22223

3 Hours / 70 Marks

 Seat No. \squareInstructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Solve any FIVE of the following:
a) If $f(x)=\mathrm{p} x^{2}+11$, and $f(-1)=15$. Find value of p .
b) If $f(x)=(16)^{x}-\log _{2} x$, find $f\left(\frac{1}{2}\right)$
c) If $y=\log [\sec x+\tan x]$ find $\frac{d y}{d x}$
d) Evaluate : $\int \log x d x$
e) Evaluate : $\int \frac{d x}{2 x+11}$
f) Find the area enclosed by the curve $y=x^{3}$ and ordinate $x=1, x=3$ and x-axis.
g) Find the approximate roots of the equation $x^{3}-x-4=0$ by Bisection Method (Two iteration)
2. Solve any THREE of the following:
a) If $f(x)=\frac{2 x+5}{3 x-4}$ and $\mathrm{t}=\frac{5+4 x}{3 x-2}$ Find $f(t)$.
b) If $x^{2}+y^{2}=4 x y$. Find $\frac{d y}{d x}$ at $(2,-1)$
c) A metal wire 36 cm long is bent to form a rectangle.

Find its dimension when its area is maximum.
d) A beam is bent in the form of curve $y=2 \sin x-\sin 2 x$.

Find radius of curvature of the beam at the point $x=\frac{\pi}{2}$
3. Solve any THREE of the following:
a) Find equation of tangent and normal to the curve $y=4 x e^{x}$ at the origin.
b) If $y=\sin ^{-1}\left(\frac{\cos x+\sin x}{\sqrt{2}}\right)$. Find $\frac{d y}{d x}$.
c) If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$.

Find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{2}$
d) Evaluate $\int \sin 3 x \cdot \cos 7 x d x$.
4. Solve any THREE of the following:
a) Evaluate $: \int \frac{e^{x}(x+1)}{\cos ^{2}\left(x \cdot e^{x}\right)} d x$.
b) Evaluate : $\int \frac{d x}{5+4 \cos x}$.
c) Evaluate $: \int x^{2018} \cdot \log x d x$.
d) Evaluate $: \int \frac{\sec ^{2} x}{(1+\tan x)(2+\tan x)} d x$.
e) Evaluate : $\int_{1}^{5} \frac{\sqrt[3]{9-x}}{\sqrt[3]{9-x}+\sqrt[3]{x+3}} d x$
5. Solve any TWO of the following:
a) Find the area bounded by the two parabolas $y^{2}=4 x$ and $x^{2}=4 y$ using itegration.
b) Solve the following:
i) Solve : $\frac{d y}{d x}=e^{3 x-2 y}+x^{2} \cdot e^{-2 y}$
ii) Form the differential equation by eliminating arbitrary

$$
\text { constant } y=A \cos 3 x+B \sin 3 x
$$

c) A circuit consists of a resistance ' R ' and condenser of capacity 'C' Farads connected to a constant E.M.F.'E'. If the differential equation of the circuit is given by
$\frac{q}{c}=\mathrm{E}-\mathrm{R} \frac{d q}{d t}$, find q , given that $\mathrm{q}=0$ when $\mathrm{t}=0$
6. Solve any TWO of the following:
a) Attempt the following :
i) Solve the following system of equation by Jacobi-iteration (Two iteration).

$$
\begin{aligned}
10 x+y+2 z=13, & 3 x+10 y+z=14 \\
& 2 x+3 y+10 z=15
\end{aligned}
$$

ii) Solve the following system of equation by Gauss-Seidal Method (Two iteration).

$$
\begin{array}{r}
10 x+y+z=12,2 x+10 y+z=13 \\
2 x+2 y+10 z=14
\end{array}
$$

b) Solve the following system of equation using Gauss elimination method.

$$
\begin{array}{r}
2 x+y+z=10,3 x+2 y+3 z=18 \\
x+4 y+9 z=16
\end{array}
$$

c) Using Newton Raphson Method

Evaluate $\sqrt[3]{100}$ (Carry out four iteration).

