(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q. N.		Answers	Marking Scheme
1	а	Attempt any Th	HREE:	12- Total Marks
	i	Draw the forma	at of TCON and state the function of each bit in it.	4M
	Ans:	TCON: TIMER/C TF1 TR1 Bit Symbol 7 TF1	TCON Bit Function Timer 1 Overflow flag. Set when timer rolls from all 1's to 0. Cleared when processor vectors to execute interrupt service routine located at program address 001Bh.	Format-2 marks Function- 2marks
		6 TR1	Timer 1 run control bit. Set to 1 by program to enable timer to count; cleared to 0 by program to halt timer.	
		5 TF0	Timer 0 Overflow flag. Set when timer rolls from all 1's to 0. Cleared when processor vectors to evacute interrupt service routine located at	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

2	IT1	External interrupt 1 signal type control bit. Set to 1 by program to enable external interrupt 1 to be triggered by a falling edge signal. Set to 0 by	
		program to enable a low-level signal on external interrupt 1 to generate an interrupt.	
1	IE0	External interrupt 0 Edge flag. Set to 1 when a high-to-low edge signal is received on port 3.2 (INT0). Cleared when processor vectors to interrupt service routine at program address 0003h. Not related to timer operations.	
0	IT0	External interrupt 0 signal type control bit. Set to 1 by program to enable external interrupt 1 to be triggered by a falling edge signal. Set to 0 by program to enable a low-level signal on external interrupt 0 to generate an interrupt.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

	RISC	CISC	1
	Reduced instruction set computer	Complex instruction set computer.	
	Instruction set is simple and limited.	Instruction set is very large.	
	Instruction set is not flexible, hence the program is long.	Instruction set is flexible, hence the program is short	
	Provides few addressing modes normally register.	Provides many addressing modes	
	Large memory is required	Less memory required	
	Provides large number of registers	No. of registers are less.	
	Process architecture & control unit is simple	Processor architecture and control unit is complicated.	
	Instruction are shorter, hence execution speed is fast.	e Instructions are lengthy hence execution speed is slow.	
	External memory is accessed rarely		
	Each instruction required few bus cycle.	Each instruction requires many bus cycle.	
	e. g. ARM, ATMEL, AVR,		
	MIPS, PIC, POWER PC, etc.	Interx86, Motorola, 68000 series.	
iii	MIPS, PIC, POWER PC, etc.	of data from Port 1 if it is greater than 99 send it to	4M
iii Ans	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2.		4M Correct
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program:		Correct
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h></reg51.h>		Correct
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program:		Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) {</reg51.h>		Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) { unsigned char x;</reg51.h>	of data from Port 1 if it is greater than 99 send it to	Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) { unsigned char x; P1=0xFF; //make P1 input</reg51.h>	of data from Port 1 if it is greater than 99 send it to	Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) { unsigned char x; P1=0xFF; //make P1 input while (1)</reg51.h>	of data from Port 1 if it is greater than 99 send it to	Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) { unsigned char x; P1=0xFF; //make P1 input while (1) {</reg51.h>	of data from Port 1 if it is greater than 99 send it to	Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) { unsigned char x; P1=0xFF;</reg51.h>	of data from Port 1 if it is greater than 99 send it to	Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) { unsigned char x; P1=0xFF;</reg51.h>	of data from Port 1 if it is greater than 99 send it to ut port om P1	Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) { unsigned char x; P1=0xFF;</reg51.h>	of data from Port 1 if it is greater than 99 send it to ut port om P1	Correct program-
	Write a program in 'C' to read a byte of Port 0 otherwise send it to Port 2. Program: #include <reg51.h> void main(void) { unsigned char x; P1=0xFF;</reg51.h>	of data from Port 1 if it is greater than 99 send it to ut port om P1	Correct program-

