

WINTER-19 EXAMINATION Model Answer

Subject Name: DESIGN OF STEEL STRUCTURES

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values
- 6) may vary and there may be some difference in the candidate's answers and model answer
- 7) In case of some questions credit may be given by judgement on part of examiner of relevant answer
- 8) For programming language papers, credit may be given to any other program based on equivalent concept.

QN	Sub Q	Answers	Marking scheme	Total Marks
Q1		Attempt any THREE of the following		12M
	a)	Define dead, live, wind and snow load.	1 M each	
		 i. Dead load: - Dead load in steel structures is gravity loads and are relatively constant over the time. They are permanent known as permanent loads. They are the self-weight of the structural members or materials used for construction. These include weight of beam, slab, column etc. and elements such as weight of walls, partitions, floors and roofs. ii. Live load: - Live loads are also called as imposed loads or superimposed loads. Those are not permanent and may change in position and magnitude. The loads of furniture, equipment and occupants of the structure etc. are the examples of live load. Live loads on floors and roofs are given in IS:875-1987. iii. Wind load: - The wind load is more significant in case of tall structures. The wind pressure intensity at any height if structure depends upon basic wind speed, shape and height of structure, topography of surrounding ground surface and angle of wind attack. It is considered as per specifications given in IS:875-1987(Part 3) iv. Snow load:-In the areas of snow fall, an allowance for snow load is considered. It depends upon shape of the roof as well as the roofing material. It is variable load that may cover entire roof or part of it. 		

b)	Enlist any four limit states of collapse.	1 M each
	The limit sate of collapse includes the following: -	
	i) Strength	
	ii) Plastic collapse	
	iii) Fatigue (fluctuation of stresses)	
	iv) Stability against sway, overturning and sliding	
c)	Draw labeled sketches of Tee, Channel, angle, and hallow circular sections	1 M each
	with meaning of each notation.	
	Hollow Circular CHANNEL SECTION	
	ANGLE SECTION section CHANNEL SECTION	
	Angle section Hollow Circular Channel Section T Section	
	w&h-represent the sizeD-External DiameterF-with of flangebf-width of flanget-thicknessd-Internal DiameterD-Depth of sectiond-depth of section	
	t-thickness d-Internal Diameter D-Depth of section d-depth of section T _w -thickness of web tf-thickness of flange	
	T_{f} - thickness of flange tw - thickness of web	
d)	Define gross section yielding with sketch and write formula for it for tension	
,	member as recommended by IS 800 -2007	
	Gross Section Yielding: - When a tension member is subjected to tensile force	20
	although the net cross-sectional yield first, the deformation within the length	
	connection will be smaller than the deformation in the remainder of tension member.it is because the net section exists within a small length of the member. And the total elongation is the product of the length of the member and the strain. Most of the length of the member will have an unreduced cross section, some attainment of yield stress on the gross area will result in larger	2 55
	total elongation. Here larger deformation is Limit state not the yield. To preve excessive deformation initiated by yielding the load on the gross section must be small enough so that the stress on the gross section is less than the yield	
	stress.	
	T _{dg} = fy*A _g /γ _{mo}	1
	Tdg – Gross section yielding strength	
	fy – yield stress of steel	
	Ag – gross area of the section	1
	γ _{mo} - partial safety factor (whose value is 1.1)	

ຊ1	B)	Attempt any ONE of the following		6M
	a)	100mm x 10mm and 100mm x 8mm plats are connected by using 16mm		
		diameters bolt of grade 4.6 and grade & steel plate in 410N/mm ² provide		
		single row of bolts, find strength of joint. Find no of bolts required to form		
		joint Assume kb=0.49		
		Dia of bolt = 16mm		
		Dia of bolt hold = 16 + 2 = 18mm		
		Grade of bolt = 4.6		
		$fub = 410N/mm^2$		
		Grade of plate = 410N/ mm ²		
		Strength of bolt in shear	1	
		Vdsb = Vnsb / ymb		
		Vnsb = <u>Vnsb</u> (n _n *Anb + n _s *Asb)		
		$\sqrt{3}$		
		Asb =Ag = $(\Pi \times 16^2/4)$ = 201.06		
		Anb = 0.78 x Asb		
		= 0.78 x 201.06 = 156.83		
		Vnsb = 400 (1*156.83) = 36.22 x 10 ³ N		
		$\sqrt{3}$		
		Vdsb = 36.22 / 1.25 = 28.97 kN		
		Strength of bolt bearing	1	
		Vdpb = Vnpb / _{vmb}	_	
		Vnpb = 2.5 x kb x d . tp . fu		
		= 2.5x0.49x16x8x41O=64288 N		
		Vdpb = 64.288/ 1.25 = 51.43 KN		
		Bolt value is least of Vdsb and Vdpb which is 28.97kN	1	
		Full strength = fy x Ag/ γ_{mo} = 250 x (100 x 8)/1.1 = 181.82 x 10 ³ N	1	
		Full strength = 181.82 kN	1	
		No of bolts = Full Strength of plate / Bolt value		
		= 181.82/28.97 = 6.27 ~ 7 No's		
			1	

