WINTER-19 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \mathrm{Q} . \\ & \mathrm{No.} \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
1.	a)	Attempt any nine of the following: State relation between linear velocity and angular velocity. Relation between linear velocity and angular velocity is $v=r \omega$ Determine the quantity of water raised in $\mathbf{1 5} \mathbf{~ m i n}$. to height of $\mathbf{2 4} \mathbf{~ m}$ by using pump of $\mathbf{1 2}$ kW. Formula with substitution Answer with unit Given:- Porter lifts a suitcase weighting 20 kg from the platform and put it on his head $\mathbf{2} \mathbf{~ m}$ above the platform. Calculate the work done by porter on the suitcase. Formula with substitution Answer with unit $\begin{gathered} \text { Given:- } \mathrm{m}=20 \mathrm{~kg}, \quad \mathrm{~h}=2 \mathrm{~m}, \quad \mathrm{w}=\text { ? } \\ \text { Work done }=\mathrm{mgh}=20 \times 9.8 \times 2 \\ \text { Work done }=\mathbf{3 9 2} \mathbf{~ J} \end{gathered}$	$\begin{aligned} & 18 \\ & 2 \end{aligned}$ 2 1 2 1 1

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Subject Name: Applied Physics} \& Name: Applied Physics Model Answer Subject Code: \&

\hline $$
\begin{array}{|l|}
\hline \text { Q. } \\
\text { No. }
\end{array}
$$ \& $$
\begin{aligned}
& \hline \text { Sub } \\
& \text { Q.N. }
\end{aligned}
$$ \& Answers \& Marking Scheme

\hline 1. \& d)

e)

f)

frat \& \begin{tabular}{l}
Define centripetal force and centrifugal force

Each Definition

Centripetal force - It is defined as the force acting along the radius towards the center of the circular path, which keeps the particle in uniform circular motion. OR

Centripetal force is the force acting on a particle performing uniform circular motion which is along the radius and towards the center of circular path.

Centrifugal force - It is defined as the force acting on a particle performing uniform circular motion which is directed away from center and along the radius of the circular path.

OR

A particle performing uniform circular motion experiences force which is along the radius and away from the center is called Centrifugal force.

State any two properties of ultrasonic waves.

Each Property

i) Frequency of these sound waves is more than 20 kHz

ii) Shorter wavelength

iii) They carry high amount of sound energy

iv) The speed of propagation of ultrasonic waves increases with increase in frequency

v) They show negligible diffraction

vi) Ultrasonic waves travel over long distance without considerable loss

vii) Ultrasonic waves undergo reflection and refraction at the separation of two media viii) If it passed through fluid, then temperature of the fluid increases.

ix) Travel with constant speed through a homogeneous medium.

x) Posses certain vibrations which are used as good massage action in case of muscular pain.

Explain variation of thermo e.m.f. with temperature.

Diagram

Explanation

 \&

2

1

2

1

2

1
\end{tabular}

\hline
\end{tabular}

Model Answer Subject Code:

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Subject Name: Applied Physics} \& Name: Applied Physics Model Answer Subject Code: \& \\
\hline \begin{tabular}{l}
Q. \\
No.
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { Sub } \\
\& \text { Q. N. }
\end{aligned}
\] \& Answers \& Marking Scheme \\
\hline 2. \& c)

d)

e) \& \begin{tabular}{l}
Working: A chip of piezo-electric crystal like quartz is placed between two plates as shown in figure. A suitable oscillator is connected across it. The electric oscillations along the electric axis produce mechanical vibrations along the mechanical axis. The frequency of oscillator is increased. At a particular frequency of oscillator, the oscillator frequency becomes equal to natural frequency of vibration of crystal. Then the crystal sets into resonance vibration and ultrasonic waves are produced.

State four factors on which NDT method can be selected. Any four factors

i) Codes or standard requirement

ii) Specification of material to be tested, for example, nature of material, its size and shape

iii) Type of disorders to be detected, also depend on nature of disorders.

iv) Testing also depends on manufacturing process of material to be tested

v) It is also depending on the equipments available for testing

vi) Total cost required to test the material.

