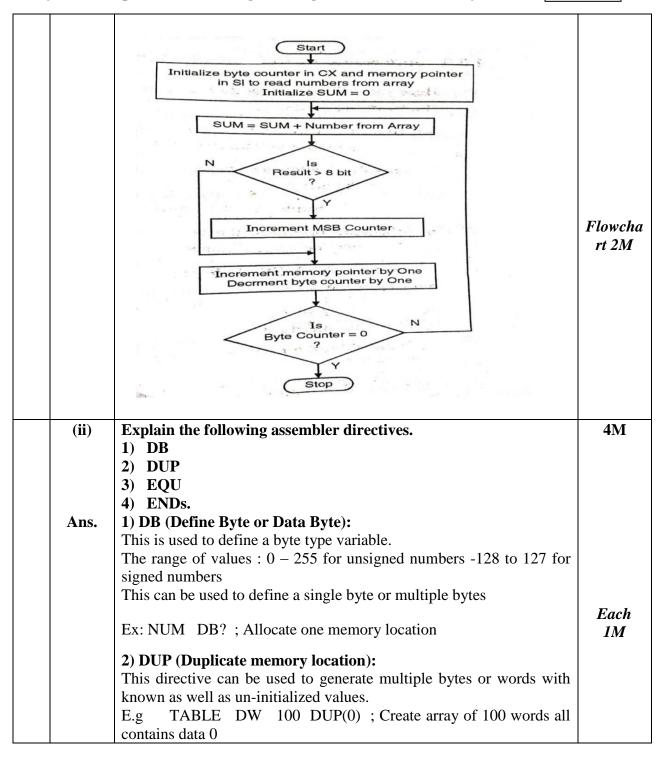
(iv) Ans.		the use of OF and DF flags of	-	2M
Alls.	result destin Direc	of a signed operation is large ation register. tion Flag: It selects either incre	an overflow occurs, i.e. if the enough to be accommodated in ment or decrement mode for DI	Each correct use 1M
(v)	Differ		OL instructions of 8086. (two	2M
A m a	points	\$).		
Ans.	Sr. No.	SHL	ROL	
	1	Shift operand bits Left, Put zero in LSB(S)	Rotate left byte or word	Any 2
	2	Syntax: SHL destination, count	Syntax : ROL Destination, count	correct points
	3	Example: SHL BL, 01 If BL = 79H then CF 0 1 1 1 1 0 0 1 CF 0 1 1 1 1 0 0 1 CF 0 1 1 1 1 0 0 1 0 CF 0 1 1 1 1 0 0 1 0	Example : CF=0 BL=1011 1010 ROL BL, 1 ; Rotate all bits in BL left by one bit position. CF=1 BL=0111 0101	1M each
(vi) Ans.	Addre	any four addressing modes of solves of solves and solves and solves are solved at the solves of solves and solves are solved at the solves are solves and solves are solved at the solves are solves at the solves are solves at the solves are solves at the solves at the solves are solves at the sol	f 8086 microprocessor.	2M
	2. Dire 3. Reg 4. Reg 5. Inde 6. Reg 7. Bas	rister gister indirect		Any 4 modes ½M each
	9. Imp		two 16 bit numbers (With	2M
(vii)	borro	w) in 8086 microprocessor. Any other logic shall be consi		2171

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

Г

(ISO/IEC - 27001 - 2005 Certified)

icroprocessor and Programming Subject Code: 17	431	
 Algorithm for 16 bit numbers subtraction with borrow: 1. Load 0000H into CX register (for borrow) 2. Load the first number into AX(accumulator) 3. Load the second number into BX register 4. Subtract BX with Accumulator AX using SUB instruction 5. Jump to 7 ,if no borrow 6. Increment CX by 1 7. Move data from AX(accumulator) to memory 8. Move data from CX register to memory 9. Stop 	Corr algoi m 2	rith
Give the syntax for defining Macro. Syntax: Macro_name MACRO[arg1,arg2,argN)	2N Corr synt	ect ax
Attempt any <u>TWO</u> of the following:Write an algorithm and draw the flowchart to find sum of series of numbers.	2 <i>N</i> 8 4N	
	Algoi m 2	
)	Algorithm for 16 bit numbers subtraction with borrow: 1. Load 0000H into CX register (for borrow) 2. Load the first number into AX(accumulator) 3. Load the second number into BX register 4. Subtract BX with Accumulator AX using SUB instruction 5. Jump to 7, if no borrow 6. Increment CX by 1 7. Move data from AX(accumulator) to memory 8. Move data from CX register to memory 9. Stop Oive the syntax for defining Macro. Syntax: Macro_name MACRO[arg1,arg2,argN) Endm Attempt any TWO of the following: Write an algorithm and draw the flowchart to find sum of series of numbers. (Note: Any other logic shall be considered) Algorithm to find sum of series of numbers: 1. Initialize byte counter and memory pointer to read number from array. 3. Initialize sum variable to 0 4. sum=sum+number from array 5. If sum> 8 bit then goto step 6 else step 7 6. Increment MSB result counter 7. Increment memory pointer 8. Decrement byte counter=0 then step 10 else step 4	Algorithm for 16 bit numbers subtraction with borrow: . 1. Load 0000H into CX register (for borrow) . 2. Load the first number into AX(accumulator) . 3. Load the second number into BX register . 4. Subtract BX with Accumulator AX using SUB instruction m 2 5. Jump to 7, if no borrow . 6. Increment CX by 1 . 7. Move data from AX(accumulator) to memory . 8. Move data from CX register to memory . 9. Stop . Ofive the syntax for defining Macro. . Syntax:



WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

Subject Code:

17431

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

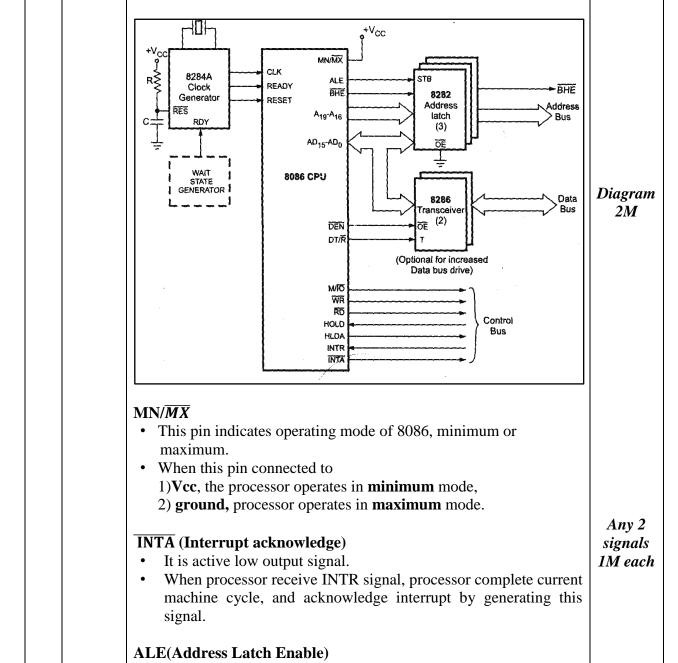
Subject:	Microprocessor and Programming Subject Code	e: 1'	7431	
	3) EQU (Equate to): The EQU directive is used to declare the micro symbols to some constant value is assigned. Micro assembler will replace occurrence of the symbol in a program by its value. Syntax: Symbol_name EQU expression Example: CORRECTION_FACTOR EQU 100			
	4) ENDs: This directive informs the assembler the end of the segment The directives SEGMENT, ENDS are always enclosed in data, stack and extra segments.	code,		
(iii) Describe re-entrant procedure with the help of sche	matic	4N	ſ
A	 diagram. Re-entrant Procedures: A procedure is said to be re-entrant, if it can be interrupted and re-entered without losing or writing over anything. To be a re-entrant, Procedure must first push all the flag registers used in the procedure. It should also use only regis stack to pass parameters. In some situation it may happen that procedure1 is called main program, procedure2 is called from procedure1 is called from procedure1. These types of procedures are reentrant procedures. 	gs and ters or from again n flow	Desci ion 2	-
	MAINLINE PROCEDURE 1 CALL PROCEDURE 1 PROCEDURE 2 PROCEDURE 2 PROCEDURE 1 PROCEDURE 2 PROCEDURE 1 PROCEDURE 1 PROC		Diagr 2M	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

17431 Subject Code: **Subject: Microprocessor and Programming** 2. Attempt any FOUR of the following: 16 Describe the functions of stack pointer and program counter of 4Ma) 8085. **Stack pointer:** Ans. 1. It is a 16 bit register which is used to store the address of topmost filled memory location of stack memory. 2. SP always points current top of stack. Any two 3. If data is stored in stack memory, the content of stack pointer is function auto-decremented by two and if data is picked out from stack s 2M memory, the content of SP is auto-incremented by two. each **Program counter:** 1. It maintains sequential execution of program written in memory. 2. The PC stores the address of the next instruction which is going to execute. 3. Since program counter stores the address of memory and in 8085 the address of memory is 16 bit. Hence program counter is 16 bit register. Enlist the features of 8085 microprocessor. (eight points). **4M** b) Features of 8085 microprocessor: Ans. 1. 16 address line so 2^{16} =64 Kbytes of memory can be addressed. 2. Operating clock frequency is 3MHz and minimum clock frequency is 500 KHz. 3. On chip bus controller. 4. Provide 74 instructions with five addressing modes. Any 5. 8085 is 8 bit microprocessor. eight 6. Provides 5 level hardware interrupts and 8 software interrupts. features 7. It can generate 8 bit I/O address so $2^8=256$ input and 256 output *¹∕₂M* ports can be accessed. each 8. Requires a single +5 volt supply 9. Requires 2 phase, 50% duty cycle TTL clock 10. Provide 2 serial I/O lines, so peripheral can be interfaced with 8085 up Define memory segmentation. How memory segmentation is **4M** c) achieved in 8086? State advantages of memory segmentation. Memory Segmentation: The memory in an 8086 microprocessor is Ans. organized as a segmented memory. The physical memory is divided Definitio into 4 segments namely, - Data segment, Code Segment, Stack n 1M Segment and Extra Segment.



