

SUMMER – 19 EXAMINATION

Subject Name: Heat & Power Engg

Model Answer

# **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.1. |      | Attempt any <u>SIX</u> of the following:                                                                                                                                                                                                                                                                                                           | 12              |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|      |      |                                                                                                                                                                                                                                                                                                                                                    | Marks           |
| a)   | i)   | Plot P-V & T-S Diagram for isobaric process                                                                                                                                                                                                                                                                                                        | 2 marks         |
|      | Sol. | $P = \begin{bmatrix} 1 & & T \\ 1 & & 2 \\ & & & \\ & & & \\ P-V \text{ Diagram} \end{bmatrix} $ $T-S \text{ Diagram}$                                                                                                                                                                                                                             | 01 mark<br>each |
|      | ii)  | P-V Diagram T-S Diagram Define Dryness fraction & Degree of superheat                                                                                                                                                                                                                                                                              | 2marks          |
|      | Sol. | <ul> <li>i) Dryness fraction: Dryness fraction is defined ratio of the mass of the dry steam present in the total mass of steam.</li> <li>Or</li> <li>Dryness fraction is ratio of the mass of actual dry steam to the mass of wet steam.</li> </ul>                                                                                               | 01 mark         |
|      |      | <ul> <li>Therefore, x = ms/ (ms + mw)</li> <li>Where ms and mw are the masses of steam and (ms + mw) masses of water in the mixture</li> <li>ii) Degree of superheat: It is difference between the temperature of Superheated Steam and the saturation temperature correspondingly to given pressure is said to be Degree of Superheat.</li> </ul> | 01 mark         |
|      | iii) | Define: 1) Free Air Delivered 2) Volumetric Efficiency of compressor                                                                                                                                                                                                                                                                               | 2 marks         |
|      | Sol. | <b>Free Air Delivered (FAD):</b> It is the actual volume of air delivered by the Compressor when reduced to NTP.                                                                                                                                                                                                                                   | 01 mark         |



Subject Name: Heat & Power Engg Mode

Model Answer

Subject Code: 1

| Write the classification of gas turbines                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Answer: Classification of gas turbine: (Any two                                | ooints: 1 Mark each)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 According to the path of the working substance                               | 2•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · ·                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| iii) Semi-closed cycle gas turbine                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. According to process of combustion:                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| i) Constant pressure gas turbine                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ii) Constant volume gas turbine                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. According to direction of flow:                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| i) Radial flow                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ii) Axial flow                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| iii) Tangential flow                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ii) Reaction turbine                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5. According to their usage:                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · · · · · · · · · · · · · · · · · ·                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| List two renewable & non-renewable sources of                                  | energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                | al power,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul><li>7) Ocean thermal power, 8) Biomass,</li><li>9) Bio-fuel etc.</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7) Diesel etc                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VI mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| State any two advantages & disadvantages of CN                                 | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Advantages of CNG : (Any Two )                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1) It is a very cheap fuel                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                | swept volume of the piston.         Write the classification of gas turbines         Answer: Classification of gas turbine: (Any two p         1. According to the path of the working substance         i) Open cycle gas turbine         ii) Close cycle gas turbine         iii) Semi-closed cycle gas turbine         2. According to process of combustion:         i) Constant pressure gas turbine         ii) Constant pressure gas turbine         3. According to direction of flow:         i) Radial flow         ii) Axial flow         iii) Tangential flow         4. According to principle of action of expanding gas         i) Impulse turbine         ii) Reaction turbine         5. According to their usage:         i) Constant speed         ii) Variable speed         List two renewable & non-renewable sources of of         Renewable sources of energy : (Any Two)         1) Solar power,       2) Hydro-eler         3) Wind power,       4) Tidal powe         5) Ocean wave power,       6) Geotherma         7) Ocean thermal power,       8) Biomass,         9) Bio-fuel etc.       2) natural gas         3) oil,       4) firewood         5) Petrol,       6) Kerosene,         7) Diesel etc | Write the classification of gas turbines         Answer: Classification of gas turbine: (Any two points: 1 Mark each)         1. According to the path of the working substance:         i) Open cycle gas turbine         ii) Close cycle gas turbine         iii) Semi-closed cycle gas turbine         2. According to process of combustion:         i) Constant pressure gas turbine         ii) Constant volume gas turbine         3. According to direction of flow:         i) Radial flow         iii) Axial flow         iii) Pangential flow         4. According to principle of action of expanding gases:         i) Impulse turbine         ii) Reaction turbine         5. According to their usage:         i) Constant speed         ii) Variable speed         List two renewable & non-renewable sources of energy         Renewable sources of energy : (Any Two)         1) Solar power,       2) Hydro-electric power,         3) Wind power,       4) Tidal power,         5) Ocean wave power,       6) Geothermal power,         7) Ocean thermal power,       8) Biomass,         9) Bio-fuel etc.       8) Biomass,         Non renewable sources of energy : (Any Two)         1)Coal,       2) natural gas,         3) dil,       4) fire |



Subject Name: Heat & Power Engg

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 19 EXAMINATION ngg <u>Model Answer</u>

Subject Code:

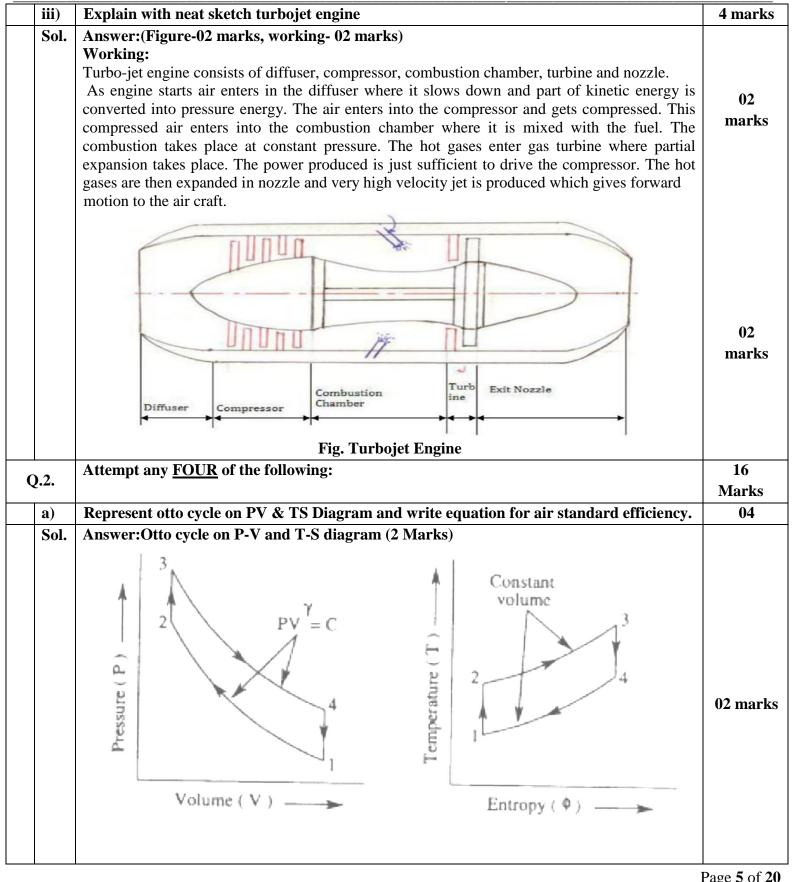
|    |       | 2) It's environmentally friendly                                                                   |          |
|----|-------|----------------------------------------------------------------------------------------------------|----------|
|    |       | 3) It's less costly compared to other fossil fuel energy sources                                   |          |
|    |       | 4) Minimizes dependency on foreign oil                                                             |          |
|    |       | Disadvantages of CNG: (Any Two)                                                                    |          |
|    |       | 1) The More storage space is required                                                              |          |
|    |       | 2) Its highly combustible                                                                          | 01 mark  |
|    |       | 3) Non-renewable energy source                                                                     |          |
|    | vii)  | List the properties of liquid fuels                                                                | 2 marks  |
|    | Sol.  | Answer: (1/2 Mark each property)(any four)                                                         |          |
|    |       | 1. High calorific value                                                                            |          |
|    |       | 2. Moderate ignition temperature                                                                   |          |
|    |       | 3. Low moisture content                                                                            |          |
|    |       | 4. Low NOx combustible matter                                                                      | 2marks   |
|    |       | <ul><li>5. Moderate velocity of combustion</li><li>6. Products of combustion not harmful</li></ul> |          |
|    |       | 7. Low cost                                                                                        |          |
|    |       | 8. Easy to transport                                                                               |          |
|    |       | 9. Combustion should be controllable                                                               |          |
|    |       | 10. No spontaneous combustion                                                                      |          |
|    |       | 11. Low storage cost                                                                               |          |
|    |       | 12. Should burn in air with efficiency.                                                            |          |
|    | viii) | State two applications of compressed air in automobile workshop                                    | 2 Marks  |
|    | Sol.  | Application of compressed air: (Any two)                                                           |          |
|    |       | 1. Operating tools in factories                                                                    |          |
|    |       | 2. Operating drills and hammers in road building                                                   | 02 marks |
|    |       | 3. Starting diesel engines                                                                         |          |
|    |       | 4. Operating brakes on buses, trucks and trains                                                    |          |
|    |       | 5. Spray painting                                                                                  |          |
|    |       | 6. Excavating                                                                                      |          |
| b) |       | 7. To clean the large workshops<br>Attempt any TWO of the following:                               | 08 Marks |
| 0) | i)    | Explain the terms related to the thermodynamics 1) Work done 2) Change in internal                 | 04       |
|    | _/    | energy 3) Change in Enthalpy                                                                       |          |
|    | Sol.  | 1)Work Done:                                                                                       | 1        |
|    |       | Work done is a product of pressure & difference between volume .Work done by the system is         | 1 mark   |
|    |       | considered as +ve. e.g : an expansion of gas in the cylinder-piston assembly pushing a piston      |          |
|    |       | and work done on the system is -ve. e,g: Compression of gas by piston.                             |          |
|    |       | For const. volume process W $.D = 0$                                                               |          |
|    |       |                                                                                                    |          |
|    |       | For const. pressure process $W.D = m.R.(T2-T1)$                                                    |          |
|    |       | For Const.Temp process = $W.D = P1V1 \log (p1/p2)$                                                 |          |



(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 19 EXAMINATION

17407 Subject Name: Heat & Power Engg Model Answer Subject Code: 2) Change in internal energy: The change in internal energy is equal to heat added to the system minus work done by the system.  $\blacktriangle U = O - W$ 1 mark work done by a system decreases the internal energy of the system For const. volume process, du = m.Cv.(T2-T1)For const. pressure process du = m.Cv.(T2-T1)For Const. Temp process, du = 03) Change in Enthalpy: it is the amount of heat absorbed or lost by system during a process at const. pressure dH = H2-H1For const. volume process, dH = m.Cp.(T2-T1)2 mark For const. pressure process, dH = m.Cp.(T2-T1)For Const. Temp process, dH = 0ii) State and explain different phases in formation of steam 4 marks Sol. Answer: (Explanation 2 Marks, Figure 2 Marks) **Different phases of Formation of steam** Consider formation of steam from ice at  $-20^{\circ}$  C i)Solid phase- When the heat is added in ice which is at  $-20^{\circ}$ C, the temperature of ice increases 02 marks to  $0^{\circ}$ C as shown in figure by process A-B.in this stage solid phase exists. ii) Solid+ Liquid phase- The point B is called is saturation point when heat is further added this heat cannot increase the temperature but ice is converted into water that means phase transformation takes place, thus in-between region B-C, solid and liquid phase exists. iii) Liquid phase- From point C further heat is added up to 100<sup>0</sup> C, in this region no phase change takes place, there is only liquid phase present. iv) Liquid+ Vapour phase- Point D is saturation point; further addition of heat will not increase the temperature but liquid phase change into vapours phase. In this region liquid and vapour is present. v) Vapour phase- Point E is called as saturation point, further adding heat increase the temperature of steam which is called as superheating and in this region only vapour is present. **Temperature** steam (°C) 02 marks water+stea 100 °C F Heat 0 °C (cal) -20