ຊ2		Attempt Any THREE of the following		16 M
	a)	ISA 80 x 50 x 8 nun is to be connected to 10mm thick gusset plate using 6mm fillet weld. The angle is subjected to 150 kN tensile load, assume shop welding. Provide welds at extremities of the longer legs. For ISA 80 x 50 x 8 take Cxx = 27.3mm Given size of angle = 80 x 50 x 8mm Size of weld = 6mm Tensile load = 150 kN		
		Welding type = shop welding = $\forall w = 1.25$ i) Factored Tensile load = 150 x 1.5 = 225 kN ii) Design stress of shop weld (fwd) fwd = fu/($\sqrt{3} * \gamma_{mb}$)= 410/($\sqrt{3} x 1.25$)= 189.4N/mm ²	1 1	
		iii) Throat Thickness = 0.7 x 6 = 4.2mm iv) Design strength per mm length of weld	1	
		Pq = fwd x t _t x 1 = 189.4 x 4.2 x 1 = 795.48N/mm v) Effective length of weld required	1 1	
		L= P/Pq =225 x 10^3 /795.48= 282.89 mm ~290 mm Let x1 let x2 be the length longitudinal at upper and edge of angle x1 + x2 = 282.89 Taking moment about the bottom weld	1	
		795.48 x 1 x 80 = 225 X 10 ³ x 27.3 X1 = 96.52 = 100 mm x2 = 186.36 = I90mm	1	
		ISA 8 Cmm × 50 mm × 8 mm	1	
	b)	A double angle discontinuous strut carry of factored load of 140KN. The		
		length of strut in 4m between intersection. The two angles are placed back to back on opposite side of 12mm thick gusset plate take both are provide,		
		design the section. Assume Fy = 250N/mm ² let kL = 0.85L		
		1) Effective length = $0.85 \times 4 = 3.4m$		
		2) Required area is got by assuming initial f_{cd} Value as 90 N/mm²	1	

	Area required Ag = load / fcd		
	$=140 \times 10^{3}/90 = 1555.56 \text{mm}^{2}$		
	As its 2ISA to be provide, hence area of one angle = 1555.56/2		
	=777.78mm ²		
	hence choosing ISA 70 x 70 x 6 from table		
	:- As r _{min} is given as 21.4mm		
	Slenderness Ratio λ = kL/ r _{min} = (0.85 x 4000)/21.4 = 158.88	1	
	Therefore fcd from interpolation	-	
	fcd = 53.3 + [(59.2 - 53.3)/(160 - 15.88) / (160 - 150)]		
	$fcd = 53.96N/mm^2$	1	
	Load carrying capacity = fcd x total area	1	
	=53.96 x (806 x 2)	•	
	=86.984kN < 140 hence section is not sufficient	1	
	Choose the next given section ISA 90 x 90 x 6		
	Slenderness Ratio λ = 0.85 x 4000/27.7 = 122.74		
	fcd = 74.3 + [(83.7-74.3)/(130 – 120) x (130 – 122.74)	1	
	Load carrying capacity $=$ fcd x total area	1	
	= 81.12 x (1047 x 2) = 169874N	•	
	= 169.87kN > 140 hence okay		
	NOTE: Student can choose any section , marks to be given accordingly		
c)	A beam 5m effective span, carrying a factored UDL of 45 kN on entire span (excluding self weight) concentrated factored load of 15 kN at mid span. Design a laterally support beam.		
	Given load UDL 45kN Point load = 15kN		
	1) Factored bending movement = $wl^2/8 + wl/4$		
	45 x 52/8 + 15 x 5/4 = 159.37 kNm	1	
	2) Plastic modulus required(Zp) = (Md x y mo)/fy = (159.37x 10 ⁶ x 1.1)/250 = 701228 mm ³	1	
	Elastic section modulus (Ze) = Zp / shape factor		
	Shape factor for I section is assumed to be 1.14	1	
	(Ze)(reqd) = 701228/1.14 = 615112 mm ³		
	3) Trying the section ISMB 350.		
	Properties of which are h = 350, t_f = 14.2, tw = 8.1, r1 = 14		
	Zxx 778.9 x 103, Ixx = 1360.3 x 10 ⁴ , Zp = 889.57 x 10 ³	1	