Explain process of transmission ultrasonic testing and pulse echo UT testing. Each Diagram

Each Explanation

Transmission UT method:- In this method two different tranducers are used, one acting as a transmitter and other acting as a receiver. The transmitter convers electrical pulse into sound signal. This sound pulse travels through the material. the receiver on opposite side receives these sound signals and converted into electrical pulse. This signal pulse sent to CRT screen. This screen displays amplitude on Y axis and time on X axis. If the signals are not received by receiver it indicates that there is crack in the material, complete lack of signal indicates that flow or crack is very large enough to reflect completely. If the received signal is 100% the the material is flowless.

Pulse Echo UT method:- In this case only one transducer is used. This transducer acts as transmitter as well as receiver. Initially transducer acts as transmitter. It converts electrical energy into sound energy. This sound pulse travels through the material and reflected by crack or opposite wall and return back.

 \&

4

4

1

1
\end{tabular}

\hline
\end{tabular}

Subject Name: Applied Physics Model Answer Subject Code:

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
2.	e)	Now the transducer acts as receiver. The received sound energy is converted into electrical pulse. This signal pulse sent to CRT screen. This screen displays amplitude on Y axis and time on X axis. Some sound is transmitted through material and some sound is reflected from the first surfaces and gives a pulse which indicates the initial pulse. The electrical transmission pulse triggers a sound pulse at the probe crystal. At the same time this voltage pulse is fed to the input of CRT is called initial pulse as shown in following diagram. A car starting from rest, is given a uniform acceleration of $2 \mathbf{m} / \mathbf{s}^{2}$ for 5 seconds. It then moves with constant velocity for one minute. The breaks are then applied and the car is brought to rest in 5 seconds. Determine the total distance covered by a car. Three parts of solution Total distance i.e. Final answer Let us divide the journey into three parts Part I Given :- $u=0 ; a=2 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{t}=5$ second $\mathrm{v}=\mathrm{u}+\mathrm{at}=0+(2 \times 5)=10 \mathrm{~m} / \mathrm{s}$. $\mathrm{s}_{1}=\mathrm{ut}+1 / 2$ at $^{2}=0+1 / 2(2 \times 10)=25$ meter. Part II Given $\mathrm{v}=10 \mathrm{~m} / \mathrm{s} ; \mathrm{t}=60$ seconds. $\mathrm{v}=\mathrm{s}_{2} / \mathrm{t}$ $\mathrm{s}_{2}=\mathrm{vt}=10 \times 60=600 \mathrm{~m}$ Part III Given :- $u=10 ; v=0, t=5$ second $\mathrm{a}=\mathrm{v}-\mathrm{u} / \mathrm{t}=0-10 / 5=-2 \mathrm{~m} / \mathrm{s}^{2}$ $\mathrm{v}=\mathrm{u}+\mathrm{at}=0+(2 \times 5)=10 \mathrm{~m} / \mathrm{s}$. $\mathrm{s}_{3}=\mathrm{ut}+1 / 2$ at $^{2}=10 \times 5-1 / 2(2 \times 25)=25$ meter. Therefore total distance travelled $=s_{1}+s_{2}+s_{3}$ $=25+600+25$ $=650 \mathrm{~m}$	4 1 each 1

