

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques Subject Code: 17333

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer		Markin
No	Q.N.			g
				Scheme
1.	A)	Attempt any six:		6x2=12
	i)	Draw truth table for NAND and NOR gat	tes.	2M
	Ans.	Truth table of NAND and NOR gates:		
		NANDNOR		Each
				<i>1M</i>
		ABY	A B Y	
			0 0 1	
		0 1 1	0 1 0	
		1 0 1	1 0 0	
		1 1 0		
	ii)	Compare analog signal with digital signal	according to	2M
		nature/shape of signals and application.	_	
	Ans.	Analog Signal	Digital Signal	
		Shape of Continuous in time. Can	Continuous in time.	
		signal have any value in a	Can have only two	<i>1M</i>
		limited range	possible values	each
		Denoted by sine waves	Denoted by square	
			waves	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

	Applications	Amplifiers (Operation	onal	Logic gates,	
	I ippiioutions	Amplifiers, t			microcontrollers,	
			F		Computers	
iii)	State any two	Boolean laws	with e	xpressi	•	2M
Ans.	Boolean laws:			•		
	A + 1 = 1					
	A + 0 = A					
	$A \cdot 1 = A$					
	$A \cdot 0 = 0$					Any 2
	A + A = A					<i>1M</i>
	$A \cdot A = A$					each
	A+B=B+A					
	A.B = B.A					
	(A+B)+C=	A + (B + C)				
	(A B) C = A (B)	BC)				
	A(B + C) = A					
	A + (B C) = (A + (B C)) = (A + (A C)) = (A + (B C)) = (A		<u>(</u>)			
iv)	Perform "BCI			5) + (49	33) = ?	2M
Ans.	237:		0011		0101	
	+					
	493	3 0100	1001	0011	0011	Correct
						2M
		0110	1100	1010	1000	
	+		0110	0110		
		0110	1 0010	1 0000	1000	
	Add	ling carry to tl	he next	four bit	group	
		0110	0010	0000	1000	
	+	0001	0001			
		0111	0011	0000	1000	
		7	3	0	8	
v)	State the differ	rence betwee	n Half	and Fu	ll adder.	2M
Ans.	Half adder is a	circuit that ad	lds 2 bii	nary bits	S.	
	A full adder is	a circuit the a	dds 3 bi	ts (2 bit	ts along with carry)	Each
						<i>1M</i>

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

vi	Write any four applications of counter.	2M
An	Applications of counters:	
	1. Frequency counters	Any
	2. Digital clocks	four
	3. Analog to digital convertors.	¹/2 M
	4. With some changes in their design, counters can be used as frequency divider circuits. The frequency divider circuit is that	each
	which divides the input frequency exactly by '2'.	
	5. In time measurement. That means calculating time in timers such	
	as electronic devices like ovens and washing machines.	
	6. We can design digital triangular wave generator by using counters.	
vii		2M
An	**	
	1. Implementing multi output combinational logic circuit	
	2. Multiplexer allow the process of transmitting different type of data	
	such as audio, video at the same time using a single transmission	
	line.	
	3. In telephone network, multiple audio signals are integrated on a	Any
	single line for transmission with the help of multiplexers.	two
	5. Multiplexers are used to implement huge amount of memory into the computer, at the same time reduces the number of copper lines required to connect the memory to other parts of the computer circuit.	applica tion 1M each
	6. Multiplexer can be used for the transmission of data signals from the computer system of a satellite or spacecraft to the ground system using the GPS (Global Positioning System) satellites.	
	Application of De-MUX:	
	1. Decoder	
	1. 2000001	
	2. Demultiplexer is used to connect a single source to multiple destinations.	
	3. In an ALU circuit, the output of ALU can be stored in multiple	
	registers or storage units with the help of demultiplexer.	
	4. Serial data from the incoming serial data stream is given as data input to the demultiplexer at the regular intervals.	
viii	•	2M
An		
	• • •	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

			-
		J O J-K FF K O O	IM J_K flip- flop
			Truth Table 1M
1.	(B) i)	Attempt any two: List types of digital to analog converters and state specifications of	4x2=8 4M
	1)	ADC (any four).	41/1
	Ans.	Types of Digital to Analog converters and specifications	
		1. Weighted resistor D to A converter	Types
		2. R – 2R D to A converter	2M
		Specifications of ADC:	
		1. Resolution	Any
		2. Accuracy	four
		3. Conversion time	specific
		4. Linearity5. Analog input voltage	ations ¹ /2 M
		6. Format of digital output	each
	ii)	Describe classification of memories.	4M
	Ans.	Classification of Memories:	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques Subject Code:

Memory Classifi RAM ROM Sequential CAM cation (Read only Memories (Content (Random access memory) memory) addressable memory) of Memor CCD Shift registers ies 1M DRAM (Charged Dynamic RAM) coupled device) Masked PROM EPROM EEPROM

Random Access Memories (RWM or RAM)

ROM

In this type of memory the memory locations are organized in such a way that any memory location requires equal time for writing or reading. RAMs can be static or dynamic and can be fabricated using bipolar or Unipolar technologies.

