17104

16172

3 Hours / 100 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any TEN of the following:

a) Find x if $\left|\begin{array}{lll}1 & 1 & 1 \\ 3 & x & 3 \\ 1 & x & 2\end{array}\right|=0$
b) If $A=\left[\begin{array}{rr}2 & -1 \\ 4 & 3\end{array}\right], B=\left[\begin{array}{rr}3 & -2 \\ -1 & 4\end{array}\right]$ find the matrix ' X ' such that $2 \mathrm{~A}+\mathrm{X}=3 \mathrm{~B}$
c) If $A=\left[\begin{array}{rr}3 & 9 \\ -1 & -3\end{array}\right]$ show that A^{2} is null matrix.
d) If $A=\left[\begin{array}{rrr}2 & -1 & 3 \\ 4 & 1 & -3 \\ 0 & -1 & 1\end{array}\right]$ find $|A|$ and verify that matrix A is singular or non-singular matrix.
e) Resolve into partial fraction $\frac{x+4}{x(x+1)}$
f) Prove that $\frac{1}{1-\cos A}+\frac{1}{1+\cos A}=2 \operatorname{cosec}^{2} A$
g) Using compound angle formula find $\cos (75)^{\circ}$.
h) If $\sin A=\frac{1}{2}$ find $\sin (3 A)$
i) Express as product form $\cos 4 \theta+\cos 8 \theta$
j) If $\tan ^{-1}(1)+\tan ^{-1}(x)=0$ then find ' x '.
k) State the conditions of parallel and perpendicular lines, whose slopes are M_{1} and M_{2}.

1) Find the range of the data $45,42,39,40,48,41,45,44$

2. Solve any FOUR of the following:

a) Solve the following equations using Cramer's rule of determinants.
$x+y+z=3$,
$x-y+z=1$,
$x+y-2 z=0$
b) Find x, y, z if $\left\{\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2\end{array}\right]+2\left[\begin{array}{lll}3 & 0 & 2 \\ 1 & 4 & 5 \\ 2 & 1 & 0\end{array}\right]\right\}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
c) Express the matrix A as the sum of symmetric and skew-symmetric matrices, where $A=\left[\begin{array}{rrr}-1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5\end{array}\right]$
d) Find A^{-1} by Adjoint method, If $A=\left[\begin{array}{rrr}2 & -1 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 1\end{array}\right]$
e) Resolve into the partial fractions: $\frac{x^{2}+1}{(x+1)\left(x^{2}+4\right)}$
f) Resolve into the partial fractions: $\frac{x^{2}+1}{x\left(x^{2}-1\right)}$
3. Solve any FOUR of the following:
a) Using matrix inversion method, solve the equation:

$$
x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6
$$

b) Resolve into partial fraction: $\frac{x^{2}}{(x+1)(x+2)^{2}}$
c) Resolve into partial fraction : $\frac{x^{4}}{x^{3}+1}$
d) If $\tan \left(\frac{\alpha}{2}\right)=\frac{1}{\sqrt{3}}$ then find $\sin \alpha$.
e) Show that : $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$.
f) Show that : $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$
4. Solve any FOUR of the following:
a) Prove that $: \sin (A-B)=\sin A \cos B-\cos A \sin B$
b) Prove that : $\frac{1-\tan 2 \theta \cdot \tan \theta}{1+\tan 2 \theta \cdot \tan \theta}=\frac{\cos 3 \theta}{\cos \theta}$
c) Evaluate: $\tan \left[2 \tan ^{-1} \frac{1}{5}\right]$
d) Show that $: \sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}=0$
e) Prove that $: \tan \mathrm{A} \tan (60-\mathrm{A}) \cdot \tan (60+\mathrm{A})=\tan 3 \mathrm{~A}$
f) Without using calculator find the value of $\sin 150^{\circ}+\cos 300^{\circ}-\tan 315^{\circ}+\sec ^{2} 3660^{\circ}$
5. Solve any FOUR of the following:
a) Prove that $\sin 3 \mathrm{~A}=3 \sin \mathrm{~A}-4 \sin ^{3} \mathrm{~A}$
b) Show that $\frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}=\tan 5 A$
c) Show that $\cos ^{-1}\left(\frac{4}{5}\right)-\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{63}{65}\right)$
d) Find ' P ' if the lines $3 x+4 p y+8=0$ and $3 p y-9 x+10=0$ are perpendicular to each other.
e) Find the angle between the lines: $3 x-y+4=0$ and $2 x+y-3=0$
f) Find the equation of straight line passing through the point of intersection of lines $4 x+3 y=8$ and $x+y=1$ and parallel to the line $5 x-7 y=3$.
6. Solve any FOUR of the following:
a) Find the equation of straight line which is perpendicular bisector of the line joining the points $\mathrm{A}(8,-1)$ and $\mathrm{B}(6,3)$
b) Find the equation of the line whose intercept on the X -axis is double that on the y -axis and passing through the point $(4,1)$
c) From the following data investigate which set is more consistent:

Set	a.m. $=\bar{x}$	S.D. $=\sigma$
Set I	83.4	5.9
Set II	51.85	7.45

d) Find Range of coefficient of Range for the following data:

Marks	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$
No. of Students	10	15	16	20	21	22	09	08

e) Find the mean deviation for the following data:

Marks	3	4	5	6	7	8
No. of Students	1	3	7	5	2	2

f) Find the standard deviation for the following data:

Class Interval	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency	03	05	09	15	20	16	10	02

