BOARD OF TECHNICAL EDUCATION
ctified)

WINTER - 19EXAMINATIONS

Subject Name:Microcontroller and ApplicationsModel AnswerSubject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer			Markin g Scheme
Q. 1	(A)	Attempt any THREE of the following:			12-M
	a)	Draw symbol of NAND gate and write its truth table.			4M
Ans:		Symbol: Truth Table:	$\begin{aligned} & \hline \\ & \hline \text { ANI } \\ & \hline \\ & \hline \text { B } \\ & \hline \mathbf{o} \\ & \hline 1 \\ & \hline 0 \end{aligned}$	$-\mathbf{y}=\overline{\mathbf{A} \cdot \mathbf{B}}$ Output $\mathbf{Y}=\overline{\mathbf{A} \cdot \mathbf{B}}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$	Symbol :2M Truth Table: 2M
	b)	State function of following pins of 16*2 LCD. (i) RS (ii) $\mathbf{R} / \overline{\mathbf{W}}$ (iii)EN (iv)LED+			4M
	Ans:	RS: RS is the register select pin used to write display data to the LCD (characters), this pin hasto be high when writing the data to the LCD. During the initializing sequence and other commands this pin should be low. R/W: Reading and writing data to the LCD, for reading the data R/W pin should be high ($\mathrm{R} / \mathrm{W}=1$) to write the data to LCD R/W pin should be low ($\mathrm{R} / \mathrm{W}=0$). EN: Enable pin is for starting or enabling the module. A high to low pulse of about 450 ns Pulse is given to this pin. Sends data to data pins when a high to low pulse is given at this pin.			$\begin{aligned} & \hline \text { 1M } \\ & \text { each } \end{aligned}$

BOARD OF TECHNICAL EDUCATION
(tified)

	iv)LED+ It is pin no 15, inputpin. Backlight LED pin positive terminal.			
c)	List any four C data types with its size and ranges.			4M
Ans:	Data Type	Size in Bits	Data Range/Usage	$\begin{aligned} & \hline \mathbf{1 M} \\ & \text { each } \end{aligned}$
	Unsigned char	8-bit	0 to 255	
	Signed char	8-bit	-128 to +127	
	Unsigned int	16-bit	0-65535	
	signed int	16-bit	-32768 to +32767	
	sbit	1-bit	SFR bit-addressable only	
	bit	1-bit	RAM bit-addressable only	
	sfr	8-bit	RAM addresses 80 -FFH only	
d)	Write function of following pins of $8051 \mu \mathrm{c}$. (i) RST (ii) $\overline{\text { PSEN }}$ (iii) RXD (iv) $\overline{\mathrm{EA}}$			4M
Ans:	(i) RST It is a RESET pin, which is used to reset the microcontroller to its initial values. (ii) $\overline{\text { PSEN }}$ It is active low output control signal used to activate enable signal of external ROM/ EPRM .it is activated every six oscillator periods while reading the external memory. (iii)RXD Serial input line (Receive).RXD pin is pin no 10 and input pin to the microcontroller. It is used to input serial data to the microcontroller. iv) $\overline{\mathbf{E A}}$ It is active low output control signal. When $\mathrm{EA}=1, \mu \mathrm{c}$ accesses internal and external program memory when $\mathrm{EA}=0, \mu \mathrm{c}$ accesses only external program memory.			1M each pin
(B)	Attempt any ONE of the following:			6M
a)	State alternate functions of Port 3.			2M

MAHARASHTI (Autonomous) (ISO/IEC - 2700

MAHARASHTI (Autonomous) (ISO/IEC - 2700
(tified)

Power on \& manual reset circuit

The power on reset circuit consists of $8.2 \mathrm{~K} \Omega$ resistor and $10 \mu \mathrm{~F}$ capacitor. The values of these components are sufficient to provide a delay to make RST pin high for two machine cycles. For manual reset function switch is provided. Upon power ON or Key Press the RST pin goes HIGH and as capacitor charges through resistor R, RST signal goes LOW. This generates active high reset signal for specific time decided by values of R \& C.

Application:

To generate baud rate in serial communication

c)	Write C program to toggle bits of P2. Use software delay.	4M
Ans	```\#include <reg51.h> void delay(unsigned int); void main(void) \{ P2=0X00; // PORT 2 as output port while(1) \{ \(\mathrm{P} 2=0 \mathrm{X} 00\); delay(200); P2=0XFF; delay (200); \} \} void delay(unsigned int t) \{```	4M for correct program) Any amount of delay can be considere d

BOARD OF TECHNICAL EDUCATION
(tified)