	· · · · · ·	
4) Classification of beam d = h - 2 (tt + r1) = = 350-2(14.2 + 14) = 293.6mm bh/tt = 140/2/14.2 = 4.92 < 9.4 d/tw = 293.6/8.1 = 36.24 < 64 hence the section is plastic	1	
5) Calculation of actual load including self-weight Actual wd1 = 45 + (514 x 1.5/1000) = 45.77kN/m Wd2 = 15kN Actual factored BM = 45.771 x 52 x 8 + 15 x 5/4 = 161.78kNm Actual factored SF = 45.77] x 52/2 + 15/2 = 121.92kN	1	
6) Also check Vd/Vdr = 121.92/371.99 = 0.327 < 0.6 hence section safe in shear		
	1	
7) Check for flexure Mr = β_b .fy/ γ_{mo} = 1 x 889.57 X 103 x 250/1.1 = 202.175> (Md = 161.78)		
Hence section safe flexure		
8) Check for defection		
$\delta_{\text{allowable}} = \frac{L}{300} = \frac{5000}{300} = 16.67$	1	
$\delta_{\max} = \frac{5wL^4}{385EI} + \frac{wL^3}{48EI}$		
$\frac{5 * 30.514 * 5000^4}{385 * 2 * 10^5 * 1360.3 * 10^4} + \frac{10 * 5000^3}{48 * 2 * 10^5 * 1360.3 * 10^4}$		
= 91.27+ 0.00095 = 91.27mm > 16.67 hence NOT safe in defection		
Note: Student may choose any other section marks to be allotted accordingly. Note: Value of lxx for the section ISMB -350 is not correct in the question the given value in question is 1360.3 x 10 ⁴ But actual value is 13630.3 x 10 ⁴ mm4, hence marks to be given accordingly		

Q3		Attempt any FOUR of the following		16M
	a)	Define lap and butt bolted joint along with their sketches	2 M each	
		Lap Joint : When a member is placed one above the other and both are		
		connected by means of bolts/weld the joint is known as lap joint.		
		01 001		
		0 0 0 0 0		
		0 0 0		
		Single bolted lap joint Double bolted lap joint		
		Butt Joint: When two members are placed butt against each other and are		
		Butt Joint: When two members are placed butt against each other and are connected by means of a cover plate on one side or on either side, such a joint		
		is known as butt joint		
		Boltjoint		
		main plate Cover plate		
		Single cover single bolted butt joint Double cover double bolted butt joint		
		Single core single sortes services		
	b)	Draw detailed sketches of single V butt weld and fillet weld.	2 M each	
		5 -		
		(a) Butt welds s(b) Fillet weld		
		(a) buil werds		

C)	Draw sketch of truss and show eight important components of truss <u>sketch</u> Web tie Web tie Web brace) Pitching point Ceiling batten Overhang Cantilever web Bottom chord tie Nominal span	½ mark for each compone nt
	Overall length Students should be given credit for any 8 components	
d)	 Define pitch, principal rafter main tie and spacing of truss Pitch: It is defined as the ratio between the rise and span of the truss. Principal Rafter : It is the top chord member of the truss and is usually in compression . it supports the purlins and these purlins in-turn support the roofing sheet Main Tie: It is the bottom chord of the roof truss and is usually in tension. Spacing of roof truss: It is the center to center distance between the trusses. 	1 M each
e)	A pratt roof truss has spacing of 4.1 m panel length 2.1m pitch1/4 and span 16.4m. no access provided to roof, calculate panel point live load. Rise = span / 4 = 16.4 / 4 = 4.1 m. θ = tan-1(Rise/0.5 x span) = (4.1 / 0.5 x 16.4) = 26.56 ⁰ Live Load: Live load = 750 - [(θ - 10) x 20] = 418.69 N/m ₂ . Live load intensity for truss = (2/3) X 418.69 = 279.13 N/m ₂ Live load per panel point = 2.1 x 4.1 x 279.13 = 2403.3 N. Live load on end panel point = 2403.3/2 = 1201.65 N.	1 1 1 1