Descrip tion 3M

17333

Read Only Memories (ROM)

These memories are meant only for reading the information from it. The process of entering information is done outside the system where it is used. This type of memory is used to store fixed tables of functions etc. These memories are further classified on the basis of technique employed in storing information into the memory or their erasable properties.

These are

SRAM

(Static RAM)

- 1. ROM (Read Only Memory)
- 2. PROM (Programmable Read Only Memory)
- 3. EPROM (Erasable Programmable Read Only Memory)
- 4. EEPROM (Electrically Erasable PROM)

Programmable ROM (PROM)

It can be programmed by the user. It can be programmed only once after which its contents are permanently fixed as ROM. To write data into a PROM a PROM programmer or PROM burner is used. At the time of manufacturing a blank PROM, the data is entirely made up of 1's. The PROM programmer writes data into the PROM by applying high voltage pulses which are not encountered during normal operation. Once the PROM has been programmed in this way, its

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

		_						
		s can ne ne progra		_	lence PR	OMs are	also known as	
	It can EPROM EPROM 20 mir program presence	A is a no A can be nutes or nmer wh	grammed n-volatil erased b longer. ich is a ranspare	again and e memory t y exposure to The programmers separate un	hat holds to strong camming it. EPRO	s stored da ultraviolet is done OMs are id	ogrammed the ta indefinitely. light for about with EPROM entified by the nits ultraviolet	
	It is no location from th	n-volatilens to be e e circuit	e memor erased an to erased	nd rewritten and reprog	ows its e . EEPRC rammed.	M need n	ents or selected ot be removed	
iii) Ans.		-		organ theo				4M
11110.	Verif	ication of	the seco	nd theorem	:	also it to	2 70	
		A	В	$\overline{A+B}$	Ā	Ē	$\bar{A} \cdot \bar{B}$	
	-	0	0	11	1	1	1	
	V-	0	1	0	1	0	0	
		1	0	0	0	1	0 '	
		1	1	0	0	0	0 .	Explan
				ns Wa		Hell I	160	ation
				LHS	\overline{A} +	$\bar{B} = \bar{A} \cdot \bar{B}$	RHS	<i>4M</i>
			Trut	h table to ve	rify De-M	lorgan's se		
		em1: It st plement	ate that	the, comple	ment of a	a sum is ed	qual to product	
		m2: It st ompleme		, the comple	ement of	a product i	is equal to sum	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques

Subject Code: 17333

	A	В	AB	Ā	B	$\bar{A} + \bar{B}$	
	0	0	1	1	1	1	
	0	1	1	1	0	1	
	1	0	1	0	1	1	
	1	1	0	0	0	0	
			LHS:		= $\overline{A} + \overline{B}$ neorem \overline{AB}	RHS $\mathbf{\bar{a}} = \mathbf{\bar{A}} + \mathbf{\bar{B}}$	
a) Ans.	i) Binary	following number number i	g number in : respectively		alent = (146	5.25)10	4x4=10 4M
	1L	- 6 =	73 ×	2 + 0	0	.25	
	,	73 =	50.778		1	× 2	2M
		36 =	18 *	2 + 0	0 -	50	
		18 =	9 %	2 + 0	0 -	50	
		10 -					
			= 4 % :	2 + 1		¥ 2	
						and the same of th	
		9 =	= 4 × 2	2 + 6		× 2	
		9 =	= 4 * :	2 + 6		× 2	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques

Subject Code:

17333

	ii) Octal numl	ber:					
	146	= 18 × 8 -	H 2		0.2	5	2M
	12 =		+ 2	-	3-01	0:	
	(14	0 x 8 7 6.25)10 = C Logici	7 55.	2)	8		
b) Ans.		and truth table f				i) 2 i/p EX-	4N
		Symbol		Truth	Table		
			С	В	A	Q	3 i/p
			0	0	0	0	OR gate
			0	0	1	1	2M
	A @	1	0	1	0	1	
	G G	21) 00	0	1	1	1	
		3-input OR Gate	1	0	0	1	
			1	0	1	1	
			1	1	0	1	
	18		1	1	1	1	
	(ii) 2 i/p EX-N	OR gate.					2 i/j
	Inputs	Output		1	\		EX NO
	A B	Y = A⊕B	Α-	7)	0	Y	gat
	0 0	1 0 0	В—	1	/		2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