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

	P2=x; }	//send it to P0	
	}		
iv	Define Ba	ud rate. State the Baud rate of each mode in UART.	4M
Ans		e:Baud rate is defined as the number of bits transmitted per sec.	
:	OR Baud rate	e is defined as the number of signal changes per second.	
	Mode	Baud Rate	
	Mode 0	f/12	
	Mode 1	Variable determined by Timer 1	
	Mode 2	f/32 or f/64	
	Mode 3	Variable determined by Timer 1	
	Where f is	oscillator frequency	
b	Attempt a	ny ONE:	6- Tot Marks
ı	Describe t	he function of following instructions in terms of length of bytes and operation.	6M
	a)	RRC A	
	b)	DIV AB	
	c)	JNB P1.3, DOWN	
Ans	a)	RRCA	1 mar
:	right one b of the carry	A instruction rotates the eight bits in the accumulator and the one bit in the carry flag it position. Bit 0 of the accumulator is rotated into the carry flag while the original value of flag is rotated in to bit 7 of the accumulator. Bit 7 of the accumulator is rotated into bit 5, and so on.	opera 1mark no. of bytes each
	RRC		instru n
		where n = 0 to 6	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer Subject Code:

	$A_7 = C$	
	$C = A_0$	
	Bytes:1	
	b)DIV AB	
	The DIV instruction divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register B. After the division, the quotient is stored in the accumulator and the remainder is stored in the B register. The carry and OV flags are cleared.	
	AB = A / B	
	Bytes:1	
	c)JNB P1.3, DOWN	
	The JNB instruction branches to the specified address (DOWN) if the bit P1.3 has a value of 0. Otherwise, execution continues with the next instruction. No flags are affected by this instruction.	
	JNB	
	PC = PC + 3	
	IF (bit) = 0	
	PC = PC + offset	
	Bytes:3	
ii	Draw the architecture of 8051 microcontroller.	6M
Ans		Correct
:		labelled diagram-4
		marks

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

). Io.	Sub Q. N.		Answers	Marking Scheme
		Attempt any TWO:		16- Total Marks
	а		ge program to find largest number from the array of ten ernal memory RAM. Assume suitable data.	8M
	Ans:	Assumptions: Array of	ten numbers are stored from memory location 3000H onwards and	Correct
		result is stored in mem	ory location 6000H	program-8 marks
		Program:		l III di No
		CLR PSW.3	; Select Bank 0 PSW.3	
		MOV R1, 0AH	; Initialize byte counter	
		MOV DPTR, # 3000H	; Initialize memory pointer	
		DEC R1	; Decrement byte counter by 1	
		MOV X A, @DPTR	; Load number in accumulator	
		MOV 40 H, A	; Store number in memory location	
		UP: INC DPTR	; Increment memory pointer by 1	
		MOVXA, @DTPR	; Read next number	
		CJNE A, 40 H, DN	; if number≠ next number, and then go to NEXT	
		DN: JNC NEXT	; If next number < number then go to NEXT	
		MOV 40H, A	; Else replace NEXT number with number	
		NEXT: DJNZ R1, UP	; Decrement byte counter by 1, if byte counter≠ 0 then go to UP	
		MOV DPTR,#6000H	; Increment memory pointer by 1	
		MOV A, 40H		
		MOVX@ DPTR, A	; Store result t external memory location	
		LOOP: AJMP LOOP	; Stop	
	b	Draw interface diagran	n of ADC 0809 with 8051. Write 'C' language program to generate	8M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

Page No: 10/31

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR:	16- Total Marks
	а	i) Convert (1011101) ₂ to () ₁₀ .	4M
		ii) Subtract (1001) ₂ from (1100) ₂ by using 2's complement method.	
	Ans:	(3a). (1) Convext (1011101)2 to ()10 $ (1011101)_{2} $ $=(1\times2^{6})+(6\times2^{5})+(1\times2^{4})+(1\times2^{3})+(1\times2^{2})+(0\times2^{1}) $ $+(1\times2^{0}) $ $=(64+0+16+8+4+0+1) $ $=(93)_{10} $	2M EACH

