

SUMMER – 19 EXAMINATION

Subject Name: Thermal Engineering <u>Model Answer</u> Subject Code:

17410

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1.		Attempt any <u>SIX</u> of the following:	12 Marks
a)	i)	List the properties of system with example.	
	Sol.	Properties of system- An intensive property is independent of the amount of mass. Temperature, pressure, specific volume, and density are examples of intensive properties These properties are the same regardless of how you vary the amount of mass of the substance Extensive property is dependent on mass. Enthalpy, Entropy, total volume are examples of extensive properties.	02 marks
	ii)	State Boyle's law.	
	Sol.	Boyle's Law : It states that under a constant temperature when the pressure on a gas increases its volume decreases. In other words according to Boyle's law volume is inversely proportional to pressure when the temperature and the number of molecules are constant. $V \propto 1 / P$ $p = k_1 * 1/V$ k_1 here is a proportionality constant, V is the Volume and p is the pressure. according to Boyle's law: $P_1 \times V_1 = P_2 \times V_2 = \text{constant}(k_1)$	01 mark 01 mark
	iii)	Explain Quasi static Process of thermodynamic.	
	Sol.	Quasi Static process: A quasi-static process is a thermodynamic process that happens slowly enough for the system to remain in internal equilibrium. An example of this is quasi-static compression, where the volume of a system changes at a slow rate enough to allow the pressure to remain uniform and constant throughout the system. The process which take all isothermal and adiabatic operation very slowly know as Quasi static	01 mark
		process. Quasi means 'almost'. This process is a succession of equilibrium states and infinite slowness is its characteristic feature. Any reversible process is a quasi-static one.	01 mark

 iv)	Write names of any two boiler mountings and two boiler accessories.	
Sol.	Boiler mountings (Any two)	01 mark
	1. Water level indicator (Water level gauge)	
	2. Pressure gauge	
	3. Safety valves	
	4. Stop valve	
	5. Blow off cock (Blow off valve)	
	6. Feed check valve	
	Boiler accessories (Any two)	01 mark
	1. Air pre-heater	
	2. Super heater	
	3. Economizer	
	4. Feed pump	
	5. Injector	
v)	Classify cooling tower	
Sol.	Classification of cooling towers :(Any two classification criteria)	
	Type of draught – Natural draught, Forced draught, Induced draught	01 mark
	Type of martial- Timber, concrete, steel duct cooling tower	01
	Resad on air flow pattern Cross flow, counter flow	01 mark
	based on an now pattern- cross now, counter now	
vi)	Define vacuum efficiency of condenser.	
Sol.	Versure efficiency of condensors It is the ratio of the actual versure at the stears inlet to	
	vacuum efficiency of condenser: It is the ratio of the actual vacuum at the steam inlet to	01 mark
	vocuum to ideal vacuum	
	Vacuum efficiency = (Barometric pressure-Absolute pressure in condenser)/(Barometric	01 mark
	pressure-Absolute pressure corresponding to temp of condensate)	
	Vacuum efficiency = Actual vacuum at steam inlet to condenser / Ideal vacuum or	
	maximum vacuum	
vii)	Explain Black body and Gray Body.	
Sol.	Black body: A black body is an object that absorbs all the radiant energy reaching its	
	surface from all the direction with all the wavelengths. Gray body:	01 mark
	Creve Bodry A group body is defined as a hadren base share the interest of a surface de	
	Gray Douy: A gray body is defined as a body whose absorptivity of a surface does not	
	definite percentage of incident energy irrespective of wavelength. Its shear tivity lies	01 mark
	definite percentage of incluent energy irrespective of wavelength. Its absorptivity lies	

		between 0 to 1.	
	viii)	State Steafan Boltzman law.	
	Sol.	Stefan-Boltzmann law: It states that the total radiant heat energy emitted from a surface is proportional to the fourth power of its absolute temperature .	01 mark
		If E is the radiant heat energy emitted from a unit area in one second and T is the absolute temperature (in degrees Kelvin), then $E = \sigma T^4$, the Greek letter sigma (σ) representing the constant of proportionality, called the Stefan-Boltzmann constant.	01 mark
b)		Attempt any <u>TWO</u> of the following:	08 Marks
	i)	Define energy; prove that energy is a property.	
	Sol.	Energy: It is capacity to do work, i. e. The thermodynamic free energy is a concept useful in the thermodynamics of chemical or thermal processes in engineering and science.	01 mark
		Energy is a point function and also a property of the system. Considering first law or law of conservation of energy,	
		We can also say that energy will always be conserved. Heat and work, these are two different forms of energy. If heat energy is provided to the system by the surrounding then system may provide the work energy to the surrounding and similarly if work is being done upon the system then system may deliver the energy in terms of heat to the surrounding.	01 mark
		Consider first law of thermodynamics for an open system or control volume.	
		Let us assume that we have one system which is undergoing a change of state from initial state 1 to another state 2 via following the path A as shown in following figure. System is returning to initial state i.e. state 1 from state 2 via following the path B. Here, we can say that system is undergoing in a cycle 1-2-1 as displayed in figure.	01 mark
		A B C X	
		Let us recall the "first law of thermodynamics for a system undergoing a change of state" and apply for path A, where system is changing its state from state 1 to state 2. We will have following equation	
		QA- WA= ΔEA	
		Similarly, we will have following equation when system is changing its state from state 2	

	to state 1 via following the path B.	
	$QB-WB=\Delta EB$	
	We have already seen that system is undergoing in a cycle 1-2-1 as displayed in above figure. Hence, we will use the concept of "first law of thermodynamics for a system undergoing a cycle". Let us see the equation for system which constitutes a cycle 1-2-1 and we will have following equation. $\sum w = \sum o$	01 mark
	Cycle cycle	
	WA+WB= QA+QB	
	WB-QB = QA-WA	
	-(OB-WB) - OA-WA	
	-(QD-WD) - QA-WA	
	$-(\Delta EB) = \Delta EA$	
	Let us assume that system is returning to initial state 1 from state 2 via following the path C, in that case we will go ahead similarly as we have gone above and finally we will have following equation	
	$-(\Delta EC) = \Delta EA$	
	Now if we will look the end result for first case where system is returning to initial state by following the path B and of second case where system is returning to initial state by following the path C, what we will secure here that change in system energy is same in both cases and it will not depend over the path followed by the system to return to its initial state.	
	Therefore we can conclude that system energy will have some definite magnitude for each state of the system and it will not depend over the path followed by the system and hence energy will be considered as a point function and also a property of the system.	
ii)	State Kelvin-plank and Clausius statement of second law of thermodynamics.	
Sol.	The Kelvin–Planck statement (or the Heat Engine Statement) of the second law of	02 marks
	thermodynamics states that it is impossible to construct a operating heat engine, the effect	
	of which is to absorb energy in the form of heat from a single thermal reservoir and to deliver an equivalent amount of work. The Kelvin-Planck statement of the second law talks	
	us that it is impossible to constructs a perpetual motion machine of the second kind.	
	The Clausius Statement: It is impossible to construct a device which operates on a cycle and produces no other effect than the transfer of heat from a cooler body to a hotter body. It is impossible to construct a device which operating in a cycle will produce a offect that	02 marks
	It is impossible to construct a device which, operating in a cycle, will produce no effect	

		other than th	e transfer of heat from a low-temperat	ture body to a high temperature body.	
		Apparently.	the Kelvin Planck statement and the	Clausius statement of the second law of	
		thermodynar	nics are altogether different, but the	y are equivalent. A violation of Kelvin	
		Planck stater	nent leads to a violation of the Clausi	us statement too and vice-versa.	
