22223

3 Hours / 70 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Solve any FIVE of the following:
a) If $f(\mathrm{x})=x^{2}+6 x+10$, find $f(2)+f(-2)$.
b) State with proof whether the function $f(x)=\log \left(\frac{1-x}{1+x}\right)$ is even or odd.
c) Find $\frac{d y}{d x}$ if $y=\mathrm{e}^{x} \cdot \tan x$.
d) Evaluate $\int e^{x \cdot \log _{e} a} d x$.
e) Evaluate $\int \sqrt{1+\cos 2 x} d x$.
f) Find the area bounded by the curve $y=4 x^{3}, \mathrm{X}$ - axis and the ordinates $x=1, x=2$.
g) Find modulus and amplitude of $1+\mathrm{i} \sqrt{3}$.
2. Solve any THREE of the following:
a) If $x^{2}+y^{2}=4 x y$, find $\frac{d y}{d x}$ at $(1,2)$
b) Find $\frac{d y}{d x}$, if $x=a(\cos t+t \sin t)$ $y=a(\sin t-t \cos t)$
c) A telegraph wire hangs in the form of curve $y=a \log \left\{\sec \left(\frac{x}{a}\right)\right\}$. Show that curvature at any point is $\frac{1}{a} \cos \left(\frac{x}{a}\right)$.
d) A metal wire 40 cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.
3. Solve any THREE of the following:
a) Find the equations of tangents to the curve $y=x^{2}-2 x-3$ where it cuts x - axis.
b) If $x^{y}=\mathrm{e}^{x-y}$, show that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
c) Find $\frac{d y}{d x}$ if $y=\log \left(\frac{\sin x}{1+\cos x}\right)$.
d) Evaluate $\int \frac{e^{x}(x+1)}{\cos ^{2}\left(x \cdot e^{x}\right)} d x$.
4. Solve any THREE of the following:
a) Evaluate $\int \frac{d x}{x^{2}+x+1}$.
b) Evaluate $\int \frac{d x}{5+3 \cos x}$.
c) Evaluate $\int \tan ^{-1} x d x$.
d) Evaluate $\int \frac{d x}{\cos ^{2} x(1-\tan x)(2+\tan x)}$.
e) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} d x$.
5. Solve any TWO of the following:
a) Find the area bounded by parabolas $y^{2}=9 x$ and $x^{2}=9 y$.
b) i) Find order and degree of the differential equation

$$
\sqrt{\frac{d^{2} y}{d x^{2}}}=\sqrt[3]{\frac{d y}{d x}}
$$

ii) Solve : $\frac{d y}{d x}+y \tan x=\cos ^{2} x$.
c) Find the current as a function of time t using Kirchhoff's voltage law equation $\mathrm{L} \frac{d i}{d t}+\mathrm{Ri}=\mathrm{E}$, if resistance of 10 ohms and an inductance of 2 Henry are connected in series with a battery of 200 V .
6. Solve any TWO of the following:
a) i) Express $\frac{(1+i)(2+i)}{3+i}$ in $x+i y$ form.
ii) Find $L\{\cos 5 t \cdot \cos 3 t\}$.
b) Find $L^{-1}\left\{\frac{s^{2}+s-2}{s(s-2)(s+3)}\right\}$.
c) Solve the differential equation using Laplace transform.
$\frac{d y}{d t}+y=\mathrm{t}^{2} \cdot \mathrm{e}^{-\mathrm{t}} ; y(0)=3$.

