17331

11920

11/40								
3 Hou	ırs /	100	Marks	Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. a) Attempt any SIX of the following:

12

- (i) State ohm's law.
- (ii) Define R.M.S. value. What is it's relation in maximum value for sinusoidal waveform?
- (iii) Define voltage ratio and current ratio.
- (iv) Define phase sequence in 3-phase a.c. supply.
- (v) State any two applications of shaded pole induction motor.
- (vi) Define power factor of an a.c. circuit. State it's value for purely capacitive circuit.
- (vii) State the examples of statically and dynamically induced EMF.
- (viii) State the causes of electric shock.

[2] 17331

M		r l z	
100	ж	ı K	,

Attempt any TWO of the following: b)

- 8
- Define the following terms: (i)
 - (1) Frequency
 - (2) Cycle
 - (3) Time period
 - (4) Crest factor
- (ii) Explain impedance of an a.c. circuit and it's unit. State the factor on which it depends.
- (iii) State any four advantages of 3-phase supply system over single phase supply system.

2. Attempt any FOUR of the following:

16

a) Find the current in 6Ω resistance using KVL for the Figure No.1.

- b) For pure inductive circuit, derive the relationship between voltage and current.
- c) Draw the waveform, equation and phasor diagram of a simple resistive circuit when a.c. is applied across it.

17331 [3]

Marks

d) Convert the given star into equivalent delta shown in Figure No. 2.

Fig. No. 2

- e) Three impedances each of 2Ω resistances and 2Ω inductive reactance are connected in mesh across a 3-phase, 400 volt, a.c. supply. Determine the phase current, line current and it's active and reactive power.
- f) Draw a labelled diagram showing constructional details of shell type single phase transformer. State its working principle.

3. Attempt any FOUR of the following:

16

- a) Compare a series and parallel circuit with following parameters.
 - (i) Equivalent resistance
 - (ii) Circuit current
 - (iii) Circuit diagram
 - (iv) Voltage drop across each resistor.
- b) State and explain Faraday's law and Lenz's law.
- c) Explain the construction and principle of operation of dynamometer type instrument.
- d) Explain the concept of balance load and unbalance load.
- e) Draw the labelled diagram of resistance split phase and capacitor start motor.
- f) State any four precautions to be taken against electrical accidents.

4. Attempt any FOUR of the following:

16

a) Calculate the equivalent resistance between A and B using Star-Delta conversion for Figure No. 3.

Fig. No. 3

- b) An alternating current is represent by i = 70.7, $\sin 520 t$. Determine:
 - (i) Frequency
 - (ii) Current at 0.0015 sec after passing through zero increasing positively.
- c) A resistance of $100\,\Omega$, an inductance of $0.2\,H$. and a capacitance of $150\,\mu f$ connected in series across a 230 volt, $50\,Hz$ a.c. supply. Calculate current drawn by circuit, power factor, it's nature and power consumed by the circuit.
- d) Draw the phasor diagram for a series R-L circuit and label it.
- e) For star and delta connected loads, state the numerical relationship between
 - (i) Line current and Phase current
 - (ii) Line voltage and Phase voltage. Also state the expression of powers.
- f) State the meaning of the terms 'Voltage regulation' and 'Efficiency' of transformer.

16

5. Attempt any FOUR of the following:

a) Using mesh analysis, find the loop currents

I₁ and I₂ in Figure No. 4.

Fig. No. 4

- b) Draw the phasor diagram and waveform of pure resistive and pure capacitance. Write voltage and current equation for the same.
- c) An R-L-C series circuit with a resistance of 20Ω , inductance of $0.25 \, \text{H}$ and capacitance of $100 \, \mu \text{f}$ is supplies with a 240 volt variable a.c. supply.

Calculate:

- (i) Resonance frequency
- (ii) Current at this condition
- (iii) Power factor
- (iv) Quality factor
- d) Explain the working of universal motor. Give its two applications.
- e) Differentiate between an auto transformer and conventional single phase transformer with respect to construction (with diagram), saving in copper, application, cost and efficiency.
- f) State merits of MCB over fuse.

6. Attempt any **FOUR** of the following:

16

a) An alternating voltage if represented by following expression $V = 25 \sin{(200 \pi t)}$

Calculate:

- (i) Peak value
- (ii) Form factor
- (iii) Frequency
- (iv) Crest factor
- b) Explain the concept with neat waveform of lagging and leading phase difference.
- c) Draw the circuit diagram of R-C and R-L-C series circuit. Draw the impedance triangle and power triangle for the same circuit.
- d) Draw the power triangle. State the formulas for active, reactive power and apparent power.
- e) Name the single phase motor used for following applications.
 - (i) Electric mixer
 - (ii) Toys
 - (iii) Compressor
 - (iv) Ceiling fan.
- f) Compare between the core type and shell type single phase transformer.