(ISO/IEC - 27001 - 2013 Certified) **SUMMER – 19 EXAMINATION** 

Subject Name: Heat & Power Engg **Model Answer** 

Subject Code:

```
17407
```

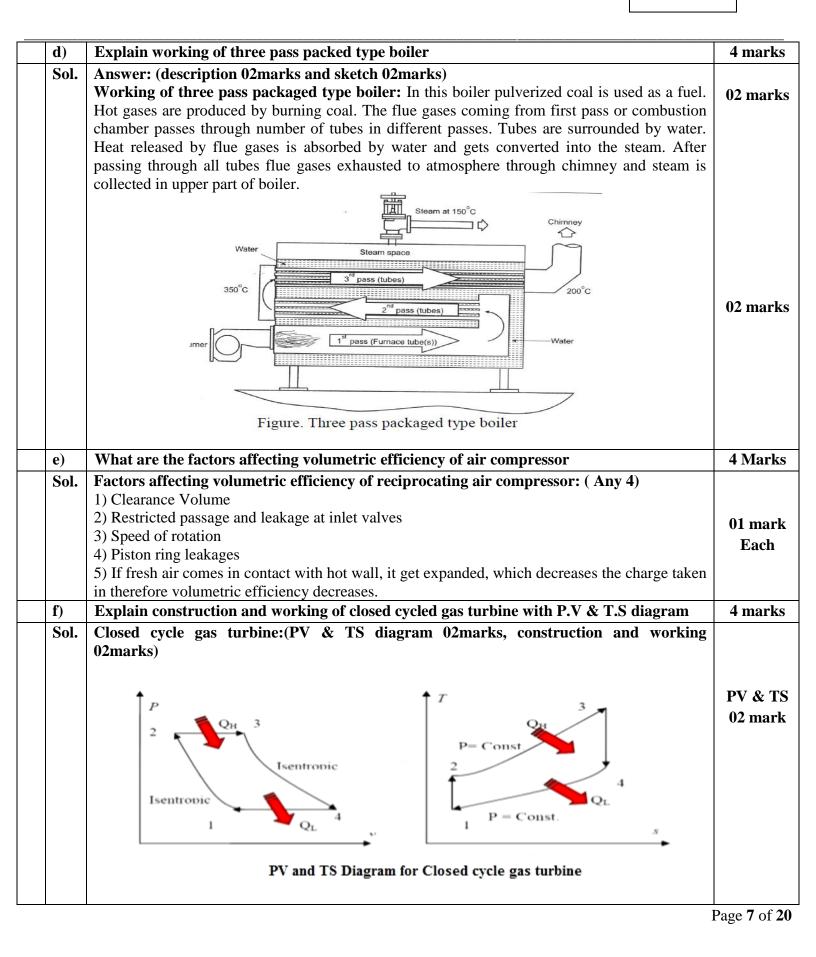




SUMMER – 19 EXAMINATION

17407 Subject Name: Heat & Power Engg Subject Code: Model Answer Equation for air standard efficiency of otto Cycle (2 Marks)  $\eta = 1 - \frac{1}{r^{\gamma - 1}}$ 02 marks Where, r = compression ratio  $\gamma$  = specific heat ratio b) Explain the different modes of heat transfer 4 marks Heat Transfer takes place by three different modes : 01 Sol. 1) conduction, 2) convection and 3) radiation 1. Conduction- It is the mode of heat transfer from one part of substance to another part 01 of same substance or one substance to another without displacement of molecules or due to the vibrations of molecules. **Example-**Heat transfer in metal rod. 2. **Convection:** It is the mode of heat transfer from one part of substance to another part of same substance or one substance to another with displacement of molecules or due to 01 the fluid flowing. Example: Heat flow from boiler shell to water. 3. Radiation: It is the transfer of heat through space or matter. For Radiation there is no 01 need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. **Example:** The heat energy receives from sun to the earth surface. **Sketch Lamont boiler with labeling** 4 marks c) Sol. Chimney Air preheater 02 mark 0 Blower 1 H H H Sketch 000000 Feed pump Economiser Hot air Storage and — Separating drum Heater Dd-Main 02 mark Label Evaporato Circulating Radiant Evaporator pump Combustion chamber **Fig. Lamont Boiler** 