			Activ	e-lon	v dec	imal i	при	ts.		Activ	e-low I	BCD ou	itputs		
	1	2	3	4	5	6	7	8	9	D	C	В	A		
	1	1	1	1	1	1	1	1	1	1	1	1	1		
	0	1	1	1	1	1	1	1	1	1	1	1	0		
	×	0	1	1	1	1	1	1	1	1	1	0	1	Truti	
	×	×	0	1	1	1	1	1	1	1	1	0	: 0	table	
	×	×	Ж	0	1	1	1	1	1	1	0	1	1	2M	
	×	×	×	×	0	1	1	1	1	1	0	1	0-	21/1	
	×	×	×	ж		0	1 0	9	1	1	0	0	1		
	×	×	×	×	×	×		1	1	1	0	0	0		
	×	×	×	×	×	×	×	0	1	0	1	I	1		
	×	×	×	×	×	×	×	×	. 0	0	1	1	0		
e)	Compa													4M	
ns.	Combinational Logic Circuits							Sequential Logic Circuits							
	Output is a function of the					Output is a function of clock,									
	present	input	s (Time					present inputs and the previous						Any	
	Independent Logic)							states of the system.						fou	
	Do not have the ability to store							Have memory to store the						poin	
	data (state).							present states that is sent as						1M	
								control input (enable) for the						eaci	
										ation.					
	Logic g	Logic gates are the elementary								Flip flops (binary storage					
	buildin	g bloo	cks.					device) are the elementary							
										building unit.					
	Indepen	Independent of clock and hence							Clocked (Triggered for						
	does no	t requ	aire t	rigge	ering	to to		operation with electronic							
	operate.							pulses).							
	Used mainly for Arithmetic and						d	Used for storing data (and hence							
	Boolean operations.							used in RAM).							
	It does	not re	equire	any	fee	dbac]	k.	It inv	olve	s feedt	ack f	rom o	utput		
	It simp		-	-						nat is s			•		
	accordi	ng to	the le	ogic	desi	gned		-	-	or the			on.		
	Draw ci	_		_		_						•		4M	
	explain							•	•			•			
	The com			_											

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques

17333

Subject Code:

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

		<u> </u>
	100	
	(63) - (111111) 2(63	
	2 (000011 2 31- 4	
	(20) = (10100) 2 15-1	
	10 27-1	
	= (010100) 2[3-1	
	5-42 s (manufact 2 t) (1(100-)	2M
	Step1 2's compliment 2/30	
	1 - 10 11 + 14 = constined of 2 (10 - 0	
	101011 + (1's compliment of 2 10-0 25-0	
	101100 (2's complimed of 2 2-1	
	10 110 (23 complimed of 1 - 0	
	01 90 to 201 20 20 20 00 A 2 1 7 0	
	step2 Add 63 to 2's complimed of 20	
	12 32 32 32 42 42 42 42 42 42 42 42 42 42 42 42 42	
	111111 - 0001	
	101100	
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	a state and Jasmilanus as	
	step 3 Carry is 1. Discard the concy	
	Result is in true form	
	00 1 2 3 4 5	
	(101011) = 1x2+1x2+0x2+1x2+0x2+1x2	
	= 1×1+2+0+8+0+32	
	- 1 + 2+8+32	
	Exercise (43),00 - (01000)	
	((3) - (0)) 2 (43)	
	(63) - (20) = (43)	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

$(34)_{10} - (48)_{10} = ?$
2 34
2/17-0
34) = (100010) 2 8-1
10 2 2 A - 0
148) = (110000) 2/2-0
1-16. 2 [00]0[] 1-02]
step 1 = 2's compliment of 48
= 001111 (1 s compliment) 2 24-0
2 12 - 0
010000 (25 complimed of 26-0
46) 2
TELL To harmless of the property of the
step2 Add 34 to 25 complimed of 48
100010
010000
1 10010
p a lite!
Step 3. No Carry Result is -ve of is in
a's compliment form Take a's
compliment of Result to get the value
11 2010 1 111 0 11 1111 11
4 9 1 1 1 1 1
(1's compliment)
12 S PB 14 S P O + C 1 1 1 1 1 1
001110
(001110) = 0x20+1x2+1x2+1x2+0x2+0
2 - 0+2+4+8+0+0
50 (14) 10 m al
(21) - (28) - (-6)
(34) - (48) = (-6)

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

b)	Simplify the following and realize it $Y = A + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + ABC + \overline{A}\overline{B}$	4 M
Ans.	Y = A + ABC + ABC + ABC + AB	
	= A (1+BC) + AB (C+C+1)	2M
	$A + \overline{A} \overline{B}$	
	- A + B	
	= A+B A B C B	
	7 = A + B	2 <i>M</i>
c)	Explain full adder with logic diagram and its truth table and	4N
Ans.	proper expressions. It is a combinational circuit which performs the arithmetic sum of three input bits.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