Q. 4	(A)	Attempt any THREE of the following :	12-M
	a) Ans :	Draw interfacing diagram for temperature measurement using LM 35, ADC 0808 with 8051 microcontroller.	4M Correct diagram 4M
	b)	Explain bitwise shift operator with example.	4M
	Ans	Bitwise Left Shift Operator in C : << [variable]<<[Number of Places] $\mathrm{P} 0=0 \times 3 \mathrm{C} \ll 2$ After execution of this instruction Shift number 2 bits left: $\begin{aligned} 3 \mathrm{C} & =00111100 \\ 1^{\text {st }} \text { left shift } & =01111000 \\ 2^{\text {nd }} \text { left shift } & =11110000 \end{aligned}$ So, $\mathrm{P} 0=0 \mathrm{xF} 0$ Bitwise Right Shift Operator in C: >> [variable]>>[number of places] $\mathrm{P} 0=0 \times 3 \mathrm{C} \gg 2$ After execution of this instruction Shift number 2 bits to Right: $3 \mathrm{C}=00111100$ $1^{\text {st }}$ right shift $=00011110$ $2^{\text {nd }}$ right shift $=00001111$ So, $\mathrm{P} 0=0 \mathrm{x} 0 \mathrm{~F}$	2marks: left shift operator explanati on 2marks: Right shift operator explanati on
	c)	Subtract (25) ${ }_{10}$ from (52) $\mathbf{1 0}^{0}$ using 2's compliment method.	4M

MAHARASHTE

BOARD OF TECHNICAL EDUCATION
(tified)

Ans	$\begin{aligned} & (52) 10-(25) 10 \\ & (52) 10=(110100)_{2} \\ & (25)_{10}=(11001)_{2} \\ & \therefore \quad 110100 \\ & -\quad 011001 \end{aligned}$ 2scomplement of $(0,11001)=1$ scomplement +1 is complement of $011001=100110$ $\alpha^{\prime \prime}$ complemat $=\frac{+11}{100111}$ Add it to 110100 $\begin{array}{r} 110100 \\ +\quad 100111 \\ \hline 1] 011011 \end{array}$ $x_{\text {neglect carry }}$ $\begin{aligned} & \therefore(011011)_{2}=(27)_{10} \\ & \therefore(52) 10-(25) 10=(27)_{10} \end{aligned}$								
d)	Draw the format of TCON sfr and explain each bit.								4M
An		TIMER/C TR1 CON. 7 Tim pro CON. 6 Tim CON. 5 Tim pro CON. 4 Tim CON. 3 Ext har CON. 2 Inter Int CON. 1 Ext har CON. 0 Inte Inter	NTER TFO overflow vector un contr overflow r vectors un contr Interrupt when in 1 type c Interrupt when in 0 type c	NTRO TRO Set by ha e internu Setclea Set by ha e servic Set'clea ge flag. pt is proc bit. Set/c ge flag. pt is proc bit. Set/	EGI IE1 when vice rou softwa when ne. softwa hardw d. by so hardwa d. d by so	. IT1 mer/Co urn Tim mer/Co urn Tim Exte to spec Exte to spec	IEO overflo nter 1 overf nter 0 errupt g edg erupt ng edg	ITO leared by hardware as F. leared by hardware as F. detected. Cleared by vel triggered External etected. Cleared by evel triggered External	Format-2 marks Function 2marks
(B)	Attempt any ONE of the following:								6M
a)	Explain T-state, Machine cycle and instruction cycle.								6M

	$\begin{aligned} & \hline \hline \text { Ans } \\ & : \end{aligned}$	One T-state is the time period of one clock signal. It is the reciprocal of system clock frequency. Machine cycle is the minimum time taken by microcontroller to perform an operation. One machine cycle has 6 states. One state is 2 T -states. Therefore one machine cycle is 12 T-states. Time to execute an instruction, called instruction cycle is found by multiplying C by 12 and dividing product by Crystal frequency. $\mathrm{T}=\left(\mathrm{C}^{*} 12\right) / \text { crystal frequency }$ Where \mathbf{C} is number of machine cycles	Explanat ion: 2 marks each.
	b)	Explain stack memory. Write any two stack related instruction.	6M
	Ans	1. The stack memory is part of RAM used by the CPU to store information temporarily. 2. This information may be either data or address. 3. The CPU needs this storage area as there are only a limited amount of registers. 4. The register used to access stack memory is called stack pointer. 5. Upon reset SP contains 07 H ; this causes the stack to begin to location 08H. So, Register banks 2, $3,4(08 \mathrm{H}$ to 1 FH$)$ form the default stack area. 6. The stack is generally placed in the general-purpose area (30 H to 7 FH) of the internal RAM. Stack Related Instructions: (any two) a) PUSH b) POP c) CALL (ACALL, LCALL) d) RET	4 marks: Stack memory explanati on Writing Any two instructio ns: 2 marks: (1 mark each instructio n)
Q. 5		Attempt any TWO of the following :	16- M
	a)	Write C program to transmit 'MSBTE' on TXD line.	8M
	$\begin{aligned} & \text { Ans } \\ & : \end{aligned}$	Baud Rate Calculation: Timer Value $=\frac{2^{\text {sMoD }} \times \text { Oscfreq }}{12 \times 32 \times \text { Re quired Baud rate }}$ Considering SMOD $=1$	2Marks for Calculati on