(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 19 EXAMINATION

Subject Name: Heat & Power Engg

Model Answer Su

Subject Code: | 17407





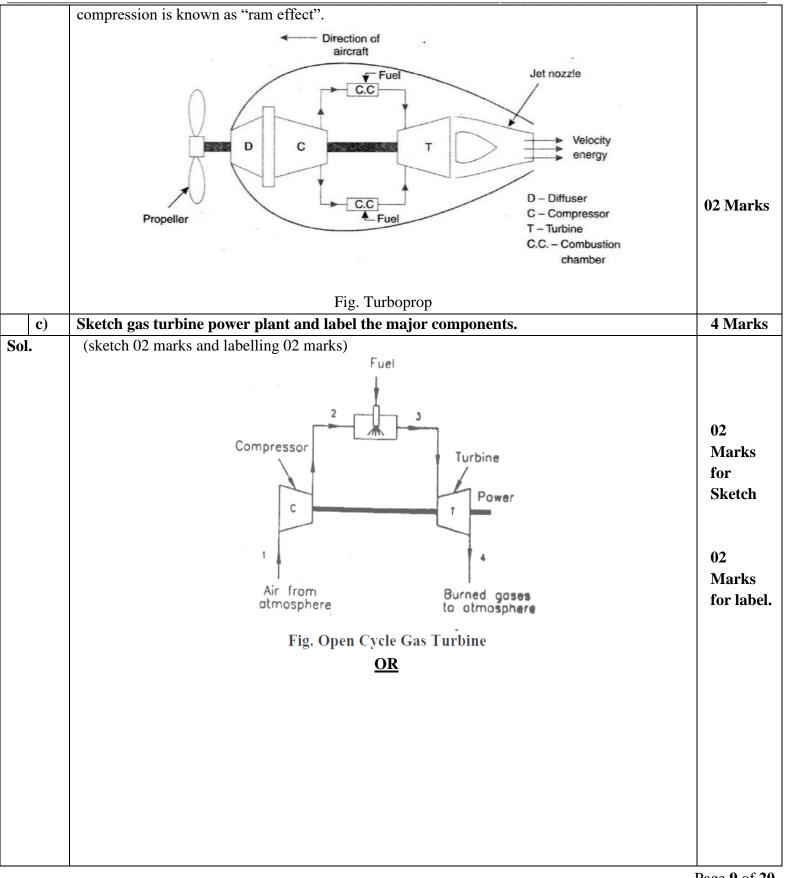
SUMMER – 19 EXAMINATION

Subject Name: Heat & Power Engg

Model Answer S

Subject Code: 17407

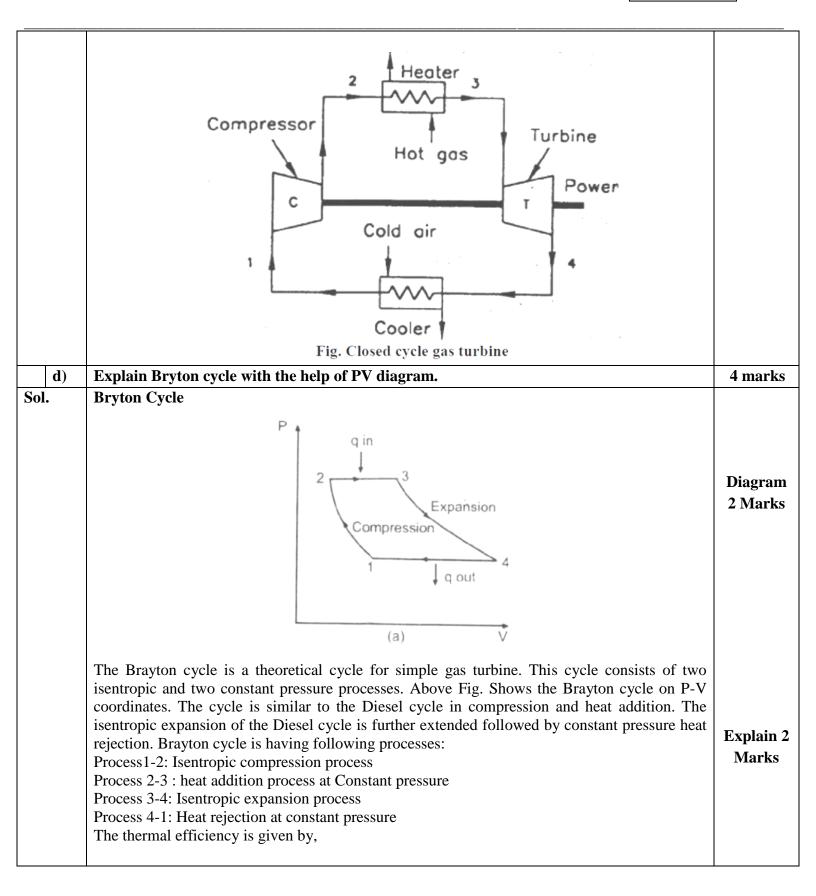
|            | <b>Construction &amp; working :</b><br>In above figure shows a closed cycle gas turbine which consists of compressor, heating chamber gas turbine which drives the generator, compressor and a cooling chamber. In this turbine air is compressed isentropically and then passed into heating chamber. The compressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Const+<br>Working)          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|            | air is heated with the help of some external source and made to flow over turbine blades. The gas while flowing over the blades gets expand from the turbine gas is passed to cooling chamber where it is cooled at constant pressure with the help of circulating air is circulated through compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02 marks                     |
| Q.3.       | Attempt any <u>FOUR</u> of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16<br>Marks                  |
| <b>a</b> ) | Explain construction and working of two stage air compressors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 Marks                      |
| Sol.       | (construction & working 02 marks, sketch 02 marks)<br>WATER OUT<br>AIR FROM Pto Pto INTER-<br>AIR FROM Pto Pto INTER-<br>AIR TO<br>RECEIVER<br>I.P. WATER IN H.P. 2 <sup>rd</sup> stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sketch 2<br>Mark             |
|            | Fig. Two stages reciprocating air compressor<br><b>Construction and Working :</b><br>It consists of two cylinders (L.P. and H.P.) with water cooled intercooler and air receiver.<br>First of all fresh air is sucked from atmosphere in low pressure (L.P) cylinder during its<br>suction stroke at inlet pressure P1 and temp T1.The air after compression in L,P cylinder ( I st<br>stage ) from 1 to 2 is delivered to intercooler at pressure P2 and temp T2.Now air is cooled in<br>intercooler from 2 to3 at constant pressure P2 and from temp T2 to T3.After that air is sucked<br>in high pressure (H.P) cylinder during its suction stroke. Finally air after further compression in<br>H.P. cylinder (ie second stage) from 3 to 4 is delivered by the compressor at pressure P3 &<br>Temp T4.                                                                                                                                                   | Const+<br>working<br>02 Mark |
| <b>b</b> ) | Describe working of turboprop engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 marks                      |
| Sol.       | <b>Turboprop Engine:</b> (working : 2 marks, Sketch 2 Marks)<br>Figure shows a turboprop system employed in aircrafts. Here the expansion of gases takes<br>place partly in turbine 80% and partly 20% in the nozzle. The power developed by the turbine<br>is consumed in running the compressor and the propeller. The propeller and jet produced by the<br>nozzle give forward motion to the aircraft. The turboprop entails the advantages of turbojet (i.e.<br>low specific weight and simplicity in design) and propeller (i.e. high power for take-off and<br>high propulsion efficiency at speeds below 600km/h). The overall efficiency of the turbo prop<br>is improved by providing the diffuser before the compressor as shown. The pressure rise takes<br>place in the diffuser. This pressure rise take due to conversion of kinetic energy of the<br>incoming air (equal to aircraft velocity) into pressure energy by diffuser. This type of | 02 Marks                     |




**SUMMER – 19 EXAMINATION** 

Model Answer

Subject Name: Heat & Power Engg


Subject Code:





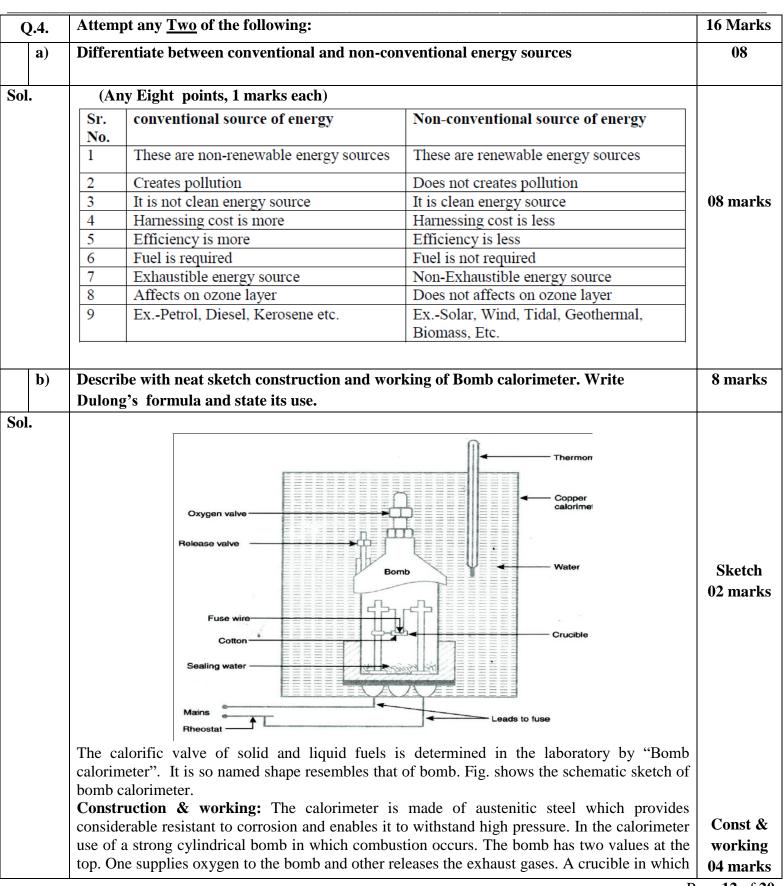
Subject Name: Heat & Power Engg

Model Answer





SUMMER – 19 EXAMINATION


17407 Subject Name: Heat & Power Engg Subject Code: Model Answer 
$$\begin{split} \eta_{\text{th}} = & \frac{\text{Heat Added-Heat Rejected}}{\text{Heat Added}} \\ \eta_{\text{th}} = & \frac{mC_p(T_3 - T_2) - mC_p(T_4 - T_1)}{mC_p(T_3 - T_2)} = 1 - \frac{(T_4 - T_1)}{(T_3 - T_2)} \end{split}$$
 $\eta_{\mathrm{th}} = 1 - \frac{1}{(r_p)^{\frac{(\gamma-1)}{\gamma}}}$ Compare ultimate analysis and proximate analysis. e) Sol. Ultimate Analysis: Ultimate analysis is complete breakdown of coal into chemical 02 marks constituents. This analysis is important for large scale trials. It serves the basis For calculation of the amount of air required for complete combustion of 1kg of fuel. It gives percentage content on mass basis of carbon, hydrogen, oxygen, Sulphur and ash. We are able to calculate the Calorific value of coal. Proximate Analysis: Proximate analysis is complete breakdown of coal into Physical constituents without knowledge of analytical chemistry. This analysis made by means of a chemical balance & temperature control Furnace. The component in the analysis is fixed 02 marks carbon volatile matter, moisture ash. This is used to calculate the heating value of coal. f) A sample of coal has the following composition by mass carbon 75%, hydrogen 6%,oxygen 8%,nitrogen 2.5%, sulpher 1.5% and ash 7.1%. Calculate higher and lower calorific of per kg. Sol. Composition of coal on mass basis. Carbon (C) = 75% = 0.75Hydrogen  $(H_2) = 6\% = 0.06$ Oxygen  $(O_2) = 8\% = 0.08$ Nitrogen (N) = 2.5 % = 0.025Sulphur(s) = 1.5% = 0.015Ash = 7.1% = 0.071Dulong"s formula. **1**) H.C.V. of Coal = 33800 C+144000 (H<sub>2</sub> - O<sub>2</sub>/8) +9270 S KJ/Kg.  $= 33800 \times 0.75 + 144000 (0.06 - 0.08/8) + 9270 \times 0.015$ = 25350 + 7200 + 139.0502 marks H.C.V. = 32689.05 KJ/Kg. **2**) L.C.V. of Coal =  $H.C.V. - 9 H2 \ge 2466 KJ/Kg.$ = 32689.05 – 9 x (0.06) x 2466 = 32689.05 - 1331.6402 marks L.C.V. = 31357.41 KJ/Kg.



leat & Power Engg Model Answer

Subject Name: Heat & Power Engg

Subject Code:





SUMMER – 19 EXAMINATION

|            | SUMMER – 19 EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|            | Subject Name: Heat & Power EnggModel AnswerSubject Code:17407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|            | a weighed quantity of fuel sample is burnt is arranged between the two electrodes as shown in fig. The calorimeter is fitted with water jacket which surrounds the bomb To reduce the losses due to radiation calorimeter is further provided with a jacket of water and air. A stirrer for keeping the temperature of water uniform and a thermometer the temperature up to accuracy of 0.001 <sup>°</sup> C is fitted through the lid of the calorimeter. The heat released by the fuel on combustion is absorbed by the surrounding water and the calorimeter. From the above data the calorific value of the fuel can be found.<br><b>Dulong's formula used to calculate the theoretical calorific value of fuel if ultimate analysi</b> |          |
|            | available and the calorific value of elementary combustibles are known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|            | Theoretical calorific Value of fuel =33800 C + 144500 ( $H_2 - \frac{O_2}{8}$ ) + 9300 S kJ/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02       |
|            | Where C, $H_2 O_2$ & S repents the mass of carbon, hydrogen, oxygen and sulfur in kJ/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| <b>c</b> ) | i)Write Advantages and disadvantages of Tidal power plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 marks  |
|            | ii) write advantages of liquid fuels over solid fuels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| Sol.       | i) Advantages and disadvantages of Tidal power plant<br>Advantages: (Any 2 points)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|            | <ol> <li>This source of energy doesn't generate waste or harmful emissions.</li> <li>It is an inexpensive source of power.</li> <li>As tides are predictable, the power generated from them is more reliable than sources like wind energy.</li> <li>The structure built to tap tidal energy can also act as a protective barrier for the coastline during a storm.</li> <li>The fact that it is a renewable source of energy also works in its favor.</li> <li>Utilization of tidal power will lessen the use of nuclear power, which is costly and involves a lot of risk.</li> </ol>                                                                                                                                                      | 02 marks |
|            | Disadvantages: (Any 2 points)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|            | <ol> <li>These structures block the water outlet affecting salinity levels of the water, as there is less exchange of water between the inland water source and sea.</li> <li>Marine life is threatened by the construction of tidal turbines.</li> <li>These structures block the migratory route of species like Salmon, which migrate upstream to lay eggs.</li> <li>The fish in the area where these turbines are located die due to the exposure to turbines.</li> <li>Although, it is an inexpensive source of power, the initial investment is very high.</li> </ol>                                                                                                                                                                  | 02 Marks |
|            | ii) Advantages of liquid fuels over solid fuels. (any four)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04 marks |
|            | <ol> <li>Require less space for storage.</li> <li>Higher calorific value.</li> <li>Easy control of consumption.</li> <li>Cleanliness.</li> <li>No ash produced.</li> <li>Non a deterioration of the ciling storage.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|            | 6. Non-deterioration of the oil in storage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |



SUMMER – 19 EXAMINATION

Subject Name: Heat & Power Engg

Model Answer

Subject Code: 17

| <b>).</b> 5. | Attempt any <u>TWO</u> of the following:                                                                                                                                                                                                    | 16 Mar |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <b>a</b> )   | Derive the relation between P ,V &T for adiabatic process.                                                                                                                                                                                  | 08     |
| Sol.         | Relation between P, V and T during Adiabatic Process: Pressure (P),<br>Volume (V) & Temperature (T) relation for adiabatic process:                                                                                                         |        |
|              | For adiabatic Process,<br>$PV^{\gamma} = C$                                                                                                                                                                                                 | 01 Mai |
|              | $P_1 v_1^{\gamma} = P_2 v_2^{\gamma}$                                                                                                                                                                                                       |        |
|              | $\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} \dots \dots$                                                                 | 01 mar |
|              | From general gas equation                                                                                                                                                                                                                   |        |
|              | $\frac{\frac{PV}{T}}{\frac{P_1V_1}{T_1}} = \frac{\frac{P_2V_2}{T_2}}{\frac{P_2V_2}{T_2}}$                                                                                                                                                   | 01 Mar |
|              | $\frac{T_2}{T_1} = \frac{P_2 V_2}{P_1 V_1} \dots \dots$                                                                               | 01 mar |
|              | From (1)<br>$\frac{V_2}{V_1} = \left(\frac{P_1}{P_2}\right)^{1/\gamma}(3)$                                                                                                                                                                  | 01 mar |
|              | Put equation (3) into equation (2)<br>$\frac{T_2}{T_1} = \frac{P_2}{P_1} \left(\frac{P_1}{P_2}\right)^{1/\gamma}$                                                                                                                           |        |
|              | $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$                                                                                                                                                                  |        |
|              | $\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}} \dots $                                                     | 01 Mar |
|              | From equation (1) & (4)                                                                                                                                                                                                                     |        |
|              | $\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}$                                                                                                                          | 01 Mar |
|              | $\frac{\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}}{\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}}$ | 01 Mar |
| b)           | Steam enters an engine at a pressure of 12 bar with 67 <sup>°</sup> C of superheat. It is exhausted at                                                                                                                                      | 8 mark |
| 0)           | a pressure of 0.15 bar and 0.95 dry. Find the drop of enthalpy in steam. Assume Cp= 2 KJ/Kg.K                                                                                                                                               | 0 marr |
| Sol.         | <b>Given Data</b> :<br>Pressure of steam P= 12 Bar, Dryness Fraction x= 0.95, Cp = 2 KJ/Kg.K                                                                                                                                                |        |
|              | 1)At P= 12 bar given values                                                                                                                                                                                                                 |        |



Subject Name: Heat & Power Engg <u>Model Answer</u> Subject Code: 17407

|            | $h_{f} = 798.4 \text{ KJ/Kg}$                                                                                                                                                             |              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|            | $h_{fg} = 1984.3. \text{ KJ/Kg}$                                                                                                                                                          |              |
|            |                                                                                                                                                                                           |              |
|            | $h_1 = hg + Cp(Tsup - Tsat)$                                                                                                                                                              |              |
|            | $h_1 = 2782.7 + 2 (67)$                                                                                                                                                                   | 03marks      |
|            | =2916.7 KJ/Kg                                                                                                                                                                             | 05mar K5     |
|            | 2)At $P=0.15$ bar given values                                                                                                                                                            |              |
|            | $h_f = 226 \text{ KJ/Kg}$                                                                                                                                                                 |              |
|            | $h_{\rm fg} = 2373.2 \text{ KJ/Kg}$                                                                                                                                                       |              |
|            | $h_2 = h_f + x h_{fg}$                                                                                                                                                                    |              |
|            | = 226 + 0.95 (2373.2)                                                                                                                                                                     |              |
|            | =2480.5 KJ/Kg                                                                                                                                                                             |              |
|            |                                                                                                                                                                                           | 03 Marks     |
|            | 3) change in Enthalpy                                                                                                                                                                     |              |
|            | $dh = h_2 - h_1$                                                                                                                                                                          |              |
|            | $_{=}2916.7 - 2480.5$<br>=436.2 KJ/Kg.                                                                                                                                                    | 02 Marks     |
| <b>c</b> ) | Explain the construction and working of screw compressor. Differentiate between                                                                                                           | 8 Marks      |
| •          | centrifugal and axial flow compressor                                                                                                                                                     | 0 10 10 10   |
| Sol.       | Screw compressor:                                                                                                                                                                         |              |
|            | Air out                                                                                                                                                                                   |              |
|            |                                                                                                                                                                                           |              |
|            | Male rotor                                                                                                                                                                                |              |
|            | (driver)                                                                                                                                                                                  |              |
|            |                                                                                                                                                                                           |              |
|            |                                                                                                                                                                                           | 02           |
|            |                                                                                                                                                                                           | •=           |
|            | Female rotor<br>(driven)                                                                                                                                                                  |              |
|            |                                                                                                                                                                                           |              |
|            |                                                                                                                                                                                           |              |
|            | +                                                                                                                                                                                         |              |
|            | Air in                                                                                                                                                                                    |              |
|            | Fig. Screw Compressor                                                                                                                                                                     |              |
|            |                                                                                                                                                                                           |              |
|            | Construction: It consists of two mutually engaged helical grooved rotors which are suitably                                                                                               |              |
|            | housed in a casing. Out of two rotors male rotor is driver and female rotor is a driven. Male                                                                                             | 02           |
|            | rotor has four lobes and female rotor as six flutes.                                                                                                                                      |              |
|            | Working: During rotation of rotor, air enters and takes space between male and female rotor.                                                                                              |              |
|            | This air traps and moves axially and radically with rotation of rotors and gets compressed due<br>to volume reduction. Then this air discharged from unward direction. Speed of rotors is |              |
|            | to volume reduction. Then this air discharged from upward direction. Speed of rotors is different due to different number of lobes and flutes. It handles 3.5 to 300 m3/min and           |              |
|            | maximum pressure ratio of 20. This system requires lubrication. This compressor is noisy In                                                                                               |              |
| 1          |                                                                                                                                                                                           | age 15 of 20 |



