WINTER-19 EXAMINATION Model Answer

Subject Name: DESIGN OF STEEL STRUCTURES

Subject Code :

17505

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values
6) may vary and there may be some difference in the candidate's answers and model answer
7) In case of some questions credit may be given by judgement on part of examiner of relevant answer
8) For programming language papers, credit may be given to any other program based on equivalent concept.

QN	$\begin{aligned} & \text { Sub } \\ & \text { Q } \end{aligned}$	Answers	Marking scheme	Total Marks
Q1		Attempt any THREE of the following		12M
	a)	Define dead, live, wind and snow load. i. Dead load: - Dead load in steel structures is gravity loads and are relatively constant over the time. They are permanent known as permanent loads. They are the self-weight of the structural members or materials used for construction. These include weight of beam, slab, column etc. and elements such as weight of walls, partitions, floors and roofs. ii. Live load: - Live loads are also called as imposed loads or superimposed loads. Those are not permanent and may change in position and magnitude. The loads of furniture, equipment and occupants of the structure etc. are the examples of live load. Live loads on floors and roofs are given in IS:875-1987. iii. Wind load: - The wind load is more significant in case of tall structures. The wind pressure intensity at any height if structure depends upon basic wind speed, shape and height of structure, topography of surrounding ground surface and angle of wind attack. It is considered as per specifications given in IS:8751987(Part 3) iv. Snow load:-In the areas of snow fall, an allowance for snow load is considered. It depends upon shape of the roof as well as the roofing material. It is variable load that may cover entire roof or part of it.	1 M each	

\begin{tabular}{|c|c|c|}
\hline b) \& \begin{tabular}{l}
Enlist any four limit states of collapse. \\
The limit sate of collapse includes the following: - \\
i) Strength \\
ii) Plastic collapse \\
iii) Fatigue (fluctuation of stresses) \\
iv) Stability against sway, overturning and sliding
\end{tabular} \& 1 M each \\
\hline c) \& Draw labeled sketches of Tee, Channel, angle, and hallow circular sections with meaning of each notation. \& 1 M each \\
\hline d) \& \begin{tabular}{l}
Define gross section yielding with sketch and write formula for it for tension member as recommended by IS 800-2007 \\
Gross Section Yielding: - When a tension member is subjected to tensile forces although the net cross-sectional yield first, the deformation within the length of connection will be smaller than the deformation in the remainder of tension member.it is because the net section exists within a small length of the member. And the total elongation is the product of the length of the member and the strain. Most of the length of the member will have an unreduced cross section, some attainment of yield stress on the gross area will result in larger total elongation. Here larger deformation is Limit state not the yield. To prevent excessive deformation initiated by yielding the load on the gross section must be small enough so that the stress on the gross section is less than the yield stress.
\[
T_{d g}=f y^{*} A_{g} / \gamma_{m o}
\] \\
Tdg - Gross section yielding strength \\
fy - yield stress of steel \\
Ag - gross area of the section \\
\(Y_{\text {mo }}\) - partial safety factor (whose value is 1.1)
\end{tabular} \& 2

1

\hline
\end{tabular}

Q1	B)	Attempt any ONE of the following		6M