2. It is easy to design. 3. It is last expensive. 4. Its speed can be adjusted by adjusting the clock frequency 5. It is faster than a dual slope ADC. Disadvantages of Ramp type ADC: 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: 4. Attempt any four:		f)	State advantages and disadvantages of (i) Ramp type ADC (ii)	4M
Advantages of Ramp type ADC: 1. It is very simple in construction. 2. It is easy to design. 3. It is last expensive. 4. Its speed can be adjusted by adjusting the clock frequency 5. It is faster than a dual slope ADC. Disadvantages of Ramp type ADC: 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			Dual slope type ADC.	
1. It is very simple in construction. 2. It is easy to design. 3. It is last expensive. 4. Its speed can be adjusted by adjusting the clock frequency 5. It is faster than a dual slope ADC. Disadvantages of Ramp type ADC: 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. Any dward advard and any other ADC. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.		Ans.	(i) Ramp type ADC:	
2. It is easy to design. 3. It is last expensive. 4. Its speed can be adjusted by adjusting the clock frequency 5. It is faster than a dual slope ADC. Disadvantages of Ramp type ADC: 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			Advantages of Ramp type ADC:	
3. It is last expensive. 4. Its speed can be adjusted by adjusting the clock frequency 5. It is faster than a dual slope ADC. Disadvantages of Ramp type ADC: 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four: 4. Attempt any four:			1. It is very simple in construction.	Any
4. Its speed can be adjusted by adjusting the clock frequency 5. It is faster than a dual slope ADC. 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC:: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			2. It is easy to design.	two
Disadvantages of Ramp type ADC: 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC: At it is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			3. It is last expensive.	advant
Disadvantages of Ramp type ADC: 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC: Advantages of Dual slope type ADC: 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. disadvantages of Daw diagram.			4. Its speed can be adjusted by adjusting the clock frequency	ages
Disadvantages of Ramp type ADC: 1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC:: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. Ammutages of Part of Ramp type ADC: Interpretation of Ramp type ADC: Interpretation of Part			5. It is faster than a dual slope ADC.	and
1. It is comparatively very slow. 2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC:: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			_	disadva
2. The conversion time does not remain constant. 3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC:: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. ADC each Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. AMC			Disadvantages of Ramp type ADC:	ntages
3. The conversion time can be as long as clock cycle period for high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			1. It is comparatively very slow.	of
high input voltages. 4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC:: Advantages of Dual slope type ADC:: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. AMD Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			2. The conversion time does not remain constant.	Ramp
4. It needs longer conversion time. (ii) Dual slope type ADC: Advantages of Dual slope type ADC:: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Any 1. It is simple and relatively inexpensive. 4. Any 4. Attempt any four:			3. The conversion time can be as long as clock cycle period for	type
(ii) Dual slope type ADC: Advantages of Dual slope type ADC:: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Any				ADC
(ii) Dual slope type ADC: Advantages of Dual slope type ADC:: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Advantages of Dual slope type ADC: 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			4. It needs longer conversion time.	each
Advantages of Dual slope type ADC: 1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Any two two advantages advantages and disadvantage. And disadvantage of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. each 1. It has very low speed of conversion. 4x4=1 Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.				<i>1M</i>
1. It is simple and relatively inexpensive. 2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			(ii) Dual slope type ADC:	
2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: 4. Attempt any four: 4. Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four:			Advantages of Dual slope type ADC::	Any
2. It has high conversion accuracy. 3. It is more stable and of low cost. 4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: 4. Attempt any four: 4. Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four:			1. It is simple and relatively inexpensive.	two
4. It is not affected by time, temperature and input voltage. 5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4. Attempt any four: Construct 4:1 multiplexer using 4:1 multiplexer. Draw diagram.				advant
5. It does not require crystal oscillator for stability. 6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. disadvantages of Dual slope type ADC: slope of Dual slope			3. It is more stable and of low cost.	ages
6. It is less sensitive to noise. Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			4. It is not affected by time, temperature and input voltage.	and
Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.				disadva
Disadvantages of Dual slope type ADC: 1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.				ntages
1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: a) Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.				of Dual
1. It has large conversion time as compared to any other ADC. 2. It has very low speed of conversion. 4. Attempt any four: a) Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			Disadvantages of Dual slope type ADC:	slope
2. It has very low speed of conversion. ADC each 1M 4. Attempt any four: a) Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4M				_
4. Attempt any four: a) Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.			± ,	ÄDC
4. Attempt any four: a) Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4M				each
a) Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4M				<i>1M</i>
a) Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. 4M	4.		Attempt any four:	4x4=16
		a)	Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram.	4M
		Ans.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques Subject Code: 17333