		1 Mark for calculatio n and 5 M For Program
b)	Write an ALP to generate square wave of $\mathbf{1 \mathbf { k H } _ { z }}$ frequency on $\mathbf{p 2 . 3}$, Use timer 1 in model1. $\mathrm{f}_{\mathrm{OSC}}=12 \mathrm{MH}_{\mathrm{z}}$	8M

MAHARASHTE
(Autonomous) (ISO/IEC - 2700
(tified)

$\begin{aligned} & \hline \hline \text { Ans } \\ & : \end{aligned}$	- In Embedded systems Code generation tools are used for creating and compiling. Then codes are tested using simulators and a number of latest software tolls like simulators , Logic Analyzers, profiler, Emulators etc. - When all of these programs are integrated in one software package then it is called as Integrated Development environment (IDE) - Integrated Development Environment (IDE) consists of simulators with editors , compilers, assemblers, emulators, logic analyzers . IDE Components: Editor: - You can type your assembly program-using editor. - An editor is a program which helps you to construct your assembly language program in right format so that the assembler will translate it correctly to machine language. This form of your program is called as source program. - The assembly program written using DOS Editor is stored as .asm extension \&The C Program written using DOS Editor is stored as .C extension. Cross Assembler: - An Cross Assembler is program that allows an Assembly program written on one type of microcontroller to be used on another type. Simulator: - Simulator Simulates (Duplicates) the behavior of Target Hardware (Microcontroller) in Software. - Provides the detailed information of the status of RAM and ports (simulated) of the defined target system and can execute each instruction in Single step mode. Emulation: - An emulator in computer sciences duplicates (provides an emulation of) the functions of one system using a different system, so that the second system behaves like (and appears to be) the first system. Logic Analyzer: - A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams. RTOS: - RTOS are used in system to execute any task in defined time limits. It has following functions. 1. Memory Management 2. File Management 3. Port Management	2Marks Diagram 6Marks Explanat ion

MAHARASHTE

		4. Process Management 5. I/O Management Target Process Evaluator: - Target Evaluation is the systematic process of gathering and analyzing data and other objective information on processes and outcomes to determine the quality, value, and effectiveness of coding \& performance improvement.	
Q. 6		Attempt any FOUR of the following:	16-M
	a)	Draw structure of Interrupt and explain it.	4M
	$\begin{aligned} & \text { Ans } \\ & : \end{aligned}$	Interrupt Structure: There are five interrupt sources on the 8051: 1. External 0 Interrupt 2. Timer 0 Interrupt 3. External 1 Interrupt 4. Timer 1 Interrupt 5. Serial Interrupt All Interrupt are disabled after a system reset and are enabled individually by software. In the event of two or more simultaneous interrupts or an interrupt occurring while another interrupt is being serviced, there is both a polling sequence and a two level priority scheme to schedule the interrupts. The polling sequence is fixed but the interrupt priority is programmable. As shown in the interrupt structure External 0 / External 1 interrupts can be level triggered or Edge triggered. IT0 / IT1 i.e. (ITx) in TCON are used to decide level triggering or edge triggering. If ITx $=0$ then low level interrupt is used to trigger $8051 \&$ if ITx $=1$ then Falling edge will set IEx flag and interrupt is generated. IT0 \& IT1 bits are available in TCON SFR.	2Marks for Diagram 2Marks for Explanat ion
	b)	Draw the interfacing diagram of $3 * 3$ keyboard matrix with 8051 . Also explain logic to read key.	4M

MAHARASHTE
(Autonomous)
(ISO/IEC - 2700

Ans	Keyboard Logic to read keyboard: 1. Port P1 is used as an O/P port for microcontroller $8051 \&$ Port 2 as an I/P port of microcontroller 8051 2. Make all rows of port P1 low so that it gives low voltage when key is pressed. 3. See if any key is pressed by scanning the port P2 by checking all columns for zero condition. 4. If any key is pressed, to identify which key is pressed make one row low at a time. 5. Initiate a counter to hold the count so that each key is counted. 6. Check port P2 for zero condition. If any zero number is there then start column scanning by following step 8. 7. Otherwise make next row low in port P1 and repeat from step 6 8. If any key pressed is found, then content in accumulator is rotated right through the carry until carry bit sets, while doing this increment the count in the counter till carry is found. 9. Move the content in the counter to display in data field or to memory location 10. To repeat the procedures go to step 2.	2Marks for Diagram 2Marks for Explanat ion
c)	List any four assembler directive and explain it.	4M
Ans	Following are Assembler directives 1. ORG 2. EOU 3. DB 4. $\overline{\mathrm{DW}}$ 5. END (1) ORG (Originate): Org xxxx Originate the following code starting at address xxxx. Example Program The ORG pseudo lets you put code and data anywhere in program memory you wish. Normally the program starts at 0000 h using an org 0000 h . (2) EQU (Equate): Label equxxxx Equate the label name to the number xxxx	1Marks for Each Assemble r Directive

MAHARASHTE
(Autonomous) (ISO/IEC - 2700
(tified)

MAHARASHTE

BOARD OF TECHNICAL EDUCATION (tified)