	a)	$100 \mathrm{~mm} \times 10 \mathrm{~mm}$ and $100 \mathrm{~mm} \times 8 \mathrm{~mm}$ plats are connected by using 16 mm diameters bolt of grade 4.6 and grade \& steel plate in $410 \mathrm{~N} / \mathrm{mm}^{2}$ provide single row of bolts, find strength of joint. Find no of bolts required to form joint Assume kb=0.49 Dia of bolt $=16 \mathrm{~mm}$ Dia of bolt hold $=16+2=18 \mathrm{~mm}$ Grade of bolt $=4.6$ fub $=410 \mathrm{~N} / \mathrm{mm}^{2}$ Grade of plate $=410 \mathrm{~N} / \mathrm{mm}^{2}$ Strength of bolt in shear $\begin{aligned} & \text { Vdsb }=\text { Vnsb } / Y_{m b} \\ & \text { Vnsb }=\frac{\mathrm{Vnsb}}{\sqrt{3}}\left(\mathrm{n}_{\mathrm{n}}{ }^{*} \text { Anb }+\mathrm{n}_{\mathrm{s}}^{*}{ }^{*} \text { Asb }\right) \end{aligned}$ Asb $=A g=\left(\Pi \times 16^{2} / 4\right)=201.06$ Anb $=0.78 \times$ Asb $=0.78 \times 201.06=156.83$ Vnsb $=\frac{400}{\sqrt{3}}\left(1^{*} 156.83\right)=36.22 \times 10^{3} \mathrm{~N}$ Vdsb $=36.22 / 1.25=28.97 \mathrm{kN}$ Strength of bolt bearing $\mathrm{Vdpb}=\mathrm{Vnpb} / \mathrm{vmb}$ Vnpb $=2.5 \times \mathrm{kb} \times \mathrm{d} . \mathrm{tp} . \mathrm{fu}$ $=2.5 \times 0.49 \times 16 \times 8 \times 410=64288 \mathrm{~N}$ $\text { Vdpb = 64.288/ } 1.25=51.43 \mathrm{KN}$ Bolt value is least of Vdsb and Vdpb which is $\mathbf{2 8 . 9 7 \mathbf { k N }}$ Full strength $=$ fy $\mathrm{xAg} / \mathrm{\gamma}_{\mathrm{mo}}=250 \times(100 \times 8) / 1.1=181.82 \times 10^{3} \mathrm{~N}$ Full strength $=\mathbf{1 8 1 . 8 2} \mathbf{k N}$ $\begin{aligned} \text { No of bolts } & =\text { Full Strength of plate / Bolt value } \\ & =181.82 / 28.97=6.27 \sim 7 \mathrm{No} \text { 's } \end{aligned}$	1	

b)	Draw the sketches of three different modes of failure in tension members of steel structures The different modes of failures in tension members are i) Gross section yield ii) Net section rupture iii) Block shear i) Gross section yield ii) Net section rupture iii) Block shear	2M each	6M

Q2		Attempt Any THREE of the following		16 M
	a)	ISA $80 \times 50 \times 8$ nun is to be connected to 10 mm thick gusset plate using 6 mm fillet weld. The angle is subjected to 150 kN tensile load, assume shop welding. Provide welds at extremities of the longer legs. For ISA $80 \times 50 \times 8$ take $\mathbf{C x x}=27.3 \mathrm{~mm}$ Given size of angle $=80 \times 50 \times 8 \mathrm{~mm}$ Size of weld $=6 \mathrm{~mm}$ Tensile load $=150 \mathrm{kN}$ Welding type $=$ shop welding $=\gamma \mathrm{w}=1.25$ i) Factored Tensile load $=150 \times 1.5=225 \mathrm{kN}$ ii) Design stress of shop weld (fwd) $\mathrm{fwd}=\mathrm{fu} /(\sqrt{3} * \mathrm{rmb})=410 /(\sqrt{3} \times 1.25)=189.4 \mathrm{~N} / \mathrm{mm}^{2}$ iii) Throat Thickness $=0.7 \times 6=4.2 \mathrm{~mm}$ iv) Design strength per mm length of weld $\mathrm{Pq}=\mathrm{fwd} \times \mathrm{t}_{\mathrm{t}} \times 1=189.4 \times 4.2 \times 1=795.48 \mathrm{~N} / \mathrm{mm}$ v) Effective length of weld required $\mathrm{L}=\mathrm{P} / \mathrm{Pq}=225 \times 10^{3} / 795.48=282.89 \mathrm{~mm} \sim 290 \mathrm{~mm}$ Let x 1 let x 2 be the length longitudinal at upper and edge of angle $x 1+x 2=282.89$ Taking moment about the bottom weld $\begin{aligned} & 795.48 \times 1 \times 80=225 \times 10^{3} \times 27.3 \\ & \mathrm{X} 1=96.52=100 \mathrm{~mm} \\ & \mathrm{x} 2=186.36=190 \mathrm{~mm} \end{aligned}$	1 1 1 1 1 1 1 1 1	
	b)	A double angle discontinuous strut carry of factored load of 140KN. The length of strut in 4 m between intersection. The two angles are placed back to back on opposite side of 12 mm thick gusset plate take both are provide, design the section. Assume $\mathrm{Fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$ let $\mathrm{kL}=\mathbf{0 . 8 5 L}$ 1) Effective length $=0.85 \times 4=3.4 \mathrm{~m}$ 2) Required area is got by assuming initial f_{cd} Value as $\mathbf{9 0} \mathbf{N} / \mathrm{mm}^{\mathbf{2}}$	1	


	```Area required \(\mathrm{Ag}=\) load \(/ \mathrm{fcd}\) \(=140 \times 10^{3} / 90=1555.56 \mathrm{~mm}^{2}\) As its 2ISA to be provide, hence area of one angle \(=1555.56 / 2\) \(=777.78 \mathrm{~mm}^{2}\) hence choosing ISA \(70 \times 70 \times 6\) from table :- As \(r_{\text {min }}\) is given as 21.4 mm Slenderness Ratio \(\boldsymbol{\lambda}=\mathrm{kL} / \mathrm{r}_{\text {min }}=(0.85 \times 4000) / 21.4=158.88\) Therefore fcd from interpolation \(\mathrm{fcd}=53.3+[(59.2-53.3) /(160-15.88) /(160-150)]\) \(\mathrm{fcd}=53.96 \mathrm{~N} / \mathrm{mm}^{2}\) Load carrying capacity \(=\mathrm{fcd} \mathrm{x}\) total area \(=53.96 \times(806 \times 2)\) \(=86.984 \mathrm{kN}<140\) hence section is not sufficient Choose the next given section ISA \(90 \times 90 \times 6\) Slenderness Ratio \(\boldsymbol{\lambda}=0.85 \times 4000 / 27.7=122.74\) \(\mathrm{fcd}=74.3+[(83.7-74.3) /(130-120) \times(130-122.74)\) Load carrying capacity \(=\mathrm{fcd} \times\) total area \(=81.12 \times(1047 \times 2)=169874 \mathrm{~N}\) \(=169.87 \mathrm{kN}>140\) hence okay``` NOTE: Student can choose any section , marks to be given accordingly	1 1 1 1 1 1 1 1