Draw R-2R ladder digital to analog converter and explain its **4M** d) working. R -2R ladder DAC uses two resistors R & 2R. The input is applied Ans. through digitally controlled switches. Circuit diagra m 2M 20= Descrip tion 2M For example if the digital input is 001 Applying Thevenins theorem at XX'

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques Subject Code:

17333

Applying Thevenins theorem at yy'

Applying Thevenins theorem at zz'

Similarly for digital input 010 and 100 the equivalent voltages are $\mbox{\rm VR}/\mbox{\rm 2}^2$

And VR/21

respectively. The equivalent resistance is 3R in each case. So the simplified circuit of 3bit R-2R ladder DAC is

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

	$= - (R_F/3)$	R) $(V_R/2^3)$	$(2^2b_2 + 2^1b_1 + 2)(4b_2 + 2b_1 + b_0)$)			
e)		_	umber systen ols and its exa		_	their r (ii)	4M
	Hexadecimal			P ()			
Ans.	Binary	Base/ Radix		ymbols	Example	!	
	Octal number		0, 1, 2, 3, 4,	5, 6, 7	(3567.25)	8	Eac
	Hexadecimal number	16	0, 1, 2, 3, 4, 6, 7, 8, 9, A B, C, D, E, f	•••	(3FA9.56) ₁	16	2N
	states. This me	02 states.	Thus the group ossible to make	a module 2	2 ⁿ counter usin	ng 'n'	r. 1
	A flip flop has states. This me flip-flops. However it is required is determ $\leq 2^N$ N – Minimum	desired to desired by value of N	Thus the group ossible to make have a modu the following of which satisfies	a module 2 le m count equation. the equation	2 ⁿ counter using ter the no. of on.	ng 'n'	Expl atio 4M
	A flip flop has states. This me flip-flops. However it is required is determ $\leq 2^N$ N – Minimum	desired to desired by value of N	Thus the group possible to make have a modu the following of	a module 2 le m countequation.	2 ⁿ counter using ter the no. of	ng 'n'	atio
	A flip flop has states. This me flip-flops. However it is required is determ $\leq 2^N$ N – Minimum	desired to desired by value of N	Thus the group ossible to make have a modu the following of which satisfies	a module 2 le m count equation. the equation	2 ⁿ counter using ter the no. of on.	ng 'n'	atio
	A flip flop has states. This me flip-flops. However it is required is determ $\leq 2^N$ N – Minimum	desired to desired by value of N	Thus the group ossible to make have a modu the following of which satisfies	a module 2 le m count equation. the equation	2 ⁿ counter using ter the no. of on.	ng 'n'	atio
	A flip flop has states. This me flip-flops. However it is required is determ $\leq 2^N$ N – Minimum	desired to desired by value of N	Thus the group ossible to make have a modu the following of which satisfies to the property of	a module 2 le m count equation. the equation	2 ⁿ counter using ter the no. of on.	ng 'n'	atio
	A flip flop has states. This me flip-flops. However it is required is determ ≤ 2 ^N N – Minimum State Initially	desired to desired by value of N	Thus the group possible to make have a modu the following of which satisfies	a module 2 le m count equation. the equation	2 ⁿ counter using ter the no. of on.	ng 'n'	atio
	A flip flop has states. This me flip-flops. However it is required is determ ≤ 2 ^N N – Minimum State Initially	desired to desired by value of N	Thus the group possible to make have a modu the following of which satisfies	a module 2 le m count equation. the equation	2 ⁿ counter using ter the no. of on.	ng 'n'	atio
	A flip flop has states. This me flip-flops. However it is required is determ ≤ 2 ^N N – Minimum State Initially	desired to desired by value of N	Thus the group possible to make have a modu the following of which satisfies	a module 2 le m count equation. the equation	2 ⁿ counter using ter the no. of on.	ng 'n'	atio