Page No: 12/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

	(ii) $(1100)_2 - (1001)_2$ [*s complement of (1001) = 0110	
	$2's (comp \Rightarrow) + 1$	
	Now add, 1100 + 0111	
	+ 0111 1) 0011	
	Neglect the carry, So the result is (0011) 2 > (3)10	
b	Draw program memory organization for i) $E\overline{A}=0$ ii) $E\overline{A}=1$.	4M
-	brown program memory organization for ty zir o ny zir zi	
Ans:	Vcc XX51 External Program Memory (60K) OFFFH Internal 1000H FFFFH Internal 1000H Internal 1000	2M eac

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

С	Compare between 8	051 and	8052 microcont	roller.		4M
Ans	Feature	8051	8052			1M each
:	ROM(bytes)	4K	8K			
	RAM(bytes)	128	256			
	Timers	2	3			
	I/O pins	32	32			
	Serial Port	1	1			
	Interrupts	6	8			
	Watchdog timer	No	No			
d	Describe the standa	rd data t	types in 'C' for 80	051 with suitable example		4M
Ans	(4M for correct answ	wer)				Any four
:	DATA TYPES		SIZE IN BITS	DATA RANGE	EXAMPLE	M each
	Unsigned char		8-bit	0 to 255	Unsigned char x;	
	(signed) char		8-bit	-128 to +127	Signed char x;	
	Unsigned int		16-bit	0 to 65535	Unsigned int x;	
	(signed) int		16-bit	-32768 to +32767	Signed int x;	
	Sbit		1-bit	SFR bit addressable only	Sbit LED=P1^2;	
	Bit		1-bit	RAM bit addressable only	Bit x;	
	sfr		8-bit	RAM addresses 80-FFH only	Sfr P1= 0x90;	

Page No: 14/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

	е	Draw interlacing diagram of DAC 0808 with 8051 microcontroller.	4M
	Ans:	VCC XTAL1 VCC Vref (+) Vref (-) Vref (-) A P1.7 P1.6 P1.5 D7 A GND P1.3 D9 P1.4 D4 O P1.3 D5 D0 Reset COMP - 15V Ito V Convertor	4M
Q. No.	Sub Q. N.	Answers	Marking Scheme
4	а	Attempt any THREE:	12- Total Marks
	i	State the alternate function of Port 3 pins of microcontroller 8051.	4M
	Ans		½ M each

Page No: 15/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

	Pin	Name	Alternate Function	
	P3.0	RXD	Serial input line(Receive)	
	P3.1	TXD	Serial output line(Transmit)	
	P3.2		External interrupt 0	
	P3.3	INT0	External interrupt 1	
	13.3	INT1	External interrupt 1	
	P3.4	T0	Timer 0 external input	
	P3.5	T1	Timer 1 external input	
	P3.6	WR	External data memory write strobe	
	P3.7	 RD	External data memory read strobe	
		KD	strobe	
		RD	strooc	
ii	Compare EPRC	OM and EEPROM (any		4M
Ans	Compare EPRC			4M 1M each
	Compare EPRC			
Ans	Compare EPRC			
Ans	Compare EPRC			
Ans	Compare EPRC			
Ans	Compare EPRC			
Ans	Compare EPRO			
Ans	Compare EPRO			
Ans	Compare EPRC			
Ans	Compare EPRC			

Page No: 16/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

	BASIS FOR COMPARISON	EPROM	EEPROM
	Basic	Ultraviolet Light is used to erase the content of EPROM.	EEPROM contents are erased using electronic signal.
	Appearance	EPROM has a transparent quartz crystal window at the top.	EEPROM are totally encased in an opaque plastic case.
	Erased and Reprogrammed	EPROM chip has to be removed from the computer circuit to erase and reprogram the computer BIOS.	EEPROM chip can be erased and reprogrammed in the computer circuit to erase and reprogram the content of computer BIOS.
	Technology	EPROM is an older technology.	EEPROM is a modern version over EPROM.
iii	-	toggle only bit P1.2 continuo	ously with 200 ms delay.
Ans :	(4M for correct progr	ram)	
	#include <reg51.h> sbit LED= P1^2;</reg51.h>		
	void delay(unsigned i	int):	
	void main()	,,	
	{		
	while(1)		
	{		
	LED=0;		
	delay(200);		