c)	A beam 5m effective span, carrying a factored UDL of 45 kN on entire span (excluding self weight) concentrated factored load of 15 kN at mid span.   Design a laterally support beam.   Given load UDL 45kN Point load $=15 \mathrm{kN}$   1) Factored bending movement $=\mathrm{wl}^{2} / 8+\mathrm{wl} / 4$ $45 \times 52 / 8+15 \times 5 / 4=159.37 \mathrm{kNm}$   2) Plastic modulus required $(Z p)=(M d \times \gamma m o) / f y=\left(159.37 \times 10^{6} \times 1.1\right) / 250$ $=701228 \mathrm{~mm}^{3}$   Elastic section modulus (Ze)= Zp / shape factor   Shape factor for I section is assumed to be 1.14 $(\text { Ze })(\text { reqd })=701228 / 1.14=615112 \mathrm{~mm}^{3}$   3) Trying the section ISMB 350.   Properties of which are $\mathrm{h}=350, \mathrm{t}_{\mathrm{f}}=14.2, \mathrm{tw}=8.1, \mathrm{r} 1=14$   $Z x x 778.9 \times 103, \mathrm{Ixx}=1360.3 \times 10^{4}, \mathrm{Zp}=889.57 \times 10^{3}$	1 1 1 1

## 4) Classification of beam

$\mathrm{d}=\mathrm{h}-2(\mathrm{tt}+\mathrm{r} 1)==350-2(14.2+14)=293.6 \mathrm{~mm}$
$\mathrm{bh} / \mathrm{tt}=140 / 2 / 14.2=4.92<9.4$
$\mathrm{d} / \mathrm{tw}=293.6 / 8.1=36.24<64$
hence the section is plastic
5) Calculation of actual load including self-weight

Actual wd1 $=45+(514 \times 1.5 / 1000)=45.77 \mathrm{kN} / \mathrm{m}$
$\mathrm{Wd} 2=15 \mathrm{kN}$
Actual factored $\mathrm{BM}=45.771 \times 52 \times 8+15 \times 5 / 4=161.78 \mathrm{kNm}$
Actual factored $\mathrm{SF}=45.77] \times 52 / 2+15 / 2=121.92 \mathrm{kN}$
6) Also check $V d / V d r=121.92 / 371.99=0.327<0.6$
hence section safe in shear

## 7) Check for flexure

$\mathrm{Mr}=\beta_{\mathrm{b}} . \mathrm{fy} / \gamma_{\mathrm{mo}}=1 \times 889.57 \times 103 \times 250 / 1.1=202.175>(\mathrm{Md}=161.78)$
Hence section safe flexure
8) Check for defection
$\delta_{\text {allowable }}=\frac{\mathrm{L}}{300}=\frac{5000}{300}=16.67$
$\delta_{\text {max }}=\frac{5 \mathrm{wL}^{4}}{385 \mathrm{EI}}+\frac{\mathrm{wL}^{3}}{48 \mathrm{EI}}$

$$
\begin{gathered}
\frac{5 * 30.514 * 5000^{4}}{385 * 2 * 10^{5} * 1360.3 * 10^{4}}+\frac{10 * 5000^{3}}{48 * 2 * 10^{5} * 1360.3 * 10^{4}} \\
\quad=91.27+0.00095=91.27 \mathrm{~mm}>16.67 \\
\text { hence NOT safe in defection }
\end{gathered}
$$

Note: Student may choose any other section marks to be allotted accordingly.
Note: Value of lxx for the section ISMB -350 is not correct in the question the given value in question is $1360.3 \times 10^{4}$
But actual value is $13630.3 \times 10^{4} \mathrm{~mm} 4$, hence marks to be given accordingly

Q3		Attempt any FOUR of the following		16M
	a)	Define lap and butt bolted joint along with their sketches   Lap Joint : When a member is placed one above the other and both are connected by means of bolts/weld the joint is known as lap joint.   Single bolted lap joint   Double bolted lap joint   Butt Joint: When two members are placed butt against each other and are connected by means of a cover plate on one side or on either side, such a joint is known as butt joint	2 M each	
	b)	Draw detailed sketches of single V butt weld and fillet weld.	2 M each	



Q4		Attempt any THREE of the following		12M
	a)	Attempt any THREE of the following:   Draw labelled sketches of any four types of built up compression member.   (a)   (d)   (g)   (e)   (h)   (c)   (f)   (i)   FIq. 4.1: Various Forms of Compression Members	1 mark each	


b)	Define slenderness ratio \& radius of gyration and write formula also   Slenderness ratio: It is the ratio of effective length to least radius of gyration. $\mathrm{SR}=\mathrm{kL} / \mathrm{r}_{\mathrm{min}}$   Where kl is the effective length of the member.   $r_{\text {min }}$ the least radius of gyration of the member.   Radius of gyration: It is the property of a section and is equal to $\mathrm{r}=\sqrt{ } \frac{I}{A}$   Where $\mathrm{I}=$ Moment of inertia of the section   A is the area of the section	2M