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

		I				
			LP PP-XIII PP-3 L P	p	181 TH	
		In	put A o	R ₉₍₁₎		
				R ₉₍₂₎		
		0.00	Mod 2	Mod 5 R ₀₍₁₎	D ₁	
		In	put B •	R ₀₍₂₎		
		- 2		, (0(2)		
		15	Q _A Q _B Q _C	QD	Normal la	
		S 3	utout a Co.O. Vor Your elects		-	
			1 1	1 1		
5.		Atten	pt any four:			4x4=16
	a)	Comp	are CMOS and TTL Logic	families.		4M
	Ans.	Sr	Parameters	TTL	CMOS	
		No.				
		1	Basic gates	NAND	NOR or	
					NAND	Any 4
		2	Fan-in	8	10	points 1M
		3	Fan-out	10	>50	each
		4	Power dissipation per gate	10mW	0.01mW	eacn
		5	Noise margin (immunity)	0.4V good	5V (excellent)	
		6	Propagation delay	10 ns	70 ns	
		7	Speed-power product	100	0.7	
		8	Clock rate for flip-flop	35 MHz	10 MHz	
		9	Available function	Very large	Large	
		10	Packing Density	Lower	Larger	
		11	Cost	Low	Very low.	
	b)	Draw	and explain working of H	Hex to Binary e	ncoder with truth	4M
	,	table.	•	v		
	Ans.	Hexad	lecimal to Binary Encoder ca	an be constructed	by using two octal	
		to bin	ary encoder IC 74148. The l	lower 8-bits are a	applied to inputs of	
		IC-1 v	where as higher 8-bits are ap	oplied to inputs of	of IC-2. The enable	Explan
		inputs	are so connected that only	y one IC is enal	bled at a time. To	ation
		achiev	ve this EO of the IC-2 is co	onnected to EI o	f IC-1. The binary	<i>1M</i>
		output	s of both these ICs are appli	ed as inputs to I	C 74157 which is a	
		Quad	2:1 multiplexer.			
			tput of IC 74148 is connect	-	-	
		will g	o low when one of its input	t is active. The l	ow signal at select	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques

Subject Code:

17333

Ans.

c)

Explain the operation 3-bit asynchronous counter with diagram. The number of states in 3-bit counter is 8 that require 3 flip-flops and QA, QB and QC are the output of the flip-flops. The output QA of the least significant F/F changes for every clock pulse. This can achieved by using the T-type F/F with TA=1. The output QB makes a transition from 0-1 or 1-0 whenever QA changes from 1 to 0. Therefore if QA is connected to the clock input of next T-type F/F FF1 with TB=1, QB goes from 1-0. Similarly QC makes a transition whenever QB goes from 1-0 and this is achieved by connecting QB to the clock input of the most significant FF2 and TC=1.

Count sequen ce + wavefo rm: 2M

4M

Diagra m 2M

COUNT-UP Mode								
States	$States$ Q_{C} Q_{B}							
0	0	0	0					
1	0	0	1					
2	0	1	0					
3	0	1	1					
4	1	0	0					
5	1	0	1					
6	1	1	0					
7	1	1	1					

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

	Clock	
	Q_Q_Q_	
	0 1 2 3 4 5 6 7	
d) Ans.	 Draw labeled block diagram of 74181 ALU. A combinational circuit used for performing ALU operations is as shown: The block diagram of 74181 ALU is as shown. The various inputs and output control lines are: A and B: 4-bit binary data input. Ā arry input. Ā arry carry output. F: 4-bit Binary data output. G: Carry Generate output. P: Carry propagate output. A = B: Logic 1 on this line indicates A = B. G and P outputs are used when more than one 74181 are cascaded along with 74182 Look ahead Carry Generator circuit to make arithmetic operations faster. Select inputs are used to select the specific operations out of the available. 	4M
	Mode control (M) is used to select between the operations. $M = 0$: Arithmetic Operations. $M = 1$: Logical Operations. \overline{C}_{n+4} is used for subtraction operation which indicates the sign of output. Logic 0 indicates positive result and logic 1 indicates result is negative and in its 2's complement form.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques Subject Code: 17333

Explan ation 2M

The conversion process begins at t = O with the switch S1 in position 0, hence connecting the analog voltage Va to the input of the integrator.

The integrator output is
$$Vo = -\frac{1}{\tau} \int_{0}^{\tau} Vadt = -\frac{Va}{\tau}t$$

This results in HIGH Vc, thus enabling the AND gate & the clock pulses reach the clock (CK) input terminal of the counter which was initially clear.

The counter counts from $00 \dots 00$ to $111 \dots 11$ when (2^N-1) clock pulses are applied. At the next clock pulse $(2^N th)$ the counter is cleared & Q becomes 1. This controls the state of S1 which now moves to position 1 at T1, thereby connecting $-V_R$ to the input of the integrator. The output of the integrator now starts to move in the positive direction. The counter continues to count until Vo< O. As soon as Vo goes positive at T2, Vo goes LOW disabling the AND gate. The counter will stop counting in the absence of the clock pulses.

Advantages:

- 1. The analog input is independent of R, C and T. thus drifts in any of the components affects T1 and T2 in same proportion and ADC output remains unaffected.
- 2.Dual Slope ADC is capable of rejecting noise and hum.
- 3.Low cost.
- 4. Accuracy of ADC can be order of 0.05% suitable for many applications.