			1
Subject: Mic	roprocessor and Programming Subject Code:	17431	
	 Description: Data segment is used to hold data, Code segment for the executable program, Extra segment also holds data specifically strings and stack segment is used to store stack data. Each segment is 64Kbytes & addressed by one segment register i.e CS,DS,ES or SS The 16 bit segment register holds the starting address of the segment 	in Explored tion	
	 The offset address to this segment address is specified as a 16-b displacement (offset) between 0000 to FFFFH. Since the memory size of 8086 is 1Mbytes, total 16 segments a possible with each having 64Kbytes. 		
	 Advantages of segmentation: 1) With the use of segmentation the instruction and data is new overlapped. 2) The major advantage of segmentation is Dynamic relocatability program which means that a program can easily be transferred from one code memory segment to another code memory segme without changing the effective address. 3) Segmentation can be used in multi-user time shared system. 4) Segmentation allows two processes to share data. 5) Segmentation allows you to extend the addressability of processor i.e., address up to 1MB although the actual addresses be handled are of 16 bit size. 6) Programs and data can be stored separately from each other segmentation. 	of ed ent <i>Any</i> <i>adva</i> <i>ges</i> ¹ / ₂ <i>eac</i> a to	nta ⁄2M
d) Ans.	Draw typical 8086 minimum mode configuration and explai function of any two signals used in minimum mode.	in 4N	1

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

- It is active high, pulse issued by processor during T1 state of bus cycle to indicate availability of valid address on AD0-AD15.
- This pin is connected to latch enable pin of latch 8282 or

WINTER – 2019 EXAMINATION **MODEL ANSWER**

Subject: Microprocessor and Programming

Subject Code: 74LS373. **DEN** (Data enable) • It is an active low signal, issued by processor during middle of T2 until middle of T4, to indicate availability of valid data over AD0-AD15. • This signal is used to enable transreceivers (bi-directional buffers) 8286 or 74LS245 to separate data from multiplexed address/data signal. DT/\overline{R} This output signal used to decide the direction of data flow through transreceivers (bi-directional buffers) 8286 or 74LS245 When processor sends data out, this signal is high, when processor receives data, this signal is low. M/\overline{IO} This signal is issued by processor to distinguish memory access from I/O access. When this signal high memory is accessed and when this signal is • low, an I/O device is accessed \overline{WR} It is an active low signal used to write data to memory or I/O • device depending on status of M/\overline{IO} . **HLDA:** This is an active high output signal generated by processor after receiving HOLD signal. HOLD: When another master device needs the use of the address, data, control bus, it sends a HOLD request to the processor through this line. It is an active high input signal. State the functions of the following pins of 8086. **4M** e) (i) MN/\overline{MX} (ii) NMI (iii) INTR (iv) \overline{LOCK}

17431

Subj	ect: Micr	coprocessor and Programming Subject Code: 17	431	
	Ans.	 (i) MN/MX: This signal indicates operating mode of 8086, minimum or maximum. When this pin connected to Vcc, the processor operates in minimum mode, Ground, processor operates in maximum mode. 		
		(ii) NMI: An edge triggered signal on this pin causes 8086 to interrupt the program it is executing and execute Interrupt service Procedure corresponding to Type-2 interrupt.NMI is Non-maskable by software	Eac corre functi 1M	ect ion
		(iii) INTR (Interrupt Request): This is a level triggered interrupt request input Checked during last clock cycle of each instruction to determine the availability of request. If any interrupt request is occurred, the processor enters the interrupt acknowledge cycle.		
		 (iv) LOCK: Prevent other processor to take the control of shared resources. Lock the bus attached to lock pin of device while a multicycle instruction completes. The lock prefix this allows a microprocessor to make sure that another processor does not take control of system bus while it is in the middle of a critical instruction. 		
	f)	Enlist the instruction formats used in 8086. Describe any one of	4 M	[
	Ans.	 them. Instruction formats of 8086: 1) One byte Instruction 2) Register to Register 3) Register to/from memory with no displacement 4) Register to/from Memory with Displacement 5) Immediate operand to register. 6) Immediate operand to memory with 16-bit displacement 	List 2	2M
		1) One byte Instruction: This format is only one byte long and may have the implied data or register operands. The least significant 3 bits of the opcode are used for specifying the register operand, if any. Otherwise, all the eight bits form an opcode and the operands are implied.	Descr ion o any o 2M	of ne

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming Sub	ject Code:	17431	
2) Register to Register: This format is 2 bytes long. The code specifies the operation code and the width specifies by <i>w</i> bit. The second byte of the opcode show operands and <i>R/M</i> field.	of the operation	and	
D7 D1 D0 D7 D6 D5 D4 D3 D3 OP CODE W 11 REG 11 REG	2 D1 D0 R/M		
3) Register to/from memory with no displacement: also 2 bytes long and similar to the register to register for the MOD field.			
$\begin{array}{c ccccc} D_7 & D_1 & D_0 & D7 D6 & D5 D4 D3 & D2 \\ \hline OP CODE & W & MOD & REG \end{array}$	2 D1 D0 R/M		
 4) Register to/from Memory with Displacement : This type of instruction format contains one or two a for displacement along with 2-byte the format of the memory without displacement. D₇ D₀ D7 D6 D5 D4 D3 D2 D1 D0 D₇ D₀ D D₇ D₀ D7 D6 D5 D4 D3 D2 D1 D0 D₇ D₀ D 	register to/fr $D_7 D_0$ Higher Byte of		
5) Immediate operand to register In this format, the first byte as well as the 3 bites fr byte which are used for <i>REG</i> field in case of regi format are used for opcode. It also contains one o immediate data.	ster to regis	ster	
$\begin{array}{c ccccc} D_7 & D_0 & D7 D6 & D5 D4 D3 & D2 D1 D0 & D_7 & D_0 & D_7 \\ \hline OP CODE & 11 & OP-CODE & R/M & Lower Byte \\ DATA & Hightarrow Barrow Barro$	D ₀ ther Byte DATA		
6) Immediate operand to memory with 16-bit disp type of instruction format requires 5 to 6 bytes for co two bytes contain the information regarding OPCO R/M fields. The remaining 4 bytes contain 2 bytes co	oding. The f DE, MOD a	first and	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

