22230

2	222.	3	,	-								_			·1
3	Ho	ours	/	70	Marks	Seat	No.								
	Instru	ctions	_	(1)	All Questions	s are Comp	ulsor	ry.							
				(2)	Answer each	next main	Que	stic	on	on	a n	ew	pag	ge.	
				(3)	Illustrate you necessary.	r answers v	with	nea	at s	sket	ches	5 W	here	ever	
				(4)	Figures to th	e right indi	cate	fu	ll r	narl	KS.				
				(5)	Assume suita	able data, if	nec	ess	ary	•					
				(6)	Use of Non- Calculator is	programmab permissible	ole E	llec	tro	nic	Poc	ket	-		
				(7)	Mobile Phon Communicati Examination	e, Pager an on devices Hall.	d an are 1	y (not	othe pe	er H ermi	Elec	tror le	nic in		
				(8)	Abbreviations	s used, conv	vey ı	usu	al	mea	anin	g.			
														Ma	rks
1.		Atter	npt	any	<u>FIVE</u> of the	e following:									10
	a)	Classify polymer on basis of origin.													
	b)	State	typ	oical	'characteristic:	s' of an 'el	astor	ner	.,						
	c)	State	rol	le and	d example of	inhibitor.									
	d)	'Com	npar	re': ca	ationic-and an	ionic polym	nerisa	atio	n,						
	e)	State	in	gene	ral, 'application	ons' of 'bul	k-pol	lyn	neri	sed	'.				
	f)	Defir Find	ne' its	Degre 'Deg	ee of polymer gree of polyme	rization'. Po erization'.	lythe	ene	ha	is N	ΛW	11	200.		
	g)	Defir	ne :												
		i)	Re	lative	viscosity										
		ii)	Spo	ecific	viscosity										

h) Define 'Tg' Glass transition Temperature.

12

2.		Attempt any THREE of the following:						
	a)) Explain with a schematic diagram, 'block copolymer'.						
	b)	Explain 'Solution Polymerisation' Technique.						
	c)	'Compare' emulsion- and suspension polymerisation.						
	d)	'Polymers are often represented by average MW and softening range'. State reason.						
3.		Attempt any THREE of the following:						
	a)	i) Define 'stereo-specific (regular) polymer'.						
		ii) Describe and schematically represent structure of an 'atactic' polymer.Is it capable of crystallisation ?						
	b)	Describe addition polymerisation with example.						
	c)	Describe 'step polymerisation'						
	d)	i) Draw a labelled 'diagram' of a simple 'osmometer'.						
		ii) Explain the process of osometry for molecular weight						

ii) Explain the process of osometry for molecular weight determination

4. Attempt any <u>THREE</u> of the following:

- a) i) Define 'commodity plastics'.
 - ii) Explain with examples, 'applications of commodity plastics.
- b) Explain thermoplastics and thermosetting plastics with example.
- c) i) Define a 'free radical'. Write 'decomposition reaction of lanzoyl peroxide and its usual decomposition temperature'.
 - ii) State usual 'dosage' of an initiator and its 'effect' on 'MW' of the polymer produced.
- d) State usual notations 'mathematical expression' for $\overline{M}w$ and $\overline{M}n$.
- e) i) Define 'heat distortion temperature.
 - ii) Explain its significance.

5.

Marks

Attempt any TWO of the following: 12 Describe 'autoacceleration' as observed in a) i) 'mass-polymerisation'. ii) Compare 'mass-polymerisation' with 'solution polymerisation'. In a particular type of a polymer consider two b) i) hypothetical cases : 1) 70 weight% of a fraction has $M_1 = 50000$ and remaining has $M_2 = 80000.$ 2) 60 weight% of a fraction has $M_1 = 70000$ and remaining has $M_2 = 42500$. Find average molecular weight in the two cases. Explain if they will show similar or different properties. ii) i) Explain with reaction, type of degradation in PVC. c)

ii) Metallic compounds are often used in PVC composition. Explain with examples their purpose.

6. Attempt any TWO of the following:

- a) i) Explain 'CMC' w.r.t. emulsion polymerisation.
 - ii) Define an 'emulsifier' graphically represent effect of its concentration on particle size of emulsoid produced.
 - iii) Explain with an example, role of 'coalescing agent'.
- b) i) Explain effect of plasticizer addition on glass transition temperature.
 - ii) Two homopolymers have $tg_1 = 105^{\circ}C$, $tg_2 = 8^{\circ}C$. A copolymer is made from corresponding monomers, such that the plasticising monomer is 25 weight%. Find Tg of the copolymer. Name equation used.
- c) i) Define an 'antioxidant'. Give two examples.
 - ii) Explain giving two examples, 'mechanical degradation' of polymers.

12