Dis-Advantages:

1. The conversion time of this device is more than other ADC.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

	f)	Draw proper labeled diagram of parallel in parallel out (4 bit) shift register and explain its working.	4M
	Ans.	shift register and explain its working. Parallel data inputs Parallel data inputs CP Parallel data inputs Occupation of the control of the control occupation occupation of the control occupation oc	Diagra m 2M
		Parallel data outputs	
		The four bit binary input A3- A0 is applied to the data inputs D3 to D0 respectively of the four flip flops. As soon as the negative clock edge is applied the input binary bits will be loaded into the flip flops simultaneously. The loaded bits will appear simultaneously at the output side, only one clock pulse is essential to load all the bits.	Explan ation 2M
6.	a)	Attempt any two: Reduce following Boolean expression using laws and theory of Boolean algebra.	8x2=16 8M
	Ans.	Boolean algebra. i) $A + BC = (A + B) (A + C)$. ii) $Y = (A + \overline{B}) (\overline{A} + B) (A + B)$. 1. $A + BC = (A + B)(A + C)$ $LHS = (A + B)(A + C)$ $(A + B)(A + C) = A(A + C) + B(A + C)$ $= A.A + AC + AB + AC$ $= A + AC + AB + BC$ $= A(1 + C + B) + BC$ $= A + BC = RHS$	<i>4M</i>

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Ans. A full substractor is used for performing multibit substraction where the borrow from the previous bit position is available. This circuit has three inputs An (minuend), Bn (subtrahend) and Bn-1 (borrow from previous stage) and two outputs Difference (Dn) and Borrow (Cn). An Bn Bn-1 Difference Carry Cn O O O O O O O O O		33	Code: 1/3	Subject C	ì			Jues	Digital Tec	Subject: Dig	
the borrow from the previous bit position is available. This circuit has three inputs An (minuend), Bn (subtrahend) and Bn-1 (borrow from previous stage) and two outputs Difference (Dn) and Borrow (Cn). An Bn Bn-1 Difference Carry Cn	<u></u>	4N		_			-	_		,	Ī
three inputs An (minuend), Bn (subtrahend) and Bn-1 (borrow from previous stage) and two outputs Difference (Dn) and Borrow (Cn). An Bn Bn-1 Difference Carry Dn Cn										Ans.	
Note						_	_				
An Bn Bn-1 Difference Carry Dn Cn											
Dn Cn Exp att			w (Cn).	nd Borrov	rence (Dn) a	puts Diffe	two out	stage) and t	previ		
Dn Cn Exp att			1			1	_				
0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0	_					Bn-1	Bn	An			
0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0		Expl				0	0	0			
0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0		atio									
0 1 1 0 1 1 0 0 1 0 1 0 1 0 0	1	2N				_					
1 0 0 1 0 1 0 1 0 0											
1 0 1 0 0					0						
						0		1			
				0	0	1	0	1			
				0	0	0	1	1			
1 1 1 1				1	1	1	1	1			
			J				1				
For difference output For Borrow output			tput	Borrow out	For		ce output	For different			
$\therefore D = ABB_{in} + ABB_{in} + ABB_{in} + ABB_{in} + ABB_{in}$ $\therefore B_o = AB_{in} + AB + BB_{in}$			ABCOAVE			B + ABB	BB. + ABI	= A B B + AI	100		
→ ĀΒΒ _{In} → ĀΒΒ _{In} ,····· Group 1 : ĀΒ _{In}					26			m	S.		
BB _{in} Group 2 : ĀB			200 (1911) [1910] The contract of	/ -		/ ADDin	/"	BBin	-		
A 00 01/11 10/ A 00 01/11 10/				11 10/							
					0 0		0 0	0 0 0			
1 9 0 9 0 1 0 1 0			2	100	1 0 0	0	Φ °	1 ① 0			
ABB. Group 3 : BB _{in}			m 2 · BB	Grou	4	V.	1	7			
TOO IN			300		(4)	B _{in}					
(a) K-map for D (b) K-map for B _o Fig.			B _o	K-map for E	(0)	Fig.	nap for D	(а) к-п			
Simplification for difference output :						ACCESS - 40 1800	ence out	tion for differ	Simr		
							ciico out	non non anner	O.I.I.J.		
$D = ABB_{in} + ABB_{in} + ABB_{in} + ABB_{in}$			ABB _{in}	+ A B B _{in} + A	BB _{in} + ABB _{in}	D = A					
$= B_{in}(AB + AB) + B_{in}(AB + AB)$			3)	$B_{in}(AB + AB)$	(A B + AB) + I	= E					
			,	$\overline{}$	\hookrightarrow						
EX-NOR EX-OR				EX-OR	EX-NOR	27					
$\therefore D = B_{in}(\overline{A \oplus B}) + B_{in}(A \oplus B)$			V	_a (A ⊕ B)	in (A ⊕ B) + Bi	∴ D = E					
Let $A \oplus B = C$, $\therefore D = B_{in} C + B_{in} C = B_{in} \oplus C$				ÐC	$_{in}C + B_{in}C = B_{in}$	∴ D = E		$\Theta B = C$			
$\therefore D = B_{in} \oplus A \oplus B$					_{in} ⊕ A ⊕ B	D = E					