		and 2 bytes of data. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3.	a)	Attempt any <u>FOUR</u> of the following: Describe the concept of pipelining in 8086. (Note: Only Explanation OR explanation with diagram shall also be considered).	16 4M
	Ans.	Concept of pipelining in 8086.	
		 Process of fetching the next instruction while the current instruction is executing is called pipelining. This reduces the execution time. In 8086, pipelining is implemented by providing 6 byte queue in BIU. The BIU can be fetching instructions bytes while the EU is decoding an instruction or executing an instruction which does not require use of the buses. So, while executing first instruction in a queue, processor decodes second instruction and fetches 3rd instruction from the memory. In this way, 8086 performs fetch, decode and execute operation in parallel i.e. in single clock cycle and it is called pipelining. This avoids the waiting time for execution unit to receive other instruction. And increases the speed of operation. Concept of pipelining through diagram: 3 instructions are executed in 5 clock cycles through pipelining as shown below Diagram: 	Correct explanat ion 4M

Subject: Micr	ubject: Microprocessor and Programming Subject Code: 174					
	Clock Cycle	\rightarrow	I ₅ F-Fetch D-Decode I ₄ E-Execute I ₃			
b)			and maximum mode of 8086.	4 M		
Ans.	Sr.	points). Minimum Mode	Maximum mode			
	No. 1	MN/\overline{MX} pin is connected to Vcc. i.e. $MN/\overline{MX} = 1$.	MN/\overline{MX} pin is connected to ground. i.e. $MN/\overline{MX} = 0$.			
	2	Control system M/\overline{IO} , \overline{RD} , \overline{WR} is available on 8086 directly.	Control system M/\overline{IO} , \overline{RD} , \overline{WR} is not available directly in 8086.	Any		
	3	Single processor in the minimum mode system.	Multiprocessor configuration in maximum mode system.	four points		
	4	In this mode, no separate bus controller is required.	Separate bus controller (8288) is required in maximum mode.	1M each		
	5	Control signals such as \overline{IOR} , \overline{IOW} , \overline{MEMW} , \overline{MEMR} can be generated using control signals M/\overline{IO} , \overline{RD} , \overline{WR} which are available on 8086 directly.	Control signals such as MRDC, MWTC, AMWC, IORC, IOWC, and AIOWC are generated by bus controller 8288.			
	6	ALE, $\overline{\text{DEN}}$, $\text{DT}/\overline{\text{R}}$ and $\overline{\text{INTA}}$ signals are directly available.	ALE, $\overline{\text{DEN}}$, $\overline{\text{DT}}/\overline{\text{R}}$ and $\overline{\text{INTA}}$ signals are not directly available and are generated			

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	are av another such as 8 Status	and HLDA signals vailable to interface r master in system oDMA controller. of the instruction as not available.	RQ signa interf syste contr 8087 Statu queu	face another master in em such as DMA roller and coprocessor	
c) Ans.	(i) Syntax(ii) Operation(iii) Example(iv) Status of	carry flag.		on the basis of er register shall also be	4M
	Factor	RCL		RCR	
	Syntax	RCL Register/Memoryloca , Count	ation	RCR Register/memorylocatio n, Count	
	Operation Example	Rotate contents of register bitwise to Left 'Count' number times through carry. RCL BL, 01	the	Rotate contents of the register bitwise to the Right 'Count' number of times through carry. MOV CL,03	Each differen ce 1M
	Example	KCL DL, 01		RCR BL,CL	
	Status of Carry Flag	the contents of M Significant Bit (MSE	Most	,	
d)	-	-		nd status of carry and f following instructions.	4M

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	MOV AL, 34H ADD AL, 12H DAA	
Ans	Given Instructions, MOV AL,34H ADD AL,12H	Result 1M
	DAA After the instructions, AL = 34 + 12 = 46H Carry Flag = 0, since no carry generated.	Status of flags with reason
	Auxiliary carry $Flag = 0$ Since no carry generated from D3 to D4 bit.	3M
e)	Describe the concept of physical address generation on 8086. If CS = 4312H and IP=5387 H. Calculate physical address.	4 M
Ans	1 0	
	Formation of a physical address: - Segment registers carry 16 bit data, which is also known as base address. BIU attaches 0 as LSB of the base address. So now this address becomes 20- bit address. Any base/pointer or index register carry 16 bit offset. Offset address is added into 20-bit base address which finally forms 20 bit physical address of memory location.	Concept 2M
	Segment Register (16 bit) 0 H	
	+	
	Offset Value (16bit)	
	Physical Address (20 bit)	
	Given, CS = 4312H and IP = 5387H Appending 4 zero's to CS register,	
	$ \begin{array}{r} 43120 + \\ 5387 \\ \hline 1011 \\ \hline \end{array} $	Calculat ion 2M
	484A7H	
	Physical Address = 484A7 H.	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	f)	Write an 8086 assembly language program to find smaller of two	4 M
	L)	8 bit numbers.	-7171
		(Note: Any other logic shall be considered).	
	Ans.	DATA SEGMENT	
	A115 .	A DB 23H	
		B DB 78H	
		SMA DB ?	Correct
		DATA ENDS	
		CODE SEGMENT	program 4M
		ASSUME CS: CODE, DS: DATA	4 1 V1
		START : MOV AX, DATA	
		MOV AX, DATA MOV DS, AX	
		MOV DS, AX MOV AL, A	
		MOV AL, A MOV BL, B	
		CMP AL, BL	
		JC SKIP	
		MOV SMA, B	
		JMP EXIT	
		SKIP: MOV SMA, A	
		EXIT: MOV AH,4CH	
		INT 21H	
		CODE ENDS	
		END START	
4.			16
4.	a)	Attempt any <u>FOUR</u> of the following: State the functions of AAA and AAS instructions of 8086 with	4M
	a)		4111
	Ans.	example of each. AAA Instruction:	
	AIIS.	Syntax : AAA	
		• This instruction is used to convert the result in AL after the	
			Each
		addition of ASCII operands to decimal.	Eacn Instructi
		• Example :	
		$\begin{array}{c} \text{MOV AH,00H} \\ \text{MOV AL} (5)^2 + \text{AL} \leftarrow 25 \end{array}$	on: Eurostia
		MOV AL, '5'; AL \leftarrow 35 ADD AL '7'; AL \leftarrow 6Ch \leftarrow 25+27	Functio
		ADD AL, '7' ; AL \leftarrow 6Ch \leftarrow 35+37	n 1M
		AAA ; AX \leftarrow 0102H	
		AAS Instruction :	Each
		Syntax : AAS	
		5	example 1M
		• This instruction is used to convert the result in AL after the	1 1 V1