Page No: 17/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

Page No: 18/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

b	Attempt any ONE:	6- Total Marks		
i	Write assembly language program to count time period of square wave using 8051 counter. Assume suitable data.			
Ans	Assumptions :	Correct		
:	This program will display the time period in ms	program : 6M		
	Oscillator frequency = 12 MHz, Timer0 as counter in Mode1, Timer1 for delay generation in Mode1, Square wave whose time period to be found is applied to P3.4 (T0 input for Timer0), Higher byte of result is displayed in Port2 and lower byte in Port1.			
	Explanation: If we count the number of pulses applied to P3.4 in 1 ms, we will directly get the time period in milliseconds. Timer0 is used to count the pulses and Timer1 is used to generate a delay of 1ms.			
	The value to be given to TMOD register is 15H			
	The count value to generate time delay of 1ms is FC18H			
	Program:			
	MOV TMOD,#15H //LOAD 15H TO TOMOD REGISTER			
	SETB P3.4 //P3.4 AS INPUT			
	MOV TL0,#00H			
	MOV TH0,#00H //LOAD INITIAL VALUE FOR COUNTING			
	SETB TRO //START COUNTER			
	MOV TL1,#18H			
	MOV TH1,#0FCH //LOAD COUNT VALUE FOR 1ms DELAY			
	SAME: JB P3.4,SAME //WAIT FOR FIRST FALLING EDGE OF SQUARE WAVE			
	SETB TR1 //START TIMER1 BACK: JNB TF1,BACK //CHECK FOR 1ms DELAY			
	CLR TF1 //CLEAR TF1			
	CLR TR1 //STOP TIMER1			
	CLR TRO //STOP COUNTERO			
	MOV A,TL0			

Page No: 19/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

		MOV P1,A //LOWER BYTE OF COUNT IN P1	
		MOV A,TH0 //HIGHER BYTE OF COUNT IN P2	
		MOV P2,A	
		SJMP \$	
	ii	Draw the diagram to interface external RAM and ROM with 8051 microcontroller and explain the function of ALE and \overline{PSEN} pins of 8051.	6M
	Ans	Data (0-7)	4M
	Ans :	PO ALE P2 WR RD Address (0-7) Address (0-7) Address (8-15) PSEN pin stands for Program Store Enable. It is used to read a signal from the external program memory.	(drawing) 1M each (function)
		ALE/PROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during EPROM programming.	
Q. No.	Sub Q. N.	Answers	Marking Scheme
5		Attempt any TWO:	16- Total Marks
	а	Describe the addressing modes of 8051 with suitable example.	8M
	Ans :	There are a number of addressing modes available to the 8051 instruction set, as follows:	Any four, 2 marks

Page No: 20/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

- 1. Immediate Addressing mode
- 2. Register Addressing mode
- 3. Direct Addressing mode
- 4 Register Indirect addressing mode
- 5. Relative Addressing mode
- 6. Absolute addressing mode
- 7. Long Addressing mode
- 8. Indexed Addressing mode
- 1) Immediate Addressing mode: Immediate addressing simply means that the operand (which immediately follows the Instruction op. code) is the data value to be used.

For example the instruction: MOV A, #25H; Load 25H into A Moves the value 25H into the accumulator. The # symbol tells the assembler that the immediate addressing mode is to be used.

2) Register Addressing Mode: One of the eight general-registers, R0 to R7, can be specified as the instruction Operand. The assembly language documentation refers to a register generically as Rn.

An example instruction using register addressing is: ADD A, R5; Add the contents of register R5 to contents of A (accumulator) Here the contents of R5 are added to the accumulator. One advantage of register addressing is that the instructions tend to be short, single byte instructions.

3) Direct Addressing Mode: Direct addressing means that the data value is obtained directly from the memory location specified in the operand.