Subject Name: Applied Physics		Name: Applied Physics Model Answer Subject Code:	
$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
3.	a)	Attempt any four of the following: Distinguish between Seebeck and Peltier effect . Any Four points Find ratio of heat evolved in a conductor of 1 watt and 2 watt respectively connected across a battery. formula and Substitution Answer with unit $\mathrm{P}_{1}=1 \mathrm{~W}$ $\mathrm{P}_{1}=2 \mathrm{~W}$ Heat evolved H_{1} Heat evolved H_{2} $\mathrm{J}=\frac{\mathrm{P}_{1} \mathrm{t}}{-----} \mathrm{H}_{1}$ $\mathrm{J}=\frac{\mathrm{P}_{2} \mathrm{t}}{-----} \mathrm{H}_{2}$ Equation 2 Equating equation 1 and 2 we get $\begin{aligned} & \mathrm{P}_{1} \mathrm{t} / \mathrm{H}_{1}=\mathrm{P}_{2} \mathrm{t} / \mathrm{H}_{2} \\ & \mathrm{P}_{1} / \mathrm{P}_{2}=\mathrm{H}_{1} / \mathrm{H}_{2} \end{aligned}$ $1 / 2=H_{1} / H_{2}$; Therefore ratio of hat volved i.e. $H_{1}: H_{2}$ is $1: 2$	16

Subject Name: Applied Physics		Name: Applied Physics Model Answer Subject Code:	
$\begin{aligned} & \mathrm{Q} . \\ & \mathrm{No.} \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
3.	d) e) 	Construction:- It consist of hard glass bulb with cathode and anode as shown in fig. Cathode is a metal filament kept at negative potential to the filament. Target T consist of copper block in which a piece of tungsten is fitted. Working: When the cathode is heated by electric current it produce electrons due to thermionic emission. The beam of electrons is then focused on the anode (target). The electrons from cathode are accelerated by applying high voltage between cathode \& anode using step up transformer. When these fast moving electrons are suddenly stopped by tungsten anode, they lose their kinetic energy and x rays are produced from the target. Some amount of Kinetic energy is converted to large amount of heat. By controlling the filament current, the thermionic emission of electron hence intensity of X- rays can be controlled. Define population inversion and explain optical pumping by using three level systems. Definition Explanation Population inversion: Making population of excited state more than that of ground state is called population inversion.i.e. $\mathrm{N}_{2} \gg \mathrm{~N}_{1}$	$\begin{aligned} & 4 \\ & 1 \\ & 3 \end{aligned}$

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Subject Name: Applied Physics} \& Name: Applied Physics Model Answer Subject Code: \&

\hline $$
\begin{array}{|l}
\hline \text { Q. } \\
\text { No. }
\end{array}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q. N. }
\end{aligned}
$$ \& Answers \& Marking Scheme

\hline 3. \& d)

f) \& \begin{tabular}{l}

Pumping Between Levels 1 and 3		Laser Action Between Levels 2 and 1
E_{1}		

Let E_{1}, E_{2} And E_{3} are energy levels. Atoms in energy level E_{1} excited to E_{3} by optical pumping. They lose some energy and return to energy state E_{2}. This is metastable state.

Since E_{2} is metastable state the no. of atoms in E_{2} increases and when it is greater than state E_{1} i.e. $\mathrm{N}_{2} \gg \mathrm{~N}_{1}$ population inversion takes place.

If atom is triggered due to action of an incident photon of energy hv12 then stimulated emission takes place. Atom emits photons of same direction, intense, monochromatic and coherent laser radiations.

A flywheel starting from rest is subjected to an acceleration of $0.7 \mathrm{rad} / \mathbf{s}^{\mathbf{2}}$.Calculate its angular displacement in $5^{\text {th }}$ second.

formula and Substitution

Answer with unit

$$
\begin{gathered}
\text { Given:- } \omega_{0}=0 \\
\alpha=0.7 \mathrm{rad} / \mathrm{s}^{2} \\
\theta^{5 \mathrm{th}}=? \\
\theta^{\mathrm{nth}}=\omega_{0}+\alpha / 2(2 \mathrm{n}-1) \\
\theta^{5 \mathrm{th}}=0+0.7 / 2(2 \times 5-1) \\
\boldsymbol{\theta}^{\text {5th }}=\mathbf{3 . 1 5} \text { radians }
\end{gathered}
$$

\end{tabular} \& \[

$$
\begin{aligned}
& 4 \\
& 2 \\
& 2
\end{aligned}
$$
\]

\hline
\end{tabular}

