

WINTER – 19 EXAMINATION

Subject Name:

Model Answer

Subject Code:

17529

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

	c)	Following are the applications of compressed air	
		1) To drive air motors in coal mines.	Any
		2) To inject fuel in air injection diesel engines.	Eight
		3) To operate pneumatic drills, hammers, hoists, sand blasters.	¹∕2 M
		4) For cleaning purposes.	each
		5) To cool large buildings.	
		6) In the processing of food and farm maintenance.	
		7) For spray painting in paint industry.	
		8) In automobile & railway braking systems.	
		9) To operate air tools like air guns.	
		10) To hold & index cutting tools on machines like milling.	
	d)	Valve timing diagram of four stroke diesel engine	
		Indervave close BDC	4111
Q. 1 (B)	a)	Morse Test cannot be conducted for single cylinder engine Morse test is used to find a close estimate of indicated power of a multi cylinder engine. In this test the engine is coupled to a suitable brake dynamometer and the brake power is determined by running the engine at required speeds. Here the different engine speeds are obtained by interrupting the fuel supply in the constituent cylinders of the engine. Therefore in a multi cylinder engine if fuel supply is cut off in any of the cylinders, the other cylinders continue to run and as a result the output from the engine is obtained. But in case of a single cylinder engine if the fuel supply is cut off no output is obtained to conduct the performance test. Therefore, Morse test is not conducted for a single cylinder engine.	2M
			1

		Motoring Test - In this test, the engine is steadily operated at the rated speed for sufficient time to achieve steady state operation. A motoring or absorption dynamometer absorbs the engine power during the test. Now the engine is cut off by switching off the ignition is case of SI engines or fuel in case of CI engines. The dynamometer now becomes a motor and cranks up the engine to the rated speed at which it was operating before. The power is measured and is an indication of frictional power of the engine. Motoring test is not very accurate method, as it ignores losses arising due to clearance between piston and cylinder wall.	4M
	b)	A catalytic converter is a device which reduces pollutants like HC, CO and NO_x . If all three pollutants are reduced simultaneously, it is called a 3-way catalyst. Usually a catalyst contains a mesh coated with noble metals like platinum, rhodium and palladium. These metals are catalysts which accelerate the oxidation of CO to CO_2 and HC to H_2O and CO_2 and reduce NO_x to N_2 . The catalyst themselves do not participate in the reaction The front part of the catalyst is for NO_x reduction and rear part is for CO and HC oxidation.	4M
		Engine exhaust gas Air chamber Eigure Three way establic converter	2M for figure
Q.2	a)	Rotary Lobe type Air Compressor consists of two motor rotors driven externally. One of the rotors is connected to the drive and the second one is gear driven from the first. The rotors have two or three lobes having cycloid, hypocycloid, involutes shape profile. The high pressure delivery side is sealed from low pressure suction side at all angular position. The lobes are gear driven at close clearance, but without metal-to-metal contact. The suction to the unit is located where the cavity made by the lobes is largest. As the lobes rotate, the cavity size is reduced, causing compression of the air within. The compression continues until the discharge port is reached, at which point the air exits the compressor at a higher pressure. The delivery of air into the receiver is not continuously even though the rotor revolves with uniform speed.	6M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	c)	$\frac{g_{2}}{d} \stackrel{()}{\odot} \stackrel{()}{B.P.} = 30 \text{ KW } N= 2500 \text{ EPM} \\ P_{m} = 800 \text{ KKH} m^{2} \gamma_{meth} = 801. \\ \frac{1}{d} = 1.5 No. \text{ of } (nlindels = 4 \\ \gamma_{bth} = 287. C.v. = 44,000 \text{ kJhs} \\ \overline{1.P.} \stackrel{()}{=} \frac{B.P.}{\gamma_{meth}} = \frac{30}{0.8} = 37.5 \text{ kW} - 1 \\ \overline{1.P.} \stackrel{()}{=} (nlindel = \frac{37.5}{4} = 9.375 \text{ kW} - 1 \\ \overline{1.P.} \stackrel{()}{=} (nlindel = P_{m} \cdot L. A.N \\ 9.375 = 800 \times 10^{3} \times 1.5 d \times 17 \times d \times 2500 \\ A \times 60 \times 1000 \\ L = 1.5 d = 1.5 \times 6.2 = 9.3 \text{ cm} - 1 \\ L = 1.5 d = 1.5 \times 6.2 = 9.3 \text{ cm} - 1 \\ B. \text{ of } f.c. = \frac{mf}{B.P.} = \frac{3600}{0.28 \times 44,000} \\ = 0.2922 \text{ Kg} \text{ KW-h} - 3 \end{aligned}$	
Q.3	a)	The major air pollutants emitted by petrol & diesel engines are CO ₂ , CO, HC, NO _x , SO ₂ ,	Each
		smoke & lead vapour.	For
		Effect of CO:	1 M
		• Carbon monoxide combines with haemoglobin forming carboy haemoglobin, which reduces oxygen carrying capacity of blood.	
		• This leads to laziness, exhaustion of body & headache.	
		• Prolong exposure can even leads to death.	
		• It also affects cardiovascular system, thereby causing heart problem	
		Effect of CO ₂ : Causes respiratory disorder & suffocation.	