For example consider the instruction: MOV RO, 40H; Save contents of RAM location 40H in RO. The instruction reads the data from Internal RAM address 40H and stores this in theRO. Direct addressing can be used to access Internal RAM, including the SFR registers.

4) Register Indirect Addressing Mode: Indirect addressing provides a powerful addressing capability, which needs to be appreciated.

An example instruction, which uses indirect addressing, is as follows: MOV A, @R0; move contents of RAM location whose address is held by R0 into A Note the @ symbol indicated that the indirect addressing mode is used. If the data is inside the CPU, only registers R0 & R1 are used for this purpose.

5) Relative Addressing Mode: This is a special addressing mode used with certain jump

each (1 mark for explanatio n and 1 mark for example)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

	7) Long Addressing Mode: The long addressing mode within the 8051 is used with the instructions LJMP and LCALL. The address specifies a full 16 bit destination address so that a jump or a call can be made to a location within a 64KByte code memory space (216 = 64K). An example instruction is: LJMP 5000h; full 16 bit address is specified in operand 8) Indexed Addressing Mode: With indexed addressing a separate register, either the program counter, PC, or the data pointer DTPR, is used as a base address and the accumulator is used as an offset address. The effective address is formed by adding the value from the base address to the value from the offset address. Indexed addressing in the 8051 is used with the JMP or MOVC instructions. Look up tables are easy to implement with the help of index addressing.	
	program counter, PC, or the data pointer DTPR, is used as a base address and the accumulator is used as an offset address. The effective address is formed by adding the value from the base address to the value from the offset address. Indexed addressing in the 8051 is used with the JMP or MOVC instructions. Look up tables are easy to	
	Consider the example instruction:	
	MOVC A, @A+DPTR	
	MOVC is a move instruction, which moves data from the external code memory space.	
	The address operand in this example is formed by adding the content of the DPTR register to the accumulator value. Here the DPTR value is referred to as the base address and the accumulator value us referred to as the index address.	
b	Write 'C' language program to transfer the message "AICTE" serially at baud rate 9600. Assume crystal frequency 11.0592 MHz.	8M
Ans		Calculatio
:	Normally Serial communication MODE 1 is used (8 bit UART with variable baud rate). For setting baud rate, TIMER 1 to be programmed in Mode 2 – Auto reload mode.	n of count – 1M
	Following formula is used for calculation of Count to be given to Timer 1 register, TH1 to	Program :-

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

	Hence for 9600 baud, $9600 = \frac{2^0}{32} X \frac{11059200}{12 X (256-TH1)}$	
	From this formula we get value to be loaded to TH1 as FD H	
	(Any other logically similar method may also be used for calculation)	
	Program:	
	#include <reg51.h></reg51.h>	
	void main(void)	
	{	
	unsigned char text[] = "AICTE";	
	unsigned char i;	
	TMOD = 0x20;	
	TH1 = 0xFD;	
	SCON = 0x50;	
	TR1 = 1;	
	while(1)	
	\ \{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	for(i =0;i<5;i++)	
	SBUF= text[i];	
	while(TI ==0);	
	TI = 0;	
	}	
	}	
	Proceeds the late feet of the control of the late of t	004
С	Draw and explain the interfacing of seven segment LED display in common cathode	8M
	with 8051 microcontroller. Write 'C' language program to display digit 0 to 9.	
Ans		4 marks
:		diagram
		4 marks
		program

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

```
P1 = 0xFF; //DISPLAY OFF
while(1)
{
P1 = 0x3F; //DISPLAY 0
 delay_ms(1000);
 P1 = 0x06; //DISPLAY 1
 delay_ms(1000);
 P1 = 0x5B; //DISPLAY 2
 delay_ms(1000);
 P1 = 0x4F; //DISPLAY 3
 delay_ms(1000);
 P1 = 0x66; //DISPLAY 4
 delay_ms(1000);
 P1 = 0x6D; //DISPLAY 5
 delay_ms(1000);
 P1 = 0x7D; //DISPLAY 6
 delay_ms(1000);
 P1 = 0x07; //DISPLAY 7
 delay_ms(1000);
 P1 = 0x7F; //DISPLAY 8
delay_ms(1000);
 P1 = 0x6F; //DISPLAY 9
 delay_ms(1000);
}
```