Г

٦

Subject: Mici	coprocessor and Programming Subject Code: 17	431
	 subtraction of ASCII operands to decimal. If after AAS instruction, the number in the register AH is 00, the result is positive and ASCII code of the result is present in AL. If after AAS instruction the number in register AH is FFH, then it indicates the result is negative in 10s complement form. Example : MOV AH,00H MOV AL,'8' ; AL ← 38 SUB AL,'2' ; AL ← 06h ← 38-32 AAS ;AL ← 06H 	
b) Ans.	Identify the addressing modes of following 8086 instructions.(i) MOV Bx, 0354H(ii) ADD AL, [Bx+04](iii) MOV Ax, [Bx+SI](iv) MOV Ax, [Bx+SI+04].(i) MOV Bx, 0354H:Answer: Immediate Addressing Mode	4 M
	 (ii) ADD AL, [Bx+04]: Answer: Relative Based Addressing Mode/Base addressing mode with displacement. (iii) MOV Ax, [Bx+SI]: Answer: Based Indexed Addressing Mode (iv) MOV Ax, [Bx+SI+04]: Answer: Relative Based Indexed Addressing Mode/ Based 	Each correct answer 1M
c)	Indexed addressing mode with displacement.Write an 8086 assembly language program to find two's complement of 16 bit number.(Note: Any other logic shall be considered)	4M
Ans.	Program for finding 2's complement: DATA SEGMENT A DW 1234H C DW ? DATA ENDS CODE SEGMENT ASSUME CS:CODE, DS:DATA START: MOV AX, DATA MOV DS, AX MOV AX, A	Correct program 4M

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	NOT AX							
	INC AX							
	MOV C, AX							
	MOV AH, 4CH							
	INT 21H							
	CODE ENDS							
	END START	() (
d)	Write an 8086 assembly language program to count number of	4M						
	1's in 8 bit number							
	(Note: Any other logic shall be considered)							
Ans.	Program for finding number of 1's :							
	DATA SEGMENT							
	A DB 34H	a i						
	C DB 0H	Correct						
	DATA ENDS	program						
	CODE SEGMENT	<i>4M</i>						
	ASSUME DS:DATA, CS:CODE							
	START: MOV AX, DATA							
	MOV DS, AX							
	MOV AL, A							
	MOV CL, 08H							
	NEXT:SHR AL, 01H JNC SKIP							
	INC SKIP							
	SKIP: LOOP NEXT							
	MOV AH,4CH							
	INT 21H							
	CODE ENDS							
	END START							
e)	Write an 8086 assembly language programme to find length of a	4M						
C)	string.	7171						
	(Note: Any other logic shall be considered)							
Ans.	Program for finding length of a string:							
1115	DATA SEGMENT							
	S DB 'MSBTE\$'							
	L DB 0H	Correct						
	DATA ENDS	program						
	CODE SEGMENT	4M						
	ASSUME CS:CODE, DS:DATA							
LI		1						

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	START: MOV AX, DATA MOV DS,AX MOV SI, OFFSET S UP: MOV AL,[SI] CMP AL, '\$' JZ EXIT INC L INC SI JMP UP EXIT: MOV AH, 4CH INT 21H CODE ENDS END START	
f) Ans.	 Describe with suitable example how a parameter is passed in register in 8086 assembly language procedure. Parameter passing in Procedure: Procedures may require input data or constants for their execution. Their data or constants may be passed to the procedure by the main program or some procedures may access the readily available data of constants available in memory. The parameter can be passed through the register as given in the following example. Here, registers AX and BX are passed to the procedure, where their contents are added. When the procedure is called using CALL instruction, the instructions in the procedure are executed. The registers AX and BX are added. 	4M Descript ion 2M
	CODE SEGMENT START: MOV AX, 5555H MOV BX, 7272H : CALL PROC1 :	Example 2M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