	Ei •	It causes respiration irrit impairment of lungs, an ffect of HC:	ation, headache, bronchitis, pu d loss of appetite & corrosion c	lmonary emphysema,	
	E1 •	ffect of HC:	TT TT	of teeth to human body.	
	•				
	• Effec	It has effect like reduced vegetation & acceleration It induce cancer, affect l et of SO ₂ : It is toxic & co	d visibility, eye irritation, pecul on the cracking of rubber produ DNA & cell growth are know a prrosive gas, human respiratory	liar odour & damage to cts. a carcinogens. y track of animals, plants &	
) <u>(</u>	rops Sr. No.	Factors	Open cycle gas turbine	Closed cycle gas turbine	Any
	1.	Pressure	Lesser pressure	Higher pressure	+Eight
	2.	Size of the plant for given output	Larger size	Reduced size	1/2 M
	3.	Output	Lesser output	Greater output	each
	4.	Corrosion of turbine blades	Corrosion takes place due to contaminated gases	No corrosion since there is indirect heating.	caen
	5.	Working medium	Loss of working medium	No loss of working medium.	Ħ
	6.	Filtration of incoming air	It may cause severe problem.	No filtration of air is required.	
	7.	Part load efficiency	Less part load efficiency	More part load efficiency	
	8.	Thermal efficiency	Less thermal efficiency	More thermal efficiency	Π
	9.	Requirement of cooling water	No Requirement of cooling water	Larger amount of cooling water required	
	10.	Weight of system for given power	Less	More	
	11.	Response to the changing load	Good response	Poor response	
	12.	Fluid friction	More Fluid friction	Less Fluid friction	

 I		ſ
	= 3.516 kJ/S or KW	
	In actual practice, one tone of refrigeration is taken as equivalent to 3.516 kW.	2M
	(ii) Coefficient of performance: The performance of a refrigeration system is expressed by a term known as the "co-efficient of performance or COP": It is defined as the ratio of heat absorbed by the refrigerant while passing through the evaporator to the work input required to compress the refrigerant in the compressor ; in short it is the ratio between heat extracted and work done. C.O.P. of refrigerator = Heat absorbed / Work done	
d)	(List of methods -1 mark, explanation of any one with fig. – 3 marks)	
	Following methods are used for improving thermal efficiency of gas turbine	Methods -1M
	1) Regeneration2) Reheating :3) Intercooling	
	1) Regeneration – This is done by preheating the compressed air before entering to the combustion chamber with the turbine exhaust in a heat exchanger, thus saving fuel consumption.	Figure- 1M
	III 14 W AG. Heat exchanger	
	Exhaust gas 6 2 4 Fuel 5 CC 3 Compressor Air 1 Air 1 Compressor Com	Explana tion-2M
	2) Reheating : The whole expansion in the turbine is achieved in two or more stages & reheating is done after each stage.	
	Fiel CC1 HPT CC2 HPT CC2 Fiel Reheat CC2 Fiel Fiel CC2 Fiel CC2 Fiel Fiel Fiel CC2 Fiel	
	3) Intercooling –The compression is performed in two or more stages. But between two stage there is intercooler where cooling takes place at constant pressure.	
	Air from atmosphere	