c)	A single angle discontinuous strut, $100 \times 100 \times 10 \mathrm{~mm}$ has effective length of 3000 mm , end connections are made by 4 bolts of 20 mm diameter and 4.6 grade. Assume $\left.\mathbf{F y}=250 \mathrm{~N} / \mathrm{mrri}^{2}, \mathrm{k}\right)=0.2, \sim=0.35$, $\mathrm{k} 3=20$ and imperfection factor $\mathrm{a} .=0.49$ for ISA $100 \times 100 \times 10 \mathrm{~mm}$, $A=1903$ mrn-, 'Ymin $=19.4$ mm. Find design compressive load.   Solution:   ISA $100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 10 \mathrm{~mm}$   $\mathrm{le}=3000 \mathrm{~mm}$   4 bolts of 20 mm   $\mathrm{Fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$   $\mathrm{K} 1=0.2$   $\mathrm{K} 2=0.35$   $\mathrm{K} 3=20$   $\alpha=0.49$   $\mathrm{A}=1903 \mathrm{~mm}^{2}$   $\Upsilon \min =19.4 \mathrm{~mm}$ $\begin{aligned} \mathrm{E}=\text { yield stress ratio } & =\sqrt{\frac{250}{f y}} \\ & =\sqrt{\frac{250}{250}}=1 \end{aligned}$ $\begin{aligned} & =\frac{\frac{3000}{19.4}}{1 X \sqrt{ } \frac{3.14^{2} \times 2 \times 10^{5}}{250}} \\ & =1.741 \end{aligned}$ $\lambda_{0}=\frac{\left(b_{1}+b_{2}\right) / 2 t}{\varepsilon \sqrt{\frac{\pi^{2} E}{250}}}$	1M

$$
=\frac{100+100}{1 \sqrt{\frac{3.14^{2} \times 2 \times 10^{5}}{250}} \times 2 \times 10}
$$

$$
=0.1125
$$

Equivalent slenderness ratio

$$
\begin{aligned}
& \lambda_{\mathrm{s}}=\sqrt{k_{1}+k_{2} \lambda_{\mathrm{e}}^{2}+k_{1} \lambda_{\mathrm{p}}^{2}} \\
&= \sqrt{ } 0.2+0.35 \times 1.741^{2}+20 \times 0.1125^{2} \\
&= 1.23 \\
& \text { Imperfection factor } \alpha=\mathbf{0 . 4 9} \\
& \phi=0.5\left[1+\alpha\left(\lambda_{e}-0.2\right)+\lambda_{e}^{2}\right] \\
&= 0.5\left[1+0.49(1.23-0.2)+1.23^{2}\right] \\
&= 1.509
\end{aligned}
$$

## Compressive stress

$$
\begin{aligned}
& f_{a d}=\chi \frac{f_{y}}{\gamma_{m 0}} \\
& \frac{\phi+\sqrt{\phi^{2}-\lambda^{2}}}{} \\
& =\frac{\frac{250}{1.1}}{1.509+\sqrt{1.509^{2}-1.23^{2}}} \\
& =95.42 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

## Design Compressive Load

$=f c d x$ Ag
$=95.42 \times 1903$
$=181.58 \times 10^{3} \mathrm{~N}$
$=181.58 \mathrm{kN}$
d) A strut 2ISA $100 \times 100 \times 6 \mathrm{~mm}, 2.8 \mathrm{~m}$ long connected to 10 mm thick gusset plate on either side by two bolts at each end. Determine compressive load carrying capacity of angle strut. For ISA $100 \times 100 \times 6 \mathrm{~mm}$, $\mathrm{A}=1167 \mathrm{~mm}$ -

$$
I_{x x}=I_{y y}=111.3 \times 10^{4} \mathrm{~mm}^{4}, C_{x x}=C_{y y}=26.76 \mathrm{~mm}
$$

## 2ISA $100 \times 100 \times 6$

Thickness of gusset plate $=10 \mathrm{~mm}$
$\mathrm{L}=2.8 \mathrm{~m}$

```
A single angle \(=1167 \mathrm{~mm}^{2}\)
\(\mathbf{l x x}=\mathbf{l y y}=111.3 \times 10 \mathrm{~mm}^{4}\)
Cxx \(=26.76 \mathrm{~mm}\)
\(\mathbf{l x x}=\mathbf{2 \times 1 1 1 . 3 \times 1 0 ^ { 4 }}\)
 \(=2.226 \times 10^{6} \mathrm{~mm}^{4}\)
\(\mathrm{lyy}=\mathbf{2}\left[\mathrm{ly}+\mathrm{Ah}^{2}\right]\)
 \(=2\left[111.3 \times 10^{4}+1167\left(26.76+\frac{10}{2}\right)^{2}\right]\)
 \(=4.58 \times 10^{6} \mathrm{~mm}^{4}\)
\(I \min =2.226 \times 10^{6} \mathrm{~mm}^{4}\)
rmin \(=\frac{\sqrt{\text { Imin }}}{A}\)
 \(=\frac{\sqrt{2} .226 \times 10^{6}}{2 \times 1167}\)
 \(=30.88 \mathrm{~mm}\)
```

Slenderness ratio

$$
\begin{aligned}
\mathrm{SR} & =\frac{k L}{\mathrm{rmin}} \\
& =\frac{0.85 \times 2800}{30.88} \\
& =77.07
\end{aligned}
$$

By interpolation $\mathrm{fcd}=140.69 \mathrm{~N} / \mathrm{mm}^{2}$
Design Compressive Strength
$\mathrm{Pq}=\mathrm{fcd} \mathrm{xAg}$
$=140.69 \times(2 \times 1167)$
$=328.37 \times 10^{3} \mathrm{~N}$
$=328.37 \mathrm{kN}$

B
(a) An ISA $125 \times 75 \times 8 \mathrm{~mm}$ is connected to 10 mm thick gusset plate by 4 bolts, 18 mm diameter. Assume Fy=250 N/mm2 and

Fu = 410 Nzmm? for ISA $125 \times 75 \times 8 \mathrm{~mm}, \mathrm{Ag}=1538 \mathrm{~mm}$-. Determine_tensile strength of angle section.