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

	•	B B _{in} \(\overline{A} B_{in} \) \(\overline{A} B_{in} \)	D = $\overline{A} \oplus \overline{B} \oplus \overline{B}_{in}$ $B_0 = \overline{A} B_{in} + \overline{A} B + B B_{in}$	Diagra m 2M
c)	i) Comp	oare synchronous and async	chronous counter.	2M
Ans.	Sr	Synchronous Counter	Asynchronous Counter	
	No: .			<u> </u>
	1.	All flip flops are triggered	Different clock is applied to	
		with same clock.	different flip flops.	Any 4
	2.	It is faster	It is slower.	points
	3.	Deign is complex.	Design is relatively easy.	2M
	4.	Decoding errors are not present.	Decoding errors are present.	
	5.	Any required sequence can be designed.	only	
c)	ii) Desig	gn a mod-10 synchronous co	ounter.	6M
	_	ther relevant flip flop can b		
Ans.		of desired states $= 10$	•	
		of flip flops required= $4 [2^n]$ flip Flop	=m]	6M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques Subject Code: 17333

Counter State			Flip flop inputs								
Q3	Q2	Q1	Q0	JO	КО	J1	K1	J2	K2	J3	K3
0	0	0	0	1	X	0	X	0	X	0	X
0	0	0	1	X	1	1	X	0	X	0	X
0	0	1	0	1	X	X	0	0	X	0	X
0	0	1	1	X	1	X	1	1	X	0	X
0	1	0	0	1	X	0	X	X	0	0	X
0	1	0	1	X	1	1	X	X	0	0	X
0	1	1	0	1	X	X	0	X	0	0	X
0	1	1	1	X	1	X	1	X	1	1	X
1	0	0	0	1	X	0	X	0	X	X	0
1	0	0	1	X	1	0	X	0	X	X	1
0	0	0	0								36

Draw the k maps for the respective inputs in terms of ouputs

1. J0 = 1

	Q3Q2	Q3 Q2	Q3 Q2	Q3 <u>Q2</u>
0100	1	1	X	1
Q1 Q9	X	X	X	X
Q1 QQ	X	X	X	X /
Q1 Q0	4	1	X	X

2. K0 = 1

	Q3Q2	Q3 Q2	Q3 Q2	Q3 <u>Q2</u>
Q1Q0	X	X	X	X
Q1 Q0/	1	1	X	1
Q1 Q0	1	1	X	X /
Q1 <u>Q0</u>	X	X	X	X

3. J1 = Q0 Q3

	Q3Q2	Q3 Q2	Q3 Q2	Q3 <u>Q2</u>
Q1Q0	0	0	X	0
Q1 Q0	1	1	X	0
Q1 Q0	X	X _	X	X
Q1 <u>Q0</u>	X	X	X	X

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques Subject Code: 17333

8	Q3Q2	Q3 Q2	Q3 Q2	Q3 <u>Q2</u>
Q1Q0	X	X	X	X
Q1 Q0	X	X	X	X
Q1 Q0	1	1	X	X
Q1 <u>Q0</u>	0	0	X	X

5. J2=Q0Q1

	Q3Q2	Q3 Q2	Q3 Q2	Q3 Q2
Q1Q0	0	X	X	0
Q1 Q0	0	X	X	0
Q1 Q0 <	1	X	X	x >
Q1 Q0	0	X	X	X

6. K2=Q0Q1

	Q3Q2	Q3 Q2	Q3 Q2	Q3 Q2
Q1Q0	X	0	X	X
Q1 Q0	X	0	X	X
Q1 Q0<	X	1	X	\mathbf{x}
Q1 Q0	X	0	X	X

7. J3=Q0Q1Q2

	Q3Q2	Q3 Q2	Q3 Q2	Q3 <u>Q2</u>
0100	0	0	X	X
Q1 Q0	0	0	X	X
Q1 Q0	0	1	X	X
Q1 <u>Q0</u>	0	0	X	X

8. K3=Q0

	Q3Q2	Q3 Q2	Q3 Q2	Q3 <u>Q2</u>
Q1Q0	X	X	X	0
Q1 Q0	X	X	X	1
Q1 Q0	X	X	X	X
Q1 Q0	X	X	X	X

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