Model Answer

Subject Name: Heat & Power Engg

Subject Code:

|      | Differen<br>(Any l | ntiate between centrifugal and axial flow<br>Four)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | Sr.<br>No.         | Centrifugal compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Axial Flow Compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|      | 1                  | Flow is perpendicular to axis of<br>compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flow of air is parallel to the axis of compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 marks  |
|      | 2                  | Low manufacturing and running cost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High manufacturing and running cost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1 mark  |
|      | 3                  | Requires low starting torque.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Requires high starting torque.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | each)    |
|      | 4                  | Not suitable for multi-staging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Suitable for multi-staging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|      | 5                  | Requires large frontal area for given rate of flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Requires less frontal area for given rate of flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|      | 6                  | Pressure ratio per stage is4:1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pressure ratio is 1.1 to 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | 7                  | Isentropic efficiency is 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Isentropic efficiency is 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | 8                  | Used in supercharging I.C. engine and for refrigerants and industrial gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Used universally with large gas turbine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| .6.  | Attempt            | t any <u>FOUR of</u> the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 Marks |
| a)   | Derive t           | he equation for air standard efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of Carnot cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 marks  |
| Sol. |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Sol. |                    | p<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$<br>$T_{B}$ | $T_{H} = \frac{1}{T_{H}} = \frac{T_{H}}{2}$ $T_{L} = \frac{T_{L}}{3}$ $S_{1} = S_{4} = S_{2} = S_{3} = S_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| Sol. |                    | (a) $p - V$ diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{L} = \frac{T_{H}}{T_{L}}$ (b) $T - s$ diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| Sol. | The                | (a) $p - V$ diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{L} = \frac{T_{H}}{T_{L}}$ (b) $T - s$ diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 marks  |
| Sol. | The                | (a) $p - V$ diagram<br>Fig. Carnot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $T_{L} = \frac{T_{H}}{T_{L}}$ (b) $T - s$ diagram<br><b>t</b> Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Sol. | The                | (a) $p - V$ diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{L} = \frac{T_{H}}{T_{L}}$ (b) $T - s$ diagram<br><b>t</b> Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Sol. | reve               | (a) $p - V$ diagram<br>Fig. Carnot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\int_{a}^{a} \frac{1}{\int_{a}^{b} \frac{1}{\int_{a$ | 1 marks  |
| Sol. | reve               | ermal efficiency of a cycle,<br>$\eta = \frac{\text{work done}}{\text{heat supplied}} = \frac{\text{heat sup}}{1}$ In the Carnot cycle, there is no heat transfer of the supplied on the supplied of t                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{T_{u}}{r_{u}} = \frac{T_{u}}{1 + \frac{T_{u}}{1 $                                                                                                                                                                                                                                                                                                                                        | 1 marks  |

Subject Code: Subject Name: Heat & Power Engg **Model Answer** From isentropic processes 2-3 and 4-1,  $\frac{T_2}{T_3} = \left(\frac{V_3}{V_2}\right)^{\gamma-1} \text{ and } \frac{T_1}{T_4} = \left(\frac{V_4}{V_1}\right)^{\gamma-1}$ <sup>1</sup>/<sub>2</sub> mark  $\frac{T_H}{T_L} = \left(\frac{V_3}{V_2}\right)^{\gamma-1}$  and  $\frac{T_H}{T_L} = \left(\frac{V_4}{V_1}\right)^{\gamma-1}$ or  $\frac{V_3}{V_2} = \frac{V_4}{V_1}$ *.*..  $\frac{V_3}{V_1} = \frac{V_2}{V_1}$ (2.4)or  $\eta = \frac{Q_s - Q_R}{Q_s} = \frac{mR(T_H - T_L)\ln(V_2/V_1)}{mRT_H\ln(V_2/V_1)} = \frac{T_H - T_L}{T_H} = 1 - \frac{T_L}{T_H}$ (2.5).... 01mark OR  $\eta = \frac{T_2 - T_1}{T_2} = 1 - \frac{T_1}{T_2}$ Where,  $T_{\rm H} = T2$ = temperature of source  $T_L = T1 =$  temperature of sink b) Enlist sources of air leakage in condenser and define condenser efficiency. 4 marks Sol. Sources of air leakages: (2 Points) 02 Marks 1. Air leak through joints and packing. Air leaks into condenser as pressure inside falls below atmospheric pressure. 2. Air also comes in condenser with the steam. The feed water supplied to the boiler contains certain amount of air dissolved in it. The dissolved air gets liberated when steam is formed and is carried with the steam into the condenser. 3. In jet condensers dissolved air in the cooling water enters the condenser. The dissolved air gets separated at low pressure in the condenser 4. Air leaks if any bypass seal is broken. 02 Marks Condenser Efficiency: it is defined as ration of rise in temperature of cooling water to the difference between the saturation temperature corresponding to absolute pressure in condenser and inlet temp. of cooling water.