Solution:
Design tensile strength governed by yielding of gross section

$$
\begin{aligned}
& \mathrm{Tdg}=\frac{\operatorname{Ag~fy}}{y m 0} \\
& =\frac{1538 \times 250}{1.10}=349545 \mathrm{~N}
\end{aligned}
$$

$$
=349.54 \mathrm{kN}
$$

(i) Design tensile strength governed by net section rupture

$\mathrm{Tdn}=0.9 \frac{0.94 n c}{Y m_{1}}+\frac{B A g o f_{y}}{Y m_{0}}$
Where $\quad \mathrm{B}=1.4-0.0776 \frac{w}{t} \times \frac{f y}{f u} \times \frac{b_{s}}{L c} \leq 0.9 \frac{f u}{y u} \frac{y m_{o}}{y m_{1}}$

$$
\begin{gathered}
\text { W }=\text { Outstanding lag width } \\
=75-\frac{8}{2}=71 \mathrm{~mm} \\
\mathrm{~B}_{\mathrm{s}}=\mathrm{w}+\mathrm{g}-\mathrm{t} \\
=71+75-8=128 \mathrm{~mm} \\
\mathrm{~L}_{\mathrm{c}}=\text { Length of end connection } \\
\text { = Distance between outermost bolt holes } \\
=50+5050=150 \mathrm{~mm} \\
\beta=1.4-0.076 \times \frac{71}{8} \times \frac{250}{410} \times \frac{138}{150}=1.02 \\
\begin{array}{c}
0.9 \frac{f_{u}}{f_{y}} \frac{y m_{0}}{y m_{1}}=0.9 \times \frac{410}{250} \times \frac{1.10}{1.25}=1.29 \\
\beta \leq 1.29 \geq 0.7 \\
\beta=1.02 \text { is acceptable } \\
\mathrm{Tdn}=\frac{0.9 \times 808 \times 410}{1.25}+\frac{1.02 \times 568 \times 250}{1.10} \\
=370194 \mathrm{~N}=370.19 \mathrm{kN}
\end{array}
\end{gathered}
$$

(ii) Design tensile strength by block shear

$$
\begin{aligned}
\mathrm{A}_{\mathrm{vg}} & =\text { Minimum gross area in shear in along bolt line } \\
& =\{40+3 \times 50\} \times 8=1520 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{vg}} & =\text { Minimum gross area in shear in along bolt line } \\
& =[40+50-3.5 \times 20] \times 8=960 \mathrm{~mm}^{2}
\end{aligned}
$$

$\mathrm{A}_{\mathrm{vg}}=$ Minimum gross area in tension from bolt hole to toe of angle perpendicular to the line of force
$=8 \times 50=400 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{vg}}=$ Minimum net area in tension from bolt hole to toe of angle perpendicular to the line of force

$$
=(50-0.5 \times 20) \times 8=320 \mathrm{~mm}^{2}
$$

Design tensile strength governed by block shear

$$
\begin{aligned}
& T_{\phi 01}=\frac{A_{z} f_{y}}{\sqrt{3} \gamma_{m 0}}+\frac{0.9 A_{m} f_{v}}{\gamma_{\mathrm{ml}}} \\
= & \frac{1520 \times 250}{\sqrt{3} \times 1.1}+\frac{0.9 \times 320 \times 410}{1.25} \\
= & 293912 \mathrm{~N} \\
& T_{\phi 11}=\frac{A_{z v} f_{y}}{\sqrt{3} \gamma_{m 0}}+\frac{0.9 A_{m m} f_{v}}{\gamma_{\mathrm{ml}}} \\
= & \frac{400 \times 250}{1.1}+\frac{0.9 \times 960 \times 410}{\sqrt{3} \times 1.25} \\
= & 254525 \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{Tdb}=\text { Minimum of } \mathrm{Tdb}_{1} \text { and } \mathrm{Tdb}_{2}=254525 \mathrm{~N}=254.525 \mathrm{kN}
$$

$$
\mathrm{Tdb}=\text { Minimum of } \mathrm{Tdb}_{1} \text { and } \mathrm{Tdb}_{2}=254525 \mathrm{~N}=254.525 \mathrm{kN}
$$

Design Tensile strength of angle
$=$ Least of the strengths (i), (ii) a
$=254.525 \mathrm{kN}$
(B) An unequal angle section used as a tie member, carrying 125 ~
b factored load, connected to 12 mm thick gusset plate by 20 mm diameter bolt. The design strength of 20 mm diameter bolt is 45.3 kN , assume edge distance as $\mathbf{2 d}$, pitch as $\mathbf{2 . 5 ~ d n}$ and $g=60 \mathrm{~mm}$.

Design the tension member. $\mathbf{d} \mathbf{= 2 0} \mathbf{~ m m}$, diameter of bolt and dn diameter of bolt hole.

## Given data

$\mathrm{Td}=125 \mathrm{kN}$
$\mathrm{d}=20 \mathrm{~mm}$
do $=22 \mathrm{~mm}$
$\mathrm{Tb}=45.3 \mathrm{KN}$

Designation	Area in mm2	wt (kglm)
ISA $100 \times 75 \times 6$	1014	8
ISA $100 \times 75 \times 12$	1956	15.4

step I calculate the gross area required
$\mathrm{T}_{\mathrm{dg}}=\frac{\mathrm{A}_{\mathrm{g}} \mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{m} 0}}$,
$\square m o=1.1$

$$
=1.1 \times \frac{1.25 \times 10^{3}}{250}
$$

2. find no. of bolts required ( N )
$\mathrm{N}=\frac{T d}{T b}=\frac{125}{45.3}=2.759$ say 3
3. calculate the design strength due to yielding of gross section
$\mathrm{T}_{\mathrm{dg}}=\frac{\mathrm{A}_{\mathrm{g}} \mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{m} 0}}$,
$=1014 \times \frac{250}{1.1}$
$=230.455 \times 10^{3} \mathrm{~N}$
$=230.45 \mathrm{kN}$
4. calculate design strength due to rupture of net section
$\mathrm{T}_{\mathrm{dn}}=\frac{\alpha \mathrm{A}_{\mathrm{n}} \mathrm{f}_{\mathrm{u}}}{\gamma_{\mathrm{ml}}}$
$\mathrm{An}=\mathrm{An} 1+\mathrm{An} 2$
```
An1 \(=\left[\right.\) a-do \(\left.-\frac{t}{2}\right] t\)
 \(=\left[100-22-\frac{6}{2}\right] 6=450 \mathrm{~mm}^{2}\)
\(\mathrm{An} 2=\left[\mathrm{b}-\frac{t}{2}\right] \mathrm{t}=\left[75-\frac{6}{2}\right] 6=432 \mathrm{~mm}^{2}\)
\(\mathrm{An}=450+432=882 \mathrm{~mm}^{2}\)
(\(\sigma=0.7\) for \(\mathrm{N}=3\) bolts)
\(T d n=0.7 \times 882 \times \frac{410}{1.25}\)
\(\mathrm{Tdn}=202.50 \times 10^{3}\)
\(\mathrm{Tdn}=202.50 \mathrm{kN}\)
Find design strength due to block shear
\(\mathrm{e}=2 \mathrm{~d}=2 \times 20=40\)
\(\mathrm{p}=2.5 \times 22=55\)
\(\mathrm{g}=60\)
from fig Lv \(=40+55+55=150\)
Lt = a-g
= 100-60=40
Avg \(=\) Lv.t \(=150 \times 6=900\)
Avg. \(=\) Lt.t \(=40 \times 6=240\)
Avh \(=[L v-\) n.do \(] t=[150-2.5 \times 22] 6=570\)
Atn \(=[\mathrm{Lt}-0.5 \mathrm{do}] \mathrm{t}=[40-0.5 \mathrm{x} 22] 6=174\)
a. Find shear yield \& tension fracture (SYTF)
Tb1 \(=\) Avg. \(\frac{f y}{\text { ©mo } 3}+0.9\) Atn \(\frac{f y}{v m 1}\)
\(=900 \times \frac{250}{1.1 \sqrt{3}}+0.9 \times 174 \times \frac{410}{1.25}\)
\(=118.094 \times 10^{3}+51.36 \times 10^{3}\)
\(=169.46 \times 10^{3} \mathrm{~N}\)
b. Find tension yield \& shear failure
\(\mathrm{Tb} 2=\mathrm{Afg} \frac{f y}{\square m o}+0.9\) Avn. \(\frac{f u}{v m 1 \sqrt{3}}\)
\(=240 \times \frac{250}{1.1}+0.9 \times 570 \times \frac{410}{1.25 \sqrt{3}}\)
\(=54.54 \times 10^{3}+97.147 \times 10^{3}\)
\(=151.687 \times 10^{3}\)
\(\mathrm{Tb}=\mathrm{Tb} 2=151.687 \times 10^{3}\)
\(\mathbf{T b}=151.687 \mathrm{kN}\)
Design strength = least of Tdg ,Tdn and Tb
Design strength= Td= 151.687 KN
Check: \(\mathrm{Td}=151.687>125 \mathrm{KN}\)
Hence O.K.
```



$$
\begin{aligned}
\text { LL intensity for purlins } & =750-(0-10) \times 20 \\
& =750-(25.92-10) \times 20 \\
& =431.6 \mathrm{~N} / \mathrm{m}^{2}>400 \mathrm{~N} / \mathrm{m}^{2} \text { ok }
\end{aligned}
$$

LL for Trusses $=\frac{2}{3} \times 431.6$

$$
=287.73 \mathrm{~N} / \mathrm{m}^{2}
$$

For the given Truss
LL = $287.73 \times 14.4 \times 3.5$

$$
=14501.59 \mathrm{~N}
$$

LL per panel $=\frac{14501.59}{8}=1812.7 \mathrm{~N}$

$$
=1.81 \mathrm{kN}
$$

LL per end panel $=\frac{1812.7}{2}=906.35 \mathrm{~N}$

$$
=0.91 \mathrm{kN}
$$

Note : If a student has taken 7 panels, since 8 panel points are given, it should be considered

## WL calculations

Design wind pressure $=(c p e-c p i) p$

$$
\begin{aligned}
& =(-0.5-0.2) 1200 \\
& =840 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Wind load per panel point = Design wind pressure $x$ Inclined panel length x spacing of Truss

$$
\begin{aligned}
&=840 \times \frac{1.8}{\cos 25.92} \times 3.5 \quad \text { or } \frac{840 \times 14.4 \times 3.5}{\cos 25}=47071.1 \mathrm{~N} \\
& \text { load per panel point }=\frac{47071.1}{8}=
\end{aligned}
$$

585838N

$$
\begin{aligned}
& =5883.89 \mathrm{~N} \\
& =5.88 \mathrm{kN} \text { (uplift) }
\end{aligned}
$$

Wind load per end panel $=\frac{5.88}{2}=2.94 \mathrm{kN}$
b) Design an unequal angle purlin for truss with span $=6 \mathrm{~m}$, Rise $=3 \mathrm{~m}$, Spacing of truss $=\mathbf{4 m c} / \mathrm{c}$, panels $=\mathbf{6}$ Nos., Dead load $=150 \mathrm{~N} / \mathrm{m} 2$, Live load $=\mathbf{3 5 0} \mathrm{N} / \mathrm{m} 2$
and wind load $=750 \mathrm{~N} / \mathrm{m} 2$. Apply checks as per IS 800-2007.

