22212

22232 3 Hours / 70 Marks

Seat No.				

<i>Instructions</i> : (1) (2)		s: (1) All Questions an	e compulsory.			
		(2) Answer each ne	Answer each next main Question on a new page.			
		(3) Illustrate your an	nswers with neat sketches wherever necessary.			
		(4) Figures to the right	ght indicate full marks.			
		(5) Assume suitable	data, if necessary.			
		(6) Mobile Phone,	Pager and any other Electronic Communic	ation		
		devices are not j	permissible in Examination Hall.			
				Marks		
1.	Atter	npt any FIVE of the follow	ing :	10		
	(a)	Define electric current.		2		
	(b)	State the meaning of active	and passive circuit.	2		
	(c)	State the meaning of the term dielectric strength.				
	(d)	Define Magneto Motive For	ce.	2		
	(e)	Define Magnetic Hysterisis.		2		
	(f)	Define Co-efficient of coup	ling.	2		
	(g)	State the formula to calculat	te the energy stored in a magnetic field.	2		
2.	Atter	nnt any THREE of the follo	nwing :	12		
	(a)	State the offects of electric	annant Evalain ann ana affact with a suit			
	(a)	State the effects of electric	current. Explain any one effect with a suit	able		
		example.		4		
	(b)	Compare resistances in serie	es and parallel.	4		
	(c)	With suitable diagram expla	in the action of capacitor.	4		
	(d)	State and explain statically a	and dynamically induced emfs.	4		
1 0 10	.					

3.	Attempt any THREE of the following :						
	(a)	State and explain ideal voltage source and current source.	4				
	(b)	An electric kettle is required to heat 0.6 litre of water from 10 °C to the					
		boiling point in 5 minutes. Calculate the resistance of the heating element, if					
		the supply voltage is 240 V.	4				
	(c)	State and explain Kirchoff's Voltage Law.	4				
	(d)	Enlist the types of capacitor. Explain the construction of any one.	4				
4.	Atte	empt any THREE of the following :	12				
	(a)	Compare direct current and alternating current.	4				
	(b)	Calculate the resistance between the points B & D, for the Fig. 4.1.	4				
		100Ω r r 10Ω					

(c) Applying Kirchoff's voltage law, find the current flowing through the resistance 6Ω & for the circuit shown in Fig. 4.2

FIG. 4.2

4

22212		[3 of 4]						
	(d)	Deri	ve the equation for energy stored in a capacitor.	4				
	(e)	Three capacitors A, B and C have capacitances 10, 50, 25 μF each are						
	conne		nected in parallel to a 250 V supply. Calculate					
		(i)	Total capacitance					
		(ii)	Charge across each capacitor.	4				
5.	Atte	empt a	any TWO of the following :	12				
	(a)	(a) Draw the experimental setup to plot the 'B-H Curve' of a magnetic ma						
		Explain the procedure and draw the curve.						
	(b)	An iron ring of mean length 50 cm has an air gap of 1 mm and a winding of						
		200 turns. If the permeability of iron is 400, calculate the fuel density when						
		current of 2 A flows through the coil.						
	(c)	(i)	State Faraday's Laws of Electro Magnetic Induction.					
		(ii)	Draw and explain the experimental setup to demonstrate the generation					
			of statically induced emf.	6				
6.	Atte	empt a	any TWO of the following :	12				
	(a)	Com	pare electric and magnetic circuit.	6				
	(b)	Two	coils having 50 and 400 turns respectively are wound side by side on a					
		close	ed iron ring of area of cross-section 100 cm ² and mean length 200 cm.					
		Calculate						
		(i)	Mutual inductance between the coils, if the relative permeability of iron					
			is 2000.					
		(ii)	emf induced in the second coil, when a zero ampere current grows to					
			10 A in a time of 0.02 sec in the first coil.	6				
			P.	Т.О.				

[4 of 4]

- (c) If a coil of 1000 turns is linked with a flux of 0.02 weber, when carrying a current of 10 A, calculate
 - (i) Inductance of the coil.
 - (ii) Induced emf, if the current is uniformly reversed in the coil in 0.01 seconds.

6