		PROCEDURE PROC1	
		:	
		ADD AX,BX	
		:	
		RET DROCLENDR	
		PROC1 ENDP CODE ENDS	
		END START	
5.			16
5.	a)	Attempt any <u>FOUR</u> of the following: State two instructions each for arithmetic multiplication and	4M
	<i>a)</i>	division with example.	TIT
	Ans.	•	
	1 11150	Instruction to perform multiplication:	
		• MUL – Used to multiply unsigned byte by byte/word by word.	
		Example: $MOV AL, 200 ; AL = 0C8h$	
		MOV BL, 4	
		MUL BL; $AX = 0320h (800)$	
		RET	Any two
		• IMUL – Used to multiply signed byte by byte/word by word.	instructio
		Example:	ns of
		MOV AL, -2 MOV BL, -4	multiplic ation 1M
		$\frac{1}{100} = 100 \text{ MOV BL}, -400 MO$	and and
		RET	Example
		• AAM – Used to adjust ASCII codes after multiplication.	1M
		Example:	
		MOV AL, 15 ; $AL = 0Fh$	
		AAM; AH = 01, AL = 05	
		RET	
		Instructions to perform division	
		• DIV – Used to divide the unsigned word by byte or unsigned double	Any two
		word by word.	instructio
		Example:	ns of
		MOV AX, 203 ; $AX = 00CBh$	division
		MOV BL, 4	1M and
		DIV BL ; AL = 50 (32h), AH = 3 RET	Example 1M
		• IDIV – Used to divide the signed word by byte or signed double word	1 171
	1	- is to avide the signed word by byte of signed double word	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	1 1	
	by word.	
	Example:	
	MOV AX, -203 ; AX = 0FF35h	
	MOV BL, 4	
	IDIV BL ; $AL = -50$ (0CEh), $AH = -3$ (0FDh)	
	RET	
	• AAD – Used to adjust ASCII codes after division.	
	Example:	
	MOV AX, 0105h ; AH = 01, AL = 05	
	AAD; $AH = 00$, $AL = 0Fh (15)$	
	RET	
b)	Write an 8086 assembly language program to arrange five 8 bit	4M
	numbers in ascending order.	
	(Note: Any other logic may be used)	
Ans		
	Data segment ; start of data segment	
	Array db 15h,05h,08h,78h,56h	
	Data ends ; end of data segment	
	Code segment ; start of code	
	segment	
	Start: assume cs: code, ds: data	Correct
	mov dx, data ; initialize data segment	program
	mov ds, dx	4M
	mov bl,05h ; initialize pass counter to read	4 1 V1
	numbers from array	
	step1: mov si,offset array ; initialize memory	
	pointer to read number	
	mov cl,04h ; initialize byte counter	
	step: mov al,[si]	
	cmpal,[si+1] ; compare two numbers	
	jc down ; if number <next no.="" th="" then<=""><th></th></next>	
	go to down	
	xchg al,[si+1] ; interchange numbers	
	xchg al,[si]	
	Down: add si,1 ; increment	
	memory pointer to point next	
	loop step ; decrement byte counter	
	if count is ? Othen step	
	dec bl ; decrement pass counter	
	if ? 0 then step1	
1 1	If a b then step1	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	C 1	jnz step1					
	Code en End sta						
c)	Write an 808 numbers.	36 assembly lan <i>n without carry c</i>				BCD	4M
Ans		n wanoat carry c	un uiso	v constact	<i>(u)</i>		
		nput Data ⊏>	35 500	72 501			
		Dutput Data	07	carry			
	Memory Ad	ldress(offset) 🖵 ≻	600	601			
	Program –						
	MEMORY ADDRESS	MNEMONICS		COMME	CNT		
	400	MOV AL, [500]		AL<-[500)]		
	404	MOV BL, [501]		BL<-[501]		
	408	ADD AL, BL		AL<-AL+	-BL		
	40A	DAA		DECIMA	L ADJUST	AL	
	40B	MOV [600], AL	4	AL->[600)]		<i>a i</i>
	40F	MOV AL, 00		AL<-00			Correct program
	411	ADC AL, AL		AL<-AL+	-AL+cy(pre	ev)	<i>4M</i>
	413	MOV [601], AL	,	AL->[601]		
	417	HLT		END			
			OR				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	ASSUME CS: CODE , DS:DATA	
	DATA SEGMENT	
	OP1 EQU 92H	
	OP2 EQU 52H	
	RESULT DB 02 DUP(00)	
	DATA ENDS	
	CODE SEGMENT	
	START:	
	MOV AX,DATA	
	MOV DS,AX	
	MOV BL,OP1	
	XOR AL,AL	
	MOV AL,OP2	
	ADD AL,BL	
	DAA	
	MOV RESULT ,AL	
	JNC MSBO	
	INC [RESULT+1]	
	MSBO: MOV AH,4CH	
	INT 21H	
	CODE ENDS	
1)	END START	43.4
d)	Write an 8086 assembly language program to multiply two 16 bit unsigned numbers.	4M
Ans.	unsigned numbers.	
A115.	DV AV	
	BX AX	
	Input Data 🎝 07 08 04 03	
	Memory Address 🔿 3003 3002 3001 3000	Correct
		program
		4M
	Multiplicant	
	Output Data 🔿 00 1C 35 18	
	Memory Address > 3007 3006 3005 3004	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

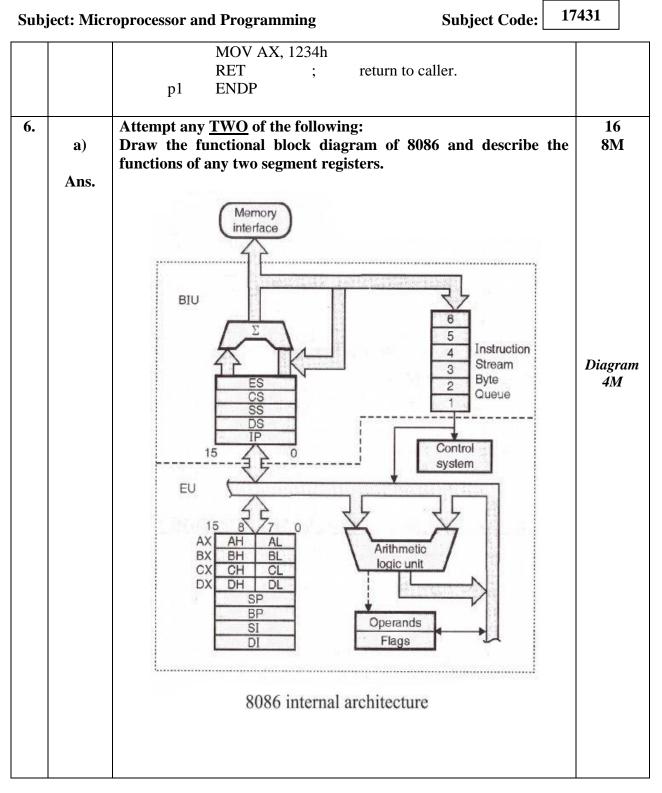
	MNEMONICS	OPERANDS	COMMENT			
	MOV	AX, [3000]	[AX] <- [3000]			
	MOV	BX, [3002]	[BX] <- [3002]			
	MUL	BX	[AX] <- [AX] *			
	MOV	[3004], AX	[3004] <- AX			
	MOV	AX, DX	[AX] <- [DX]			
	MOV	[3006], AX	[3006] <- AX			
	HLT		Stop			
Ans. Ma	 Describe MACRO with suitable example. Macro: Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. When assembler encounters a Macro name later in the source code, the block of code associated with the Macro name is substituted or expanded at the point of call, known as macro expansion. Macro called as open subroutine. 					
Macro_nameMACRO [arg1,arg2,argN) endMacro <i>Example:</i> MyMacro MACRO p1, p2, p3 ; macro definition with arguments MOV AX, p1						

WINTER – 2019 EXAMINATION MODEL ANSWER

 Subject: Microprocessor and Programming
 Subject Code:
 17431

 MOV BX, p2
 MOV CX, p3
 Example

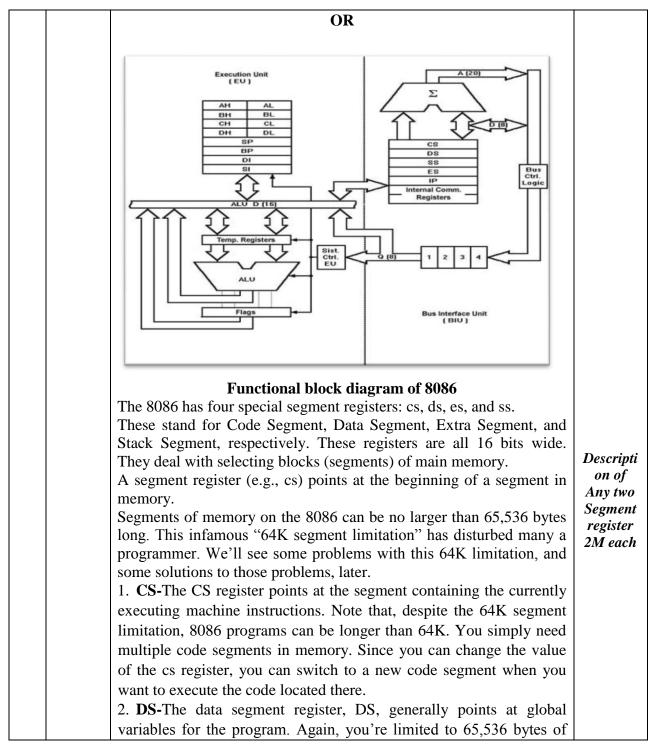
	MOV CX, p3	Example
	ENDM ;indicates end of macro.	2M
	data segment	
	data anda	
	data ends	
	code segment	
	assume cs:code,ds:data	
	start:	
	mov ax,data	
	mov ds,ax	
	MyMacro 1, 2, 3 ; macro call	
	MyMacro 4, 5, DX mov ah,4ch	
	int 21h	
	code ends	
	end start	
	OR	
	(Any Same Type of Example can be considered)	
f)	State the function of CALL and RET with suitable example.	4M
Ans.		
	CALL:	
	Functions of CALL:	
	1. CALL pushes the return address onto the stack and	
	2. Transfers control to a procedure.	Two
		function
	OR	s of
	The CALL instruction is used whenever we need to make a call to	CALL
	some procedure or a subprogram. Whenever a CALL is made, the following process takes place inside the microprocessor:	and RET 1M
	The address of the next instruction that exists in the caller program	each
	(after the program CALL instruction) is stored in the stack.	ешп
	-	
	• The instruction queue is emptied for accommodating the	Example
	instructions of the procedure.	1M each
	• Then, the contents of the instruction pointer (IP) is changed with	



Subject: Micro	oprocessor and	d Programmi	ng	Subject Code:	17431					
	the address of the first instruction of the procedure.The subsequent instructions of the procedure are stored in the instruction queue for execution.									
	Example: ORG 1 CALL ADD 4	, p1	;	for COM file.						
	RET		;	return to OS.						
	p1	PROC MOV AX, 12	;)3/h	procedure declaration.						
	p1 RET :	RET ENDP	;	return to caller.						
	Functions of 2	RET:								
		os the return a control to that		off the stack and						
	 end of the protocology the execution is called, the f The address was previous placed instance The instruction 	ocedures or the to the caller pollowing process of the next ously stored in ide the instruction queue	e subpro program ess takes instructi nside the tion point will	urn. This instruction is used at ograms. This instruction transf . Whenever the RET instruct s place inside the microprocess on in the mainline program wh stack is now again fetched and	fers ion or: iich d is					
	Example: ORG 1 CALL ADD 4	p1	;	for COM file.						
	RET		;	return to OS.						
	p1	PROC	;	procedure declaration.						