Designation	$w t N / m$	$I x x\left(\mathrm{~mm}{ }^{\prime}\right)$	Cxxin mm
ISA $100 \times 65 \times 6$	74	$96.7 \times 10^{4}$	31.9
ISA $100 \times 75 \times 6$	78	$100.9 \times 10^{4}$	30.1
ISA $90 \times 90 \times 6$	$' 67$	$70.6 \times 10^{4}$	28.7

## Solution:

Span 6m
Rise 3m
Spacing $=4 \mathrm{~m} \mathrm{c} / \mathrm{c}$
Panels $=6$ nos
$\mathrm{DL}=150 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{LL}=350 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{WL}=750 \mathrm{~N} / \mathrm{m}^{2}$
$\sin \theta=\operatorname{Tan}^{-1} \frac{3}{3}=45^{0}$
Inclined span of Truss $=\frac{6}{\cos 45}=8.49 \mathrm{~m}$
Spacing of purlin $=\frac{8.49}{6}=1.41 \mathrm{~m}$
Load calculations ( For 1.41m spacing of purlins)
a) Dl of GI sheet $=150 \times 1.41=211.5 \mathrm{~N} / \mathrm{m}$

Self weight of purlin ( assumed) $=100 \mathrm{~N} / \mathrm{m}$
Total $=311.5 \mathrm{~N} / \mathrm{m}$
b) Live load $=750-20(\theta-10)$

$$
\begin{aligned}
& =750-20(45-10) \\
& =50 \mathrm{~N} / \mathrm{m}^{2}<400 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

$\therefore \mathrm{LL}=400 \mathrm{~N} / \mathrm{m}^{2}$
LL on purlin per meter $=400 \times 1.41 \cos 45$

$$
=398.81 \mathrm{~N} / \mathrm{m}
$$

c) Wind load $=-750 \times 1.41=-1057.5 \mathrm{~N} / \mathrm{m}$ ( Normal to roof)

Components of load along xx axis (parallel to roof) and along yy axis (normal to roof)
a) $\mathrm{DL}=\mathrm{Wdy}=311.5 \mathrm{x} \cos 45=220.26 \mathrm{~N} / \mathrm{m}$
$\mathrm{Wdx}=311.5 \mathrm{x} \sin 45=220.26 \mathrm{~N} / \mathrm{m}$
b) LL Wdy $=398.81 \times \cos 45=282 \mathrm{~N} / \mathrm{m}$
$\mathrm{Wdx}=398.81 \mathrm{x} \sin 45=282 \mathrm{~N} / \mathrm{m}$
c) $\mathrm{WL} \quad \mathrm{Wwy}=-1057.5 \mathrm{~N} / \mathrm{m}$
d)
$\mathrm{Wwx}=0$
Factored Loads due to combinations
a) Load combination $1=1.5(\mathrm{DL}+\mathrm{LL})$
$\mathrm{Wy1}=1.5(220.26+282)=753.39 \mathrm{~N} / \mathrm{m}$
$\mathrm{Wx} 1=1.5(220.26+282)=753.39 \mathrm{~N} / \mathrm{m}$
b) Load combination $2=1.5(\mathrm{DL}+\mathrm{WL})$
$\mathrm{Wy} 2=1.5(220.26-1057.5)=-1255.86 \mathrm{~N} / \mathrm{m}$
$\mathrm{Wx} 2=1.2(220.26-0)=330.39 \mathrm{~N} / \mathrm{m}$
c) Load combination $3=1.2(\mathrm{DL}+\mathrm{LL}+\mathrm{WL})$
$\mathrm{Wy} 3=1.2(220.26+282-1057.5)=-666.29 \mathrm{~N} / \mathrm{m}$
$\mathrm{Wx} 3=1.2(220.26+282-0)=602.71 \mathrm{~N} / \mathrm{m}$
Hence among the above three combinations
$1.5(\mathrm{DL}+\mathrm{wL})$ is critical
$\mathrm{Wy}=-1255.86 \mathrm{~N} / \mathrm{m}$
$\mathrm{Wx}=330.39 \mathrm{~N} / \mathrm{m}$

## Biaxial BM

$$
\begin{aligned}
\mathrm{Mx} & =\frac{w y x L^{2}}{10} \\
& =\frac{1255.86 \times 4^{2}}{10}=2009.38 \mathrm{Nm} \\
\mathrm{My} & =\frac{w x \mathrm{xL}^{2}}{10}=2.0 \mathrm{kNm} \\
& =\frac{330.39 \times 4^{2}}{10}=528.62 \mathrm{Nm} \\
& =0.529 \mathrm{Knm}
\end{aligned}
$$

## Selection of Angle section

Width of angle parallel to the roof $=\frac{L}{60}$

$$
=\frac{4000}{60}=66.67 \mathrm{~mm}
$$

Depth of angle normal to the roof $=\frac{L}{45}$

$$
=\frac{4000}{45}=88.89 \mathrm{~mm}
$$

Try ISA $100 \times 75 \times 6 @ 78 \mathrm{~N} / \mathrm{m}$ [unequal angle purlin]
$\frac{b}{t}=\frac{75}{6}=12.5<15.7 e$
$\frac{d}{t}=\frac{100}{6}=16.67<84$
The section is semi - compact
Calculation of design moment
For bending @ xx axis
$\mathrm{Ze}=Z x x=\frac{I \mathrm{xx}}{y \max }=\frac{100.9 \times 10^{4}}{(100-30.1)}$
$=14.43 \times 10^{3} \mathrm{~mm}^{3}$
$\mathrm{Mdx}=\mathrm{Ze} \frac{f y}{v_{\text {mo }}}$
$=14.43 \times 10^{3} \times \frac{250}{1.1}$
$=3.28 \times 10^{6} \mathrm{Nmm}$
$=3.28 \mathrm{kNm}$
Mdy can not be calculated since lyy is not given :- Mdy $=0$
Check for Biaxial bending
$\frac{M x}{M d x}+\frac{M y}{M d y} \leq 1$
$\frac{2}{3.28}+0$
$=0.61<1$
safe
Q. 5 C) A column ISHB 350 @ 724 NIm carrying a factored load of 1505 kN . The column rests on slab base and slab base rest on concrete pedestal.

Assume
Fy $=250 \mathrm{~N} / \mathrm{mm} 2, \mathrm{Fu}=410 \mathrm{~N} / \mathrm{inm}^{2}$, Fck $=20 \mathrm{~N} / \mathrm{mm} 2$ (M20), $\mathrm{Ymo}=1.1$ and SBC (Safe
Bearing Capacity) $=150 \mathrm{kN} / \mathrm{m} 2$.For ISMB500 section bf $=250 \mathrm{~mm}$ and $\mathrm{tf}=11.6 \mathrm{~mm}$.