rr	1		
b)	Define slenderness ratio & radius of gyration and write formula also Slenderness ratio: It is the ratio of effective length to least radius of gyration. SR = kL/r _{min} Where kl is the effective length of the member. r _{min} the least radius of gyration of the member. Radius of gyration: It is the property of a section and is equal to $r = \sqrt{\frac{l}{A}}$ Where I = Moment of inertia of the section A is the area of the section	2M 2M	
-			
c)	A single angle discontinuous strut, 100 x 100 x 10 mm has effective length of 3000 mm, end connections are made by 4 bolts of 20 mm diameter and 4.6 grade. Assume Fy = 250 N/mrri ² , k) = 0.2, ~ = 0.35, k3 = 20 and imperfection factor a. = 0.49 for ISA 100 x 100 x 10 mm, A = 1903 mrn-, 'Ymin = 19.4 mm. Find design compressive load. Solution: ISA 100mm x 100mm x 10mm le = 3000mm 4 bolts of 20mm Fy = 250N/mm ² K1 = 0.2 K2 = 0.35 K3 = 20 $\alpha = 0.49$ A = 1903mm ² Ymin = 19.4 mm E = yield stress ratio = $\sqrt{\frac{250}{fy}}$ = $\sqrt{\frac{250}{250}} = 1$		
	s 1 250		
	$=\frac{\frac{3000}{19.4}}{1X\sqrt{\frac{3.14^2x2x10^5}{250}}}$ = 1.741 $\lambda = \frac{(b_1 + b_2)/2t}{\varepsilon\sqrt{\frac{\pi^2 E}{250}}}$	1M	

	_ 100+100	
	$= \frac{1}{1\sqrt{\frac{3.14^2 x 2 x 10^5}{250}} x^2 x 10}$	1M
	= 0.1125	
	Equivalent slenderness ratio	
	$\lambda_s = \sqrt{k_1 + k_2 \lambda_{w}^2 + k_3 \lambda_{\varphi}^2}$	
	$= \sqrt{0.2 + 0.35 \times 1.741^2 + 20 \times 0.1125^2}$	1M
	= 1.23	
	Imperfection factor $\alpha = 0.49$	
	$\phi = 0.5 \left[1 + \alpha \left(\lambda_{e} - 0.2 \right) + \lambda_{e}^{2} \right]$	
	$= 0.5[1+0.49(1.23-0.2)+1.23^{2}]$	
	= 1.509	
	Compressive stress	
	$f_{cd} = \chi \frac{f_{\gamma}}{\gamma_{m0}}$	
	$\phi + \sqrt{\phi^2 - \lambda_s^2}$	
	$=\frac{\frac{250}{1.1}}{1.509+\sqrt{1.509^2-1.23^2}}$	
	= 95.42 N/mm ²	
	Design Compressive Load = fcd x Ag	
	= 95.42 x 1903	
	$= 181.58 \times 10^3 N$	1M
	= 181.58 kN	
d)	A strut 2ISA 100 x 100 x 6 mm, 2.8 m long connected to 10 mm thick gusset plate on either side by two bolts at each end. Determine compressive load carrying capacity of angle strut. For ISA 100 x 100 x 6 mm, A = 1167 mm- $I_{xx} = I_{yy} = 111.3 \times 10^4 \text{ mm}^4$, $C_{xx} = C_{yy} = 26.76 \text{ mm}$	
	2ISA 100 x 100 x 6	
	Thickness of gusset plate = 10mm L = 2.8m	

	1	r		
		A single angle = 1167mm ²		
		lxx = lyy = 111.3 x 10mm ⁴		
		Cxx = 26.76mm		
		$Ixx = 2 x 111.3 x 10^4$	1M	
		= 2.226 x 10 ⁶ mm ⁴ lyy = 2 [ly+Ah ²]		
		$= 2[111.3 \times 10^{4} + 1167(26.76 + \frac{10}{2})^{2}]$		
		$= 4.58 \times 10^6 \text{ mm}^4$		
		Imin = 2.226 x 10^6 mm ⁴	1M	
		$rmin = \frac{\sqrt{Imin}}{2}$		
		A		
		$=\frac{\sqrt{2.226 x 10^6}}{10^6}$		
		= <u>2 x 1167</u>		
		= 30.88mm		
		Slenderness ratio	1M	
		$SR = \frac{kL}{kL}$	1 171	
		$SR = \frac{1}{rmin}$		
		$=\frac{0.85 \ x \ 2800}{30.88}$		
		= 77.07		
		By interpolation fcd = 140.69 N/mm ²		
		Design Compressive Strength		
		Pq = fcd x Ag		
		= 140.69 x (2 x 1167)	1M	
		$= 328.37 \times 10^{3} N$		
		= 328.37kN		
4	В			6
4	(a)	An ISA 125 x 75 x 8 mm is connected to 10 mm thick gusset plate by 4 bolts,		
	. /			
		18 mm diameter. Assume F $_{y}$ = 250 N/mm2 and		
		Fu = 410 Nzmm? for ISA 125 x 75 x 8 mm, Ag = 1538 mm Determine _ tensile		
		strength of angle section.		
		Solution:		
		Design tensile strength governed by yielding of gross section		
		$Tdg = \frac{Ag fy}{ym0}$		
		1538x250 240545 M		
		$=\frac{1538x250}{1.10}=349545$ N		