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

		NOTE: Program may change. Student can also use the other logic. Please check the logic and understanding of students.	
Q. No.	Sub Q. N.	Answers	Marking Scheme
6		Attempt any FOUR:	16- Total Marks
	а	Draw the format of IE register of 8051 and state the function of each bit.	4M
	Ans:	IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE. If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled. EA	2 mark format 2 marks function
	b	Describe the following assembler directives with one example. i) ORG ii) DB iii) EQU iv) END	4M
	Ans :	(Each directive explanation with example : 1 mark each) 1. ORG : ORIGIN The ORG directive is used to indicate the beginning of the address. The	1 mark each

Page No: 26/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

Ans :	Pin	Pin Name:	Description	4 marks	
С	Write dow	n the function of 16 pi	n connector of LCD module.	4M	_
	LIND				
	END	•			
		, A, #10			
	e.g. MOV				
	directive is		nbler the end of the source (asm) file . The END 1 program. Means that in the program anything after e assembler		
	When the	instruction is executed ,	, register R2 is loaded with value 10.		
	MOV	R2, #COUNT			
	e.g. COUN	T EQU 10			
	The EQU d	irective assigns a consta	ne a constant without occupying a memory location ant value to a label. When the label appears in the substituted for the label.		
	After execu	ution of this , location 1	000h=20 & 1001h = 21		
	MYDA	ATA: DB 20,21			
	e.g. ORG 1	1000Н			
	DB , into t	•	efine the 8-bit data. It is used to write the value after When DB is used to define data, the numbers can be in s		
	It indicates	s that program shall star	rt from memory address 1000h		
	e.g. ORG 1	000H			
	can be eith	iei iii iiex ana accimai			

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

			_
No:			
1	Vss (Ground)	Ground pin connected to system ground	
2	Vdd (+5 Volt)	Powers the LCD with +5V (4.7V – 5.3V)	
3	VE (Contrast V)	Decides the contrast level of display. Grounded to get maximum contrast.	
4	Register Select	Connected to Microcontroller to shift between command/data register	
5	Read/Write	Used to read or write data. Normally grounded to write data to LCD	
6	Enable	Connected to Microcontroller Pin and toggled between 1 and 0 for data acknowledgement	
7	Data Pin 0		
8	Data Pin 1		
9	Data Pin 2	Data pins 0 to 7 forms a 8-bit data line. They can be connected to Microcontroller to send 8-bit data.	
10	Data Pin 3	These LCD's can also operate on 4-bit mode in such case Data pin 4,5,6 and 7 will be left free.	
11	Data Pin 4	p 1,5,6 and 7 will be left free.	

Page No: 28/31

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

	12	Data Pin 5		
	13	Data Pin 6		
	14	Data Pin 7		
	15	LED Positive	Backlight LED pin positive terminal	
d	16 Draw ar	LED Negative	Backlight LED pin negative terminal cing of opto-isolator with 8051 microcontroller.	4M
Ans :		RESET PLO VICE PLANT PLA	SV DC relay COM NO 2N2222 (NEN)	2 marks diagram marks explaina on
	provide to trans between	isolation between two smit input signal by u n input and output thro	oisolator, photocoupler and optical isolator. It is used to electrical circuits. It is a electrical component which is used sing light energy signals. It provides electrical coupling ough light waves. Its main purpose is to avoid changing in opearing at input side. Higher voltage fluctuations may	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

17509

	damage input side electrical components. The output of opto coupler is given to relay which further operates the output device	
е	Explain system clock and machine cycle of 8051 microcontroller.	4M
Ans :		2 marks
	8051 Clock Circuit XX51 XX51	

Page No: 30/31

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Microprocessor & Applications Model Answer

Subject Code:

