22223

3 Hours / 70 Marks

 Seat No. \squareInstructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any FIVE of the following: $\mathbf{1 0}$
a) Define implicit function with a suitable example.
b) If $f(x)=x^{3}-3 x+\sin x+x \cdot \cos x$ then show that $f(x)+f(-x)=0$
c) Find $\frac{d y}{d x}$, if $y=\left(\tan ^{-1} x\right)^{2}$
d) Evaluate $\int \frac{d x}{9+4 x^{2}}$
e) Evaluate $\int \sin ^{3} x d x$
f) Find the area of the region bounded by the curve $y=4 x^{2}$, X axis and the ordinates $x=0$ and $x=2$
g) State Simpson's $\frac{1}{3}$ rd rule of numerical integration.
2. Solve any THREE of the following:
a) If $x^{y}=e^{x-y}$, show that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$
b) If $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$, find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{4}$
c) A metal wire is 60 cm long is bent to form a rectangle.

Find its dimension when area is maximum.
d) Find the radius of curvature of the curve $\sqrt{x}+\sqrt{y}=1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$.
3. Solve any THREE of the following:
a) Find the equation of tangent and normal to the curve $4 x^{2}+9 y^{2}=40$ at point $(1,2)$
b) Find $\frac{d y}{d x}$, if $x^{2}+y^{2}=4 x y$
c) Find $\frac{d y}{d x}$, if $y=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$
d) Evalute $\int \frac{(x-1) e^{x}}{x^{2} \cdot \sin ^{2}\left(\frac{e^{x}}{x}\right)} d x$
4. Solve any THREE of the following:
a) Evaluate $\int \frac{d x}{\sqrt{13-6 x-x^{2}}}$
b) Evaluate $\int \frac{d x}{5-4 \sin x}$
c) Evaluate $\int \frac{x \cdot \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
d) Evaluate $\int \frac{\sec ^{2} x}{(1-\tan x)(2+\tan x)} d x$
e) Evaluate $\int_{1}^{5} \frac{\sqrt[3]{9-x}}{\sqrt[3]{9-x}+\sqrt[3]{x+3}} d x$
5. Solve any TWO of the following:
a) Find the area bounded by the parabolas $y^{2}=9 x$ and $x^{2}=9 y$
b) Attempt the following
i) Find the order and degree of the differential equation.

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2 / 3}=\sqrt{y+\frac{d y}{d x}}
$$

ii) Solve the D.E. $x{\sqrt{1-y^{2}}}^{2} d x+y \sqrt{1-x}^{2} d y=0$
c) A particle starting with velocity $6 \mathrm{~m} / \mathrm{s}$ has an acceleration $\left(1-t^{2}\right) \mathrm{m} / \mathrm{s}^{2}$. When does if first comes to rest ? How far has it then travelled ?
6. Solve any TWO of the following:
a) i) Evaluate $\int_{0}^{4} e^{x} d x$, using Trapezoidal rule given that

x	0	1	2	3	4
e^{x}	1	2.72	7.39	20.09	54.60

ii) Using Simpson's one third rule, Evaluate $\int_{0}^{4} \frac{d x}{4 x+5}$ taking $\mathrm{n}=4$ and using following table

x	0	1	2	3	4
$y=f(x)$ $\frac{1}{4 x+5}$	0.2	0.1	0.076	0.058	0.047

b) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ using Simpson's $1 / 3^{\text {rd }}$ rule divide the interval $[0,1]$ into six equal parts. Find approximate value of π.
c) Using Simpson's $\frac{3}{8}^{\text {th }}$ rule to find $\int_{0}^{\pi / 2} \sqrt{\cos x} d x$ with $\mathrm{n}=8$.