	diameter bolt. The design strength of 20 mm diameter bolt is 45.3 kN, assume edge distance as 2d, pitch as 2.5 dn and g = 60 mm. Design the tension member. d = 20 mm, diameter of bolt and dn diameter of bolt hole.		
(B) b	An unequal angle section used as a tie member, carrying 125 ~ factored load, connected to 12 mm thick gusset plate by 20 mm		6
	= 254.525 kN		
	Design Tensile strength of angle = Least of the strengths (i), (ii) a	1 M	
	T_{db} = Minimum of Tdb_1 and Tdb_2 = 254525 N = 254.525 kN		
	T_{db} = Minimum of T_{db_1} and T_{db_2} = 254525 N = 254.525 kN		
	= 254525 N	1M	
	$=\frac{400 \times 250}{1.1} + \frac{0.9 \times 960 \times 410}{\sqrt{3} \times 1.25}$		
	$T_{abj} = \frac{A_{vg}f_y}{\sqrt{3}w} + \frac{0.9A_{va}f_y}{\sqrt{3}w}$		
	$= \sqrt{3}x 1.1 + 1.25$ = 293912 N		
	$=\frac{1520 x 250}{\sqrt{3}x 1.1} + \frac{0.9 x 320 x 410}{1.25}$		
	$T_{ab1} = \frac{A_{rg}f_{y}}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{rm}f_{w}}{\gamma_{m1}}$		
	Design tensile strength governed by block shear	1 M	
	A_{vg} = Minimum net area in tension from bolt hole to toe of angle perpendicular to the line of force = $(50 - 0.5 \times 20) \times 8 = 320 \text{ mm}^2$	4 5 4	
	perpendicular to the line of force = $8 \times 50 = 400 \text{ mm}^2$		
	= $[40+50-3.5 \times 20] \times 8 = 960 \text{ mm}^2$ A _{vg} = Minimum gross area in tension from bolt hole to toe of angle		

Given data Td = 125 kN d = 20 mm do = 22 mm Tb = 45.3 KN				
Designation	Area in mm2	wt (kglm)		
ISA 100 x 75 x 6	1014	8		
ISA 100 x 75 x 12	1956	15.4		
Ag, required = 550 mm ² Select the section from ie ISA 150 x 75 x 6, Ag	table = 1014 mm²			1 M
2. find no. of bolts require $N = \frac{Td}{Tb} = \frac{125}{45.3} = 2.759 \text{ s}$ 2. calculate the design s	ay 3	elding of gross	section	
$T_{dg} = \frac{A_g f_y}{\gamma_{m0}},$				1M
$= 1014 \times \frac{250}{1.1}$				
= 230.455 x 10 ³ N = 230.45 kN				
3. calculate design stre	ngth due to ruptur	e of net sectio	n	
$T_{dn} = \frac{\alpha A_n f_u}{\alpha A_n f_u}$				
$r_{dn} = \frac{\gamma_{m1}}{\gamma_{m1}}$				

