21718 3 Hours / 100 Marks

Seat No.

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. (A) Answer any SIX:

 $2 \times 6 = 12$

- (a) Name any two triggering devices used for triggering SCR.
- (b) State any two advantages of IGBT.
- (c) List two applications of TRIAC.
- (d) State the classification of Chopper.
- (e) State difference between forced commutation and natural commutation. (any 2 points)
- (f) List two applications of Inverter.
- (g) Define firing angle and conduction angle.
- (h) Draw labelled basic block diagram of UPS.

(B) Answer any TWO:

 $4 \times 2 = 8$

- (a) What is the polyphase rectifier? State its need.
- (b) Compare between step up and step down chopper. (any 4 points)
- (c) Draw the neat circuit diagram of fan speed regulator using Triac.

 Describe its working.

[1 of 4] P.T.O.

17444 [2 of 4]

2. Answer any FOUR:

 $4 \times 4 = 16$

- (a) Draw the single phase full wave bridge type controlled rectifier. Draw the waveforms of input voltage, load voltage and voltage across SCR.
- (b) Draw circuit of step down chopper and explain its working with neat waveforms.
- (c) State the function of SMPS. Sketch block diagram of SMPS and label it well.
- (d) Sketch equivalent circuit of SCR using BJT. Describe its working principle.
- (e) State different trigger methods and describe R-triggering method for SCR with circuit diagram and waveforms.
- (f) Define distortion factor and lowest order harmonics with respect to inverter.

3. Answer any FOUR:

 $4 \times 4 = 16$

- (a) Differentiate SCR and TRIAC with respect to (i) symbol, (ii) layered diagram, (iii) operating quadrant, (iv) application.
- (b) Compare controlled and uncontrolled rectifiers. (any 4 points)
- (c) Draw constructional diagram of GTO and state its operating principle.
- (d) Draw VI characteristics of power transistor. Label different regions.
- (e) Describe the effect of free wheeling diode in controlled rectifier.
- (f) Sketch circuit of three phase uncontrolled half wave rectifier with resistive load. Draw its input and output waveforms.

17444 [3 of 4]

4. Answer any FOUR:

 $4 \times 4 = 16$

- (a) State the need of Inverter. List four applications of Inverters.
- (b) Draw symbol and characteristics of DIAC and SUS.
- (c) Describe the working of DC flasher circuit using SCR with neat diagram.
- (d) Explain dv/dt turn on method of SCR.
- (e) Draw the circuit diagram of light dimmer using DIAC and TRIAC and sketch the input and output voltage waveforms.
- (f) Draw circuit diagram of single phase half bridge inverter. Explain its working with output voltage waveforms.

5. Answer any FOUR:

 $4 \times 4 = 16$

- (a) Draw labelled circuit diagram of battery charger using SCR.
- (b) Draw the layer diagram of PUT. With neat circuit diagram, describe its working as relaxation oscillator.
- (c) Draw 1\$\phi\$ HWCR with inductive load. Draw input and output waveforms. Describe its operation.
- (d) Describe the working of class B commutation with neat circuit diagram.
- (e) Draw the labelled constructional diagram of N-channel IGBT.
- (f) Draw the circuit diagram of three phase half wave controlled rectifier. Draw the waveforms of input voltage and output voltage.

P.T.O.

17444 [4 of 4]

6. Answer any FOUR:

 $4 \times 4 = 16$

- (a) Draw circuit diagram and explain the working emergency light system using SCR.
- (b) Draw single phase centre tapped controlled rectifier with RL load and draw its load voltage waveforms.
- (c) Explain class C commutation with circuit diagram.
- (d) State two applications each for (i) SCR and (ii) PUT.
- (e) Explain the secondary breakdown in power BJT and how it can be avoided?
- (f) Compare R-triggering and RC-triggering of SCR on the basis of (i) circuit diagram, (ii) firing angle, (iii) cost, (iv) average output voltage.