(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 19 EXAMINATION

Subject Name: Heat & Power Engg

Model Answer

| <b>c</b> ) | Draw a n                 | eat sketch of two pass down flow surface c                                                                                                                                                                           | ondenser.                                                                                                                                                                                       | 4 marks                               |
|------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Sol.       |                          | Water<br>outlet<br>Baffle<br>Water<br>inlet<br>Fig. Two pass down flow surface condensate                                                                                                                            | Plate<br>Water<br>box                                                                                                                                                                           | 02 Mark<br>Sketch<br>02 mark<br>label |
|            |                          | (Credit should be given to equivalent sk                                                                                                                                                                             |                                                                                                                                                                                                 |                                       |
| <b>d</b> ) | Differenti               | ate between open cycle and closed cycle g                                                                                                                                                                            |                                                                                                                                                                                                 | 4 marks                               |
|            | <u>Sr. No.</u><br>1.     | Open cycle gas turbine                                                                                                                                                                                               | Closed cycle gas turbine<br>Compressor<br>Hot gos<br>Cold air<br>Coold air<br>Cooler                                                                                                            | 4 Marks<br>(any fou<br>points)        |
|            | 2.                       | Only air can be used as a working fluid.                                                                                                                                                                             | Any type of working fluid with better<br>thermodynamic properties can be used.                                                                                                                  |                                       |
|            | 3.                       | Maintenance cost is low.                                                                                                                                                                                             | Maintenance cost is high.                                                                                                                                                                       | 11                                    |
|            | 4                        | Working fluid replaced continuously.                                                                                                                                                                                 | Working fluid circulated continuously.                                                                                                                                                          | ]                                     |
|            | 4.                       |                                                                                                                                                                                                                      | Mass of installation per KW is more.                                                                                                                                                            | ]                                     |
|            | 4.<br>5.                 | Mass of installation per KW is less.                                                                                                                                                                                 | This of instantion per first is inore.                                                                                                                                                          |                                       |
|            |                          | Mass of installation per KW is less.<br>Pure form of fuel should be used.                                                                                                                                            | Any type of fuel is used.                                                                                                                                                                       | ]                                     |
|            | 5.                       |                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                                       |
|            | 5.<br>6.                 | Pure form of fuel should be used.<br>Heat exchanger is not used.<br>The turbine blades wear away earlier as it gets<br>contaminated with air.                                                                        | Any type of fuel is used.<br>Heat exchanger is used.<br>It avoids erosion of turbine blade due to<br>contaminated gases.                                                                        |                                       |
|            | 5.<br>6.<br>7.           | Pure form of fuel should be used.<br>Heat exchanger is not used.<br>The turbine blades wear away earlier as it gets<br>contaminated with air.<br>The exhaust gas from the turbine is exhausted                       | Any type of fuel is used.<br>Heat exchanger is used.<br>It avoids erosion of turbine blade due to<br>contaminated gases.<br>The exhaust gas from the turbine is                                 | -                                     |
|            | 5.<br>6.<br>7.<br>8<br>9 | Pure form of fuel should be used.<br>Heat exchanger is not used.<br>The turbine blades wear away earlier as it gets<br>contaminated with air.<br>The exhaust gas from the turbine is exhausted<br>to the atmosphere. | Any type of fuel is used.<br>Heat exchanger is used.<br>It avoids erosion of turbine blade due to<br>contaminated gases.<br>The exhaust gas from the turbine is<br>passed into cooling chamber. |                                       |
|            | 5.<br>6.<br>7.<br>8      | Pure form of fuel should be used.<br>Heat exchanger is not used.<br>The turbine blades wear away earlier as it gets<br>contaminated with air.<br>The exhaust gas from the turbine is exhausted                       | Any type of fuel is used.<br>Heat exchanger is used.<br>It avoids erosion of turbine blade due to<br>contaminated gases.<br>The exhaust gas from the turbine is                                 |                                       |



Subject Name: Heat & Power Engg

Model Answer

| e)         | Explain the use of solar energy to generate electricity with neat sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 Marks            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|            | Hot water<br>Hot water<br>Sun<br>T. O<br>Freen<br>boiler<br>Cold water<br>Cold water<br>Cold water<br>Freen jig.<br>Freen pump.<br>Freen pump.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sketch<br>2 Marks  |
|            | In above fig. shows solar power plant in which for heating water flat plate collector is used. In fig there are two loops I and II which are connecting with each other by Freon boiler or heat exchanger.<br>1. In loop (I) with the help of pump initially we circulate cold water which is allow to pass through flat plate collector due to which at another end we get hot water then which is allow to pass through Freon boiler or heat exchanger.<br>2. Now in loop (II) with the help of pump there is circulation of Freon liquid when it passes through Felon boiler it takes heat from hot water & it boils (it's boiling point is very low = 230 C) so it changes phase (liquid to vapour). This Freon vapour can be used to drive turbine after that it come out from turbine & passed though condenser where condensation takes place & again Freon vapour converted into liquid form (condensate) which is used for recycle. | Explain<br>2 Marks |
| <b>f</b> ) | State necessary of multi staging and intercooling of air compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 marks            |
| Sol.       | <ul> <li>Necessity of multi-staging of air compressor: It has been experienced that if we employ single stage compression for producing high pressure air (say 8 to 10 bar) it suffers the following draw backs</li> <li>1. The size of cylinder will be too large.</li> <li>2. Work required to drive the compressor is more</li> <li>3. Due to high pressure loss of air due to leakage is more.</li> <li>4. Sometimes, the temperature of air, at the end of compression is too high. It may be heat up the cylinder head or burn the lubricating oil.</li> <li>5. Volumetric efficiency of compressor is less.</li> </ul>                                                                                                                                                                                                                                                                                                                | 02 Marks           |



 Subject Name: Heat & Power Engg
 Model Answer
 Subject Code:
 17407

| <br>in series with inter-cooling arrangement between them. Such an arrangement is known as multistage compression with inter-cooling.                                                                                                                  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>Necessity of inter-cooling</b> –<br>In two stage air compressor air is compressed in first cylinder and the temperature of air is increased. If this high temperature air is not passed through intercooler and sent directly to                    |          |
| second stage then because of high temperature volume of air increases so amount of air taken<br>inside decreases and pressure is also automatically decreased and volumetric efficiency is also<br>decreases. To avoid this intercooling is necessary. | 02 Marks |