$An1 = [a - do - \frac{t}{2}]t$	
$= [100-22-\frac{6}{2}]6 = 450mm^2$	
An2 = $[b - \frac{t}{2}]t = [75 - \frac{6}{2}]6 = 432 \ mm^2$	1M
An = $450+432 = 882 \text{ mm}^2$	
$(\sigma = 0.7 \text{ for N} = 3 \text{ bolts})$	
$Tdn = 0.7 \ x \ 882 \ x \ \frac{410}{1.25}$	
Tdn = 202.50 x 10^3	
Tdn = 202.50kN	
Find design strength due to block shear	
$e = 2d = 2 \times 20 = 40$	
$p = 2.5 \times 22 = 55$	
g = 60	
from fig Lv = 40+55+55=150	
Lt = a-g	
= 100-60=40	
Avg = Lv.t = 150 x 6 = 900	
Avg. = Lt.t =40 x 6 =240	
Avh = [Lv – n.do]t = [150-2.5 x 22]6 = 570	
Atn = $[Lt - 0.5do]t = [40-0.5x 22]6 = 174$	
a. Find shear yield & tension fracture (SYTF)	
Tb1 = Avg. $\frac{fy}{\square mo\sqrt{3}}$ + 0.9 Atn $\frac{fy}{vm1}$	
$= 900 \times \frac{250}{11\sqrt{3}} + 0.9 \times 174 \times \frac{410}{125}$	
$= 118.094 \times 10^{3} + 51.36 \times 10^{3}$	
$= 169.46 \times 10^{3} N$	1M
b. Find tension yield & shear failure	
Tb2 = Afg $\frac{fy}{\square mo}$ + 0.9 Avn. $\frac{fu}{vm1\sqrt{3}}$	
$vm1\sqrt{3}$	
$= 240 \times \frac{250}{1.1} + 0.9 \times 570 \times \frac{410}{1.25\sqrt{3}}$	
$= 54.54 \times 10^3 + 97.147 \times 10^3$	
$= 151.687 \times 10^{3}$	
$Tb = Tb2 = 151.687 \times 10^3$	
Tb = 151.687 kN	
Design strength = least of Tdg ,Tdn and Tb	
Design strength= Td= 151.687 KN	4 5 4
Check: Td = 151.687 > 125 KN	1M
Hence O.K.	

Q.5		Attempt any TWO of the following:		16
	a)	A truss has following details:		
	aj	Type of truss: Howe, span = 14.4 m, Rise = 3.5 m, panel point = 8 Nos.,		
		Spacing of truss = 3.5 m c/c, Weight of roof covering = 150 N/m2, Weight of		
		purl in = 80 N/m2, Weight of bracing = 22 N/m2, Coefficient of external.		
		Wing pressure (Cpe) = -0.5 Pd, coefficient of internal wind pressure		
		(Cpi) = \pm 0.2 Pd Design wind pressure Pd = 1200 N/m2 and Self-weight of		
		$\frac{1}{100}$		
		truss = (<u>L/3</u> + 5) x 10 <i>N/m2</i> Find dead, live and wind load per panel point.		
		Solution:		
		Span of Truss = 14.4		
		Spacing 3.5m		
		Panel point = 8 nos		
		Weight of roof covering = $150N/m^2$		
		Weight of purlin = 80 N/m^2 Weight of bracing = 22N/m^2		
		Cpe = -0.5 pd		
		$Cpi = \pm 0.2 pd$		
		$Pd = 1200 \text{ N/m}^2$		
		SW of Truss = $(\frac{L}{3} + 5) \times 10 N/m^2$		
		Dead load calculation	1M	
		1) Weight of roof covering $=\frac{150}{\cos} = \frac{150}{\cos 25.92} = 166.78 \text{ N/m}^2$		
		2) Weight of purlin $= 80N/m^2$		
		3) Weight of bracing = $22N/m^2$		
		4) Self weight of Truss = $(\frac{L}{3} + 5) \times 10$		
		$=(\frac{14.4}{3}+5) \ x \ 10 = 98 \ N/m^2$	1 M	
		Total = 366.78 N/m ²		
		Total DI = 366.78 x 14.4 x 3.5		
		= 18485.71 N		
		DL on each top panel = $\frac{18485.71}{2}$		
		⁸ = 2310.71 N	4.84	
		= 2.31 kN	1M	
		DI on each panel point = $\frac{2310.71}{1000}$		
		² = 1155.36N		
		= 1155.56N = 1.16 kN		
		Note: If a student has taken 7 panels, since 8 panel points are given,		
		it should be considered		
		Live load calculation		

LL intensity for purlins = 750 – (0-10) x 20	1M
= 750-(25.92-10) x 20	
= 431.6 N/m ² > 400 N/m ² ok	
LL for Trusses = $\frac{2}{3} \times 431.6$	
$= 287.73 \text{ N/m}^2$	
For the given Truss	
LL = 287.73 x 14.4 x 3.5	
= 14501.59N	1M
LL per panel = $\frac{14501.59}{8} = 1812.7 N$	
。 = 1.81 kN	
LL per end panel = $\frac{1812.7}{2}$ = 906.35 N	
= 0.91 kN	
Note : If a student has taken 7 panels, since 8 panel points are given,	
it should be considered	
	1M
WL calculations	1 141
Design wind pressure = (cpe – cpi)p	
= (-0.5-0.2) 1200	4 14
= 840 N/m ²	1M
Wind load per panel point = Design wind pressure x Inclined panel	
length x spacing of Truss	
= 840 x $\frac{1.8}{\cos 25.92}$ x 3.5 or $\frac{840 \times 14.4 \times 3.5}{\cos 25}$ = 47071.1N	
00010171	
load per panel point = $\frac{47071.1}{8}$ =	
585838N	1M
= 5883.89 N	
= 5.88 kN (uplift)	
Wind load per end panel = $\frac{5.88}{2}$ = 2.94 kN	
2	