## Solution:

ISHB 350@ 724 N/M
$\mathrm{P}=1505 \mathrm{kN}$
$\mathrm{Fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{fu}=410 \mathrm{~N} / \mathrm{mm}^{2}$
sck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{rmo}=1.1$
$\mathrm{SBC}=150 \mathrm{kN} / \mathrm{m}^{2}$
NOTE : Since No data is given for ISHB 350, the student can assume the data or use
The data given for ISHB 500

- $\quad: \mathrm{bf}=250 \mathrm{~mm}$
- $: \mathrm{tf}=11.6 \mathrm{~mm}$


## Bearing area of base plate

$A=\frac{P u}{0.6 f c k}$
$=\frac{1505 \times 10^{3}}{0.6 \times 20}=125416.67 \mathrm{~mm}^{2}$
Size of base plate
$\left.\mathrm{Lp}=\frac{D-B}{2}+\sqrt{\left[\left(\frac{D-B}{2}\right)^{2}\right.}+\mathrm{A}\right]$
$=\frac{350-250}{2}+\sqrt{ }\left[\left(\frac{350-250}{2}\right)^{2}+125416.67\right]$
$=407.65 \mathrm{~mm}=410 \mathrm{~mm}$
$\mathrm{Bp}=\frac{A}{L p}=\frac{125416.67}{410}=305.89=310 \mathrm{~mm}$
Large projection a $=\left(\frac{L p-D}{2}\right)=\frac{410-350}{2}=30 \mathrm{~mm}$
Smaller projection $\mathrm{b}=\left(\frac{B p-B}{2}\right)=\frac{310-250}{2}=30 \mathrm{~mm}$
Area of base plate provided
$\mathrm{Ap}=\mathrm{Lp} \times \mathrm{Bp}$
$=410 \times 310$
$=127100 \mathrm{~mm}^{2}>\mathrm{A}$
Ultimate pressure from below on the slab base
$\mathrm{W}=\frac{\mathrm{Pu}}{L p \times B p}$
$=\frac{1505 \times 10^{3}}{410 \times 310}=11.84 \mathrm{~N} / \mathrm{mm}^{2}$

## Thickness of base plate

$\operatorname{tp}=\operatorname{SQRT}\left[\frac{2.5 w\left(a^{2}-0.3 b^{2}\right) \gamma_{m o}}{f_{y}}\right]$
$=\sqrt{ } \frac{2.5 \times 11.84\left(30^{2}-0.3 \times 30^{2}\right) \times 1.1}{250}$
$=9.06 \mathrm{~mm}$
$=10 \mathrm{~mm} .<\mathrm{tf}=11.6 \mathrm{~mm}$
Provide thickness of 12 mm
Size of concrete block
$\mathrm{Af}=\frac{P u \cdot \gamma_{m o}}{S B C \times \gamma f}$
$=\frac{1505 \times 1.1}{150 \times 1.5} 7.36 \mathrm{~m}^{2}$
For equal projection
$\mathrm{Lp}=\frac{L p-B p}{2}+\sqrt{\left(\frac{L p-B p}{2}\right)^{2}}+A f=\frac{0.41-0.31}{2}+\sqrt{\left(\frac{0.41-0.31}{2}\right)^{2}}+7.36$

- $\quad 2.772 \mathrm{~m}$
- 2.80 or 2.85 m
$\mathrm{Bf}=\frac{A f}{L f}=\frac{7.36}{2.85}=2.58=2.60 \mathrm{~m}$
Provided M20 concrete Pedestal of size $2.85 \mathrm{~m} \times 2.60 \mathrm{~m}$
Actual projection
a1 $=\frac{L f-L p}{2}=\frac{2850-410}{2}=1220 \mathrm{~mm}$
$\mathrm{b} 1=\frac{B f-B p}{2}=\frac{2600-310}{2}=1145 \mathrm{~mm}$
Considering $45^{0}$ angle of description , provide depth of concrete block $\mathrm{Df}=$ 1220 mm

b) What is Laterally supported beam ? Draw two types of Laterally supported beam of each.

a) Compression Flange Embedded in Slab


2 M Each for any 2

Note : Student has to draw any two types of beams.
C) An ISMB 250 is used as a simply supported beam of span 3 m to carry factored load of 30 kN/m, assume fy = 250 N/mm2. For ISMB 250, tw = 6.4 mm \& $\mathrm{h}=\mathbf{2 5 0} \mathbf{~ m m}$, check for shear only.

ISMB 250
$l=3 \mathrm{~m}$
$w=30 \mathrm{kN} / \mathrm{m}$
$\mathrm{fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{tw}=6.4 \mathrm{~mm}$
$\mathrm{H}=250 \mathrm{~mm}$
Factored shear force $\mathrm{Vu}=\frac{w L}{2}$

$$
=\frac{30 \times 3}{2}=45 \mathrm{KN}
$$

CHECK FOR SHEAR Vdr $=\frac{f y x t w x h}{\square m o x \sqrt{3}}$
$=\frac{250 \times 6.4 \times \times 250}{1.1 \times \sqrt{3}}$
$=209.95 \times 10^{3} \mathrm{~N}$
$=209.95 \mathrm{KN}>\mathrm{Vu}$

$$
\begin{aligned}
& \text { Also } \frac{V u}{V d r} \\
& \quad=\frac{45}{209.95} \\
& \quad=0.21<0.6 \\
& \text { : Check for shear is satisfied }
\end{aligned}
$$

c)

Draw plan and sectional elevation of gusseted base by showing components of each.



d		ny four differences between slab b	e \& gusseted base of column base.		
	$\mathrm{Sr} .$	Slab base	Gusseted base		
	1	The load on column is directly transferred to the base plate. thickness required for base plate is more.	The load on column is transferred through gusset plates and base plate together. Hence the thickness required is less than that of slab base.		
	2.	The cleat angles are used to fasten column section to base plate for width of column.	The cleat angles are used to faster gusset plate to base plate on more width, so that stiffness of joint is increased.	4	
	3.	The bearing surfaces may be (not machined). Hence the due to transit, unloading and may be caused.	All bearing surfaces are machined to ensure perfect control between them.		
	4.	The slab bases are simple in construction and fastening the elements speedily.	The gusseted base is complex in construction and more fastening joints are required. Hence low speed of joints.		
	5.	Economical as material required is less.	Expensive but stronger than slab base.		

