17105

21718 3 Hours / 10	0 Marks Seat No.
Instructions – (1)	All Questions are Compulsory.
(2)	Answer each next main Question on a new page.
(3)	Illustrate your answers with neat sketches wherever necessary.
(4)	Figures to the right indicate full marks.
(5)	Assume suitable data, if necessary.
(6)	Use of Non-programmable Electronic Pocket Calculator is permissible.
(7)	Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
	Marks
1. Attempt any	TEN of the following: 20
a) Find x, if $\begin{vmatrix} x \\ 8 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix}$

- b) Find the value of the determinant
- c) Define: Orthogonal matrix

d) If
$$A = \begin{bmatrix} 5 & 3 \\ -1 & 1 \end{bmatrix}$$
 and $B = \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix}$, Find $2A - 3B$

e) Prove that the matrix $\begin{bmatrix} 1 & 4 \\ 6 & 9 \end{bmatrix}$ is non-singular matrix.

f) Resolve into partial fraction
$$\frac{x-2}{x(x-1)}$$

g) If $\sin A = \frac{1}{2}$, then find $\sin 3A$.

h) Prove that
$$\frac{1}{1 + \sin A} + \frac{1}{1 - \sin A} = 2 \sec^2 A$$

- i) Express as product and evaluate $\sin 99^\circ \sin 81^\circ$.
- j) Using principal value, find the value of $\cos^{-1}\left(-\frac{1}{2}\right) \sin^{-1}\left(\frac{1}{2}\right)$
- k) Find the slope and X-intercept of straight line,
 - $\frac{x}{4} \frac{y}{3} = 2$
- 1) State the condition of parallel and perpendicular lines, whose slopes are m_1 and m_2 .
- m) Find the acute angle between the line whose slopes are $\sqrt{3}$ and $\frac{1}{\sqrt{3}}$.
- n) Find the perpendicular distance between the point (3, 4) and the line 3x + 4y = 5.

2. Attempt any <u>FOUR</u> of the following:

- a) Solve by Cramer's rule x + y = 3, y + z = 5, z + x = 4
- b) Find x, if
 - $\begin{vmatrix} x & 2 & 1 \\ 3 & x & -2 \\ 1 & 3 & 1 \end{vmatrix} = 5$

16

17105

Marks

c) If
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 5 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 & 4 \\ 1 & 3 & 0 \end{bmatrix}$, verify that
 $(A + B)^{T} = A^{T} + B^{T}$
d) If $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$, prove that $A^{2} = 1$
c) If $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$, verify that $(AB)' = B'A'$
f) Find x and y satisfying the matrix equation
 $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x & y & 3 \\ 3 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 0 & 7 \\ 9 & 4 & 13 \end{bmatrix}$
3. Attempt any FOUR of the following: 16
a) If 1 is unit matrix of order 3×3 and
 $A = \begin{vmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{vmatrix}$, Find $A^{2} - 3A + I$
b) Solve the equation by inverse matrix method
 $3x + y + 2z = 3$, $2x - 3y - z = -3$, $x + 2y + z = 4$
c) Resolve into partial fraction : $\frac{2x + 1}{x^{2}(x + 1)}$
d) Resolve into partial fraction : $\frac{x^{2}}{(x + 1)(x + 2)(x + 3)}$
f) Resolve into partial fraction : $\frac{x^{3} + x}{x^{2} - 4}$

P.T.O.

Marks **4**. Attempt any FOUR of the following: Prove that in $\triangle ABC$ a) $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$ b) Without using calculator, prove that $\sin 420^{\circ} \cos 390^{\circ} + \cos (-300^{\circ}) \sin (-330^{\circ}) = 1$ c) If $\tan(x+y) = \frac{3}{4}$ and $\tan(x-y) = \frac{8}{15}$ Show that $\tan(2x) = \frac{77}{36}$ d) If A and B both obtuse angles and $\sin A = \frac{5}{13}$ and $\cos B = \frac{-4}{5}$, then find $\sin (A + B)$. e) Prove that $\cos A \cdot \cos(60 - A) \cos(60 + A) = \frac{1}{4} \cos 3A$ Prove that $\sin 20^\circ \cdot \sin 40^\circ \cdot \sin 60^\circ \cdot \sin 80^\circ = \frac{3}{16}$ f) 5. Attempt any FOUR of the following:

In any $\triangle ABC$, Prove that a) $\sin 2A + \sin 2B - \sin 2C = 4 \cos A \cos B \sin C$

b) Prove that:

$$\frac{\sin A + \sin 2A + \sin 3A + \sin 4A}{\cos A + \cos 2A + \cos 3A + \cos 4A} = \tan\left(\frac{5A}{2}\right)$$

Prove that : c)

 $\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \cos A - \sin A \tan 3A$

d) Prove that :

$$\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{27}{11}\right)$$

16

[5]

e) Prove that :
$$\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$$

f) Prove that :
$$2\tan^{-1} x = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$$

6. Attempt any <u>FOUR</u> of the following:

- a) Prove that : $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$
- b) If m_1 and m_2 are the slopes of the two lines, then prove that the angle between two lines is $\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$
- c) Find the equation of a straight line that passes through (3, 4) and perpendicular to the 3x + 2y + 5 = 0.
- d) Find the value of k, if the lines kx 6y = 9 and 6x + 5y = 13 are perpendicular to each other.
- e) Find the equation of the line passing through the point (-2, 4) and making equal intercepts on the co-ordinate axes.
- f) Find the point of intersection of lines 2x 3y = 5 and 6x + y = 4.

16

Marks