	and wind load = 750 N	/m2. Apply o	hecks as per IS 8:	800-2007.	
	Designation	wtN/m	Ixx (mm")	Cxxin mm	
	ISA 100 x 65 x 6	74	96.7 X 10 ⁴	31.9	
	ISA 100 x 75 x 6	78	100.9 X 10 ⁴	.30.1	
	ISA 90 X 90 X 6	'67	70.6 X 10 ⁴	28.7	
s It S	WL = 750N/m ² sin θ = Tan ⁻¹ $\frac{3}{3}$ = 45 inclined span of Truss = Spacing of purlin = $\frac{8.49}{6}$ = Load calculations (For a) Dl of GI sheet = Self weight of purlin b) Live load = 750- = 750-	$\frac{6}{\cos 45} = 8.49$ = 1.41m • 1.41m spac 150 x 1.41 = urlin (assum Tot	ing of purlins) = 211.5 N/m		
	= 50 N :. LL = 400 N/m	$\frac{1}{2}$ meter = 400 N	/m ²) x 1.41 cos 45 1 N/m		

 c) WL Wwy = -1057.5 N/m d) Wwx = 0 	1M	
Factored Loads due to combinations		
a) Load combination $1 = 1.5 (DL + LL)$		
Wy1 = 1.5 (220.26+282) = 753.39 N/m		
Wx1 = 1.5 (220.26+282) = 753.39 N/m		
b) Load combination $2 = 1.5 (DL + WL)$		
Wy2 = 1.5 (220.26 - 1057.5) = -1255.86 N/m		
Wx2 = 1.2 (220.26-0) = 330.39 N/m		
c) Load combination $3 = 1.2 (DL + LL + WL)$	1M	
Wy3 = 1.2(220.26+282-1057.5) = -666.29 N/m		
Wx3 = 1.2(220.26+282-0) = 602.71 N/m		
Hence among the above three combinations	1M	
1.5 (DL+wL) is critical		
Wy = -1255.86 N/m		
Wx = 330.39 N/m Biaxial BM Mx = $\frac{wy xL^2}{10}$ $= \frac{1255.86 x 4^2}{10} = 2009.38 Nm$ = 2.0 kNm My = $\frac{wx x L^2}{10}$ $= \frac{330.39 x 4^2}{10} = 528.62 Nm$ = 0.529 Knm Selection of Angle section	1M	
Width of angle parallel to the roof = $\frac{L}{60}$ = $\frac{4000}{60}$ = 66.67 mm	1 M	
Depth of angle normal to the roof $=\frac{L}{45}$		
$=\frac{4000}{45}=88.89\ mm$		
Try ISA 100 x 75 x 6@ 78 N/m [unequal angle purlin]		
$\frac{b}{t} = \frac{75}{6} = 12.5 < 15.7 \ e$		

$\frac{d}{t} = \frac{100}{6} = 16.67 < 84$	
The section is semi – compact	
Calculation of design moment	4 84
For bending @ xx axis	1M
$Ze = Zxx = \frac{Ixx}{ymax} = \frac{100.9 \times 10^4}{(100 - 30.1)}$	
$= 14.43 \times 10^3 \text{ mm}^3$	
$Mdx = Ze \frac{fy}{v_{mo}}$	
$= 14.43 \times 10^3 \times \frac{250}{1.1}$	
= 3.28 x 10 ⁶ Nmm	
= 3.28 kNm	1 M
Mdy can not be calculated since lyy is not given :- Mdy = 0	
Check for Biaxial bending	
$\frac{Mx}{Mdx} + \frac{My}{Mdy} \le 1$	
$\frac{2}{3.28} + 0$	
3.28 = 0.61 < 1	1 M
safe	