	e)	Battery Ignition system: It consists of a battery of 6 or 12 volts, ignition switch, induction coil, condenser, distributor and a circuit breaker. One terminal of battery is ground to the frame of the engine and other is connected through the ignition switch to one primary terminal of the ignition coil. The other terminal is connected to one end of contact points of the circuit breaker. To start with the ignition switch is made on and the engine is cranked. The contacts touch, the current flows from battery through the switch. A condenser connected across the terminals of the contact breaker points prevent the sparking at these points. The rotating cam breaks open the contacts immediately and breaking of this primary circuit brings about a change in the magnetic fields and voltage changes from 12 to 12000 V. due to the high voltage. The spark jumps across the gap in the spark plug and air fuel mixture is ignited in the cylinder $ \frac{Gam}{Primary} \frac{Gam}{Primar$	2M 2M
		Figure: Battery ignition in S.I. engine	
Q.4	a)	 There are basically three types of MPFI systems. 1. Sequential multi point fuel injection system 2. Simultaneous multi point fuel injection system 3. Batched multi point fuel injection system In the sequential MPFI system, injection is timed to overlap with intake stroke of each cylinder. In the simultaneous MPFI system, fuel is inserted to all cylinders at the same time. In the batched MPFI system, fuel is injected to the cylinders without bringing their intake stroke together. 	2M
		MPFI includes a fuel pressure regulator, fuel injectors, cylinders, pressure spring and a control diaphragm. It uses multiple individual injectors to insert fuel in each cylinder through intake port situated upstream of cylinder's intake value. The fuel pressure regulator, connected to the fuel rail by means of an inlet and outlet, directs the flow of the fuel. While the control diaphragm and pressure spring controls the outlet valve opening and the amount of fuel that can return. The pressure in the intake manifold significantly changes with the engine speed and load.	2M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	Inlet Plenum Inlet Plenum Inlet Plenum Inlet Plenum Inlet Plenum Inlet Plenum Inlet Plenum Inlet Starbal Inlet Starbal	
	Figure: MPFI	
b)	 i) Indicated Power (I.P): The total power developed by combustion of fuel in the combustion chamber is called indicated power. ii) Mechanical Efficiency- It is the ratio of the power available at the engine crankshaft (B.P.) to the power developed in the engine cylinder (I.P.). Mechanical Efficiency = Brake Power (B.P.)/ Indicated Power (I.P) iii) Brake Power (B.P.): The power developed by an engine at the output shaft is called brake power. iv) Break Specific Fuel Consumption (BSFC) – It is the mass of fuel required to develop 1 kW brake power for a period of one hour. It is inversely proportional to the brake thermal efficiency. BSFC = Mass of fuel consumed in kg/hr / Brake power in kW 	1M each
c)	Scavenging :	
	In two stroke engines, at the end of expansion stroke, combustion chamber is full of products of combustion. This is due to elimination of exhaust stroke like in four stroke engine. Scavenging is the process of clearing the cylinder after the expansion stroke. This is done short duration of time available between end of expansion and start of charging process.	2M
	Types – 1. Cross flow scavenging	2M
	2. Full loop or backflow scavenging	
	3. Uniform flow scavenging	

	d)	$\begin{array}{l} \underline{Q4} & \underline{O} \\ \hline B.P. with all cylinder working = 18.6 kw \\ \hline I.P. = (B.P.) - (B.P.) \\ all cylinder \\ working \\ = 18.6 - 13.2 = 5.4 kw \\ \hline I.P. = 18.6 - 13.34 = 5.26 kw \\ \hline I.P. = 18.6 - 13.58 = 5.02 kw \\ \hline I.P. = 18.6 - 13.58 = 5.02 kw \\ \hline I.P. = 18.6 - 13.27 = 5.33 kw \\ \hline I.P. = 18.2 kw \\ \hline I.P. = 18.2 kw \\ \hline I.P. = 18.2 kw \\ \hline I.P. = $	
B)	a)	Explain four strokes of SI engine	2M
	~ 7	Air-lue miture i i i i i i i i i i i i i i i i i i i	

		 Working of Four stroke petrol engine 1. Suction stroke: Suction stroke starts when piston is at top dead center and about to move downwards. During suction stroke inlet valve is open and exhaust valve is closed. Due to low pressure created by the motion of the piston towards bottom dead center, the charge consisting of fresh air mixed with the fuel is drawn into cylinder. At the end of suction stroke the inlet valve closes. The suction stroke is shown in fig 2. Compression stroke: During compression stroke, the compression of charge takes place by return stroke of piston, i.e. when piston moves from BDC to TDC. During this stroke both, inlet and exhaust valve remain closed. Charge which is occupied by the whole cylinder volume is compressed up to the clearance volume. Just before completion of compression stroke, a spark is produced by the spark plug and fuel is ignited. Combustion takes place when the piston is almost at TDC. The Compression stroke is shown in fig 3. Expansion or power stroke: piston gets downward thrust by explosion of charge. Due to high pressure of burnt gases, piston moves downwards to the BDC. During expansion stroke both inlet and exhaust valves remains closed as shown in fig . Thus power is obtained by expansion of products of combustion. Therefore it is also called as 'power stroke'. Both pressure as well as temperature decreases during expansion stroke. 4. Exhaust stroke the end of expansion stroke the exhaust valve opens, the inlet valve remains closed and the piston moves from BDC to TDC as shown in fig. During exhaust stroke the burnt gases inside the cylinder are expelled out. The exhaust valve closes at the end of the exhaust stroke but still some residual gases remains in cylinder. 	4M
	b)	Additives	
		(1) Detergents – To keep engine parts, such as piston and piston rings, clean & free from	Any
		deposits.	Six
		(2) Dispersants – To suspend & disperse material that could form varnishes, sludge etc that clog the engine.	1 M
		(3) Anti – wear – To give added strength & prevent wear of heavily loaded surfaces such as crank shaft rods & main bearings.	Each
		(4) Corrosion inhibitors – To fight the rust wear caused by acids moisture. Protect vital steel & iron parts from rust & corrosion.	
		(5) Foam inhibitors – control bubble growth, break them up quickly to prevent frothing & allow the oil pump to circulate oil evenly.	
		(6) Viscosity index improver – added to adjust the viscosity of oil.	
		(7) Pour point depressant - improves an oil ability to flow at very low temperature	
Q.5	a)	Working of Simple Vapor absorption system:	6M
		A Simple Vapor absorption system consists of evaporator, absorber, generator, condenser, expansion valve, pump & reducing valve. In this system ammonia is used as refrigerant and solution is used is aqua ammonia.	
		Strong solution of aqua ammonia contains as much as ammonia as it can and weak solution	

contains less ammonia. The compressor of vapor compressor system is replaced by an absorber, generator, reducing valve and pump.

The heat flow in the system at generator, and work is supplied to pump. Ammonia vapors coming out of evaporator are drawn in absorber. The weak solution containing very little ammonia is spread in absorber. The weak solution absorbs ammonia and gets converted into strong solution. This strong solution from absorber is pumped into generator.

The addition of heat liberates ammonia vapor and solution gets converted into weak solution. The released vapor is passed to condenser and weak solution to absorber through a reducing valve. Thus, the function of a compressor is done by absorber, a generator, pump and reducing valve. The simple vapor compressor system is used where there is scarcity of Electricity and it is very useful at partial and full load.

b)	Following are the uses of compressed air	
	1) To drive air motors in coal mines.	Any
	2) To inject fuel in air injection diesel engines.	Four
	3) To operate pneumatic drills, hammers, hoists, sand blasters.	1M
	4) For cleaning purposes.	
	5) To cool large buildings.	each
	6) In the processing of food and farm maintenance.	
	7) For spray painting in paint industry.	
	8) In automobile & railway braking systems.	
	9) To operate air tools like air guns.	
	10) To hold & index cutting tools on machines like milling.	
c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