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)



WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

Subject Code:

17431

	WODEL ANSWER		
Subject: Micr	coprocessor and Programming S	ubject Code: 17	7431
	 data in the data segment; but you can always changed ds register to access additional data in other segment 3. ES-The extra segment register, ES, is exactly segment register. 8086 programs often use this segment access to segments when it is difficult or imperference to the segment registers. 4. SS-The SS register points at the segment constack. The stack is where the 8086 stores importainformation, subroutine return addresses, procedure local variables. In general, you do not modify the register because too many things in the system dependence. 	ts. y that – an extra egment register to possible to modify ntaining the 8086 ant machine state e parameters, and he stack segment	
b)	Write an 8086 assembly language program strings using (i) String instructions (ii) Without using string instructions.	to compare two	8M
	 i) ALP With string Instruction section .text global _start ;must be declared for _start: ;tell linker entry point mov esi, s1 mov edi, s2 mov ecx, lens2 cld repecmpsb jecxz equal ;jump when ecx is zero 		Relevant Correct program with string
	;If not equal then the following code mov eax, 4 mov ebx, 1 mov ecx, msg_neq mov edx, len_neq int 80h jmp exit equal: mov eax, 4		instructi on 4M

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject Code: 17431 Subject: Microprocessor and Programming mov ebx, 1 mov ecx, msg_eq mov edx, len_eq int 80h exit: mov eax, 1 mov ebx. 0 int 80h section .data s1 db 'Hello, world!',0 ;our first string lens1 equ \$-s1 s2 db 'Hello, there!', 0 ;our second string lens2 equ \$-s2 msg_eqdb 'Strings are equal!', 0xa len_eqequ \$-msg_eq msg_neqdb 'Strings are not equal!' len_neqequ \$-msg_neq ii) ALP Without using string instruction. INCLUDE io.h Cr EQU 0ah Lf EQU 0dh Relevant *Correct* data SEGMENT p_str1 DB Cr, Lf, 'Enter 1st string: ',0 program p str2 DB Cr, Lf, 'Enter 2nd string: ',0 without p_not1 DB Cr, Lf, 'The strings are not same because of different string instructi lengths',0 p_not2 DB Cr, Lf, 'The strings are not same because of different on 4M characters',0 p_same DB Cr, Lf, 'The strings are the same',0 str1 DB 100 DUP (?)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	00 DUP (?)	
data END		
code SEGM		
	ASSUME cs:code, d	s:data
start:	mov ax, data	
	mov ds, ax	;input str1
	output p_str1	
	inputs str1, 100	
	mov bx, cx	;input str2
	output p_str2	
	inputs str2, 100	;compare lengths
	cmp bx, cx	
	jne l_not1	;if different length jump
.::4:-1	izo	
;initial		
	lea si, str1	······
	lea di, str2	;iterate to compare characters
nx	t_chk: mov al, [si]	;copy the two bytes in ax
	mov ah, [di]	
	cmp al, ah	;compare the two bytes
	jne l_not2	;if not (ah==al)
	incsi	;increment the two bytes
	inc di	
		ement the count(string length)
	jzl_same	;if count=0 the strings are same
	jmpnxt_chk	;else jump to check next byte
l_not1:	output p_not1	
1_110111	jmp quit	
l_not2:	output p_not2	
1_11012.	jmp quit	
l_same:	• • •	
	output p_same	
quit:mov a	al, 00h	
	mov ah, 4ch	
	int 21h	
code END	S	
END star	t	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming Subject Code: 174				
c) (i) Ans.	Define recursive procedure and enlist the directives used in procedure.	4M		
	 Recursive procedure : A recursive procedure is a procedure which calls itself. Recursive procedures are used to work with complex data structure called trees. If the procedure is called with N (recursion depth) = 3. Then the n is decremented by one after each procedure is called until n = 0. Fig shows the flow diagram and pseudo-code for recursive procedure. Procedure directives are: i) PROC ii) ENDP 	Definitio n 2M		
	 i. PROC directive: The PROC directive is used to identify the start of a procedure. The PROC directive follows a name given to the procedure. After that the term FAR and NEAR is used to specify the type of the procedure. ii. ENDP Directive: This directive is used along with the name of the procedure to indicate the end of a procedure to the assembler. The PROC and ENDP directive are used to bracket a procedure. 	Enlist 2M		
c) (ii) Ans.	Write a procedure to find the factorial of a number. DATA SEGMENT NUM DB 04H DATA ENDS CODE SEGMENT START: ASSUME CS:CODE, DS:DATA MOV AX,DATA MOV DS,AX CALL FACTORIAL MOV AH,4CH INT 21H	4M Correct program 4M		
	PROC FACTORIALMOV BL,NUM; TAKE No IN BL REGISTERMOV CL,BL;TAKE CL AS COUNTER			

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Microprocessor and Programming

	DEC CL MOV AL,BL	;DECREMENT CL BY 1		
	UP: DEC BL	;DECREMENT BL TO GET N-		
	1			
	MUL BL	;MULTIPLY CONTENT OF N BY N-1		
	DEC CL	;DECREMENT COUNTER		
	JNZ UP	;REPEAT TILL ZERO		
	RET			
	FACTORIAL ENDP			
	CODE ENDS			
	END START			