	1	11	1
Q.5	c)	A column ISHB 350 @ 724 NIm carrying a factored load of	
		1505 kN. The column rests on slab base and slab base rest on concrete pedestal.	
		Assume	
		Fy = 250 N/mm2, Fu = 410 N/inm ² , Fck = 20 N/mm2 (M20), Ymo= 1.1 and SBC (Safe	
		Bearing Capacity) = 150 kN/m2.For ISMB500 section bf = 250 mm and tf = 11.6mm.	
		Solution:	
		ISHB 350@ 724 N/M P = 1505 kN	1M
		$F_{y} = 250 \text{ N/mm}^{2}$	
		$fu = 410 \text{ N/mm}^2$	
		$sck = 20 N/mm^2$	
		rmo = 1.1 SBC = 150kN/m ²	
		NOTE : Since No data is given for ISHB 350, the student can assume the data or	1M
		use	
		The data given for ISHB 500 - : bf = 250mm	
		- : tf = 11.6mm	
		Bearing area of base plate	
		$A = \frac{Pu}{P}$	1M
		$A = \frac{140}{0.6fck}$ = $\frac{1505x10^3}{0.6X20}$ = 125 416.67 mm ²	
		Size of base plate	1M
		$Lp = \frac{D-B}{2} + \sqrt{[(\frac{D-B}{2})^2 + A]}$	
		$=\frac{350-250}{2}+\sqrt{\left[\left(\frac{350-250}{2}\right)^2+125416.67\right]}$	
		= 407.65 mm $= 410$ mm	
		$Bp = \frac{A}{Lp} = \frac{125 \ 416.67}{410} = 305.89 = 310 \text{ mm}$	
		Lp 410 Large projection $a = (\frac{Lp - D}{2}) = \frac{410 - 350}{2} = 30 \text{ mm}$	
		Smaller projection b = $\left(\frac{Bp-B}{2}\right) = \frac{310-250}{2} = 30 \text{ mm}$	
		Area of base plate provided	1 M
		$Ap = Lp \times Bp$ $= 410x 310$	
		$= 127 \ 100 \ \text{mm}^2 > \text{A}$	
		Ultimate pressure from below on the slab base Pu	
		$W = \overline{1 + 1 + 1}$	1M
		$= \frac{Lp \times Bp}{\frac{1505 \times 10^3}{410 \times 310}} = 11.84 \text{ N/mm}^2$	
		410x 310 - 11.0 + 14 / mm	
	l	I	

Thickness of base plate tp =SQRT[$\frac{2.5w(a^2-0.3b^2) \gamma_{mo}}{f_y}$] = $\sqrt{\frac{2.5x \ 11.84 \ (30^2-0.3x \ 30^2)x \ 1.1}{250}}$ = 9.06mm = 10mm .< tf = 11.6 mm Provide thickness of 12mm 1M Size of concrete block $Af = \frac{Pu.\gamma_{mo}}{SBC \times \gamma f} = \frac{1505 \times 1.1}{150 \times 1.5} 7.36 m^{2}$ For equal projection $Lp = \frac{Lp - Bp}{2} + \sqrt{\left(\frac{Lp - Bp}{2}\right)^2} + Af = \frac{0.41 - 0.31}{2} + \sqrt{\left(\frac{0.41 - 0.31}{2}\right)^2} + 7.36$ 2.772 m - 2.80 or 2.85m $Bf = \frac{Af}{Lf} = \frac{7.36}{2.85} = 2.58 = 2.60m$ 1 M Provided M20 concrete Pedestal of size 2.85 m x 2.60m Actual projection a1 = $\frac{Lf - Lp}{2}$ = $\frac{2850 - 410}{2}$ = 1220mm b1 = $\frac{Bf - Bp}{2}$ = $\frac{2600 - 310}{2}$ = 1145mm Considering 45^{0} angle of description ,provide depth of concrete block Df = 1220mm

Sr.	Slab base	Gusseted base
1.	The load on column is directly	The load on column is transferred
	transferred to the base plate. thickness required for base plate is more.	through gusset plates and base plate together. Hence the thickness required is less than that of slab base.
2.	The cleat angles are used to fasten	The cleat angles are used to faster
	column section to base plate for width of column.	gusset plate to base plate on more width, so that stiffness of joint is increased.
3.	The bearing surfaces may be	All bearing surfaces are machined to
	(not machined). Hence the due to transit, unloading and may be caused.	ensure perfect control between them.
4.	The slab bases are simple in	The gusseted base is complex in
	construction and fastening the elements speedily.	construction and more fastening joints are required. Hence low speed of joints.
5.	Economical as material required is	Expensive but stronger than
	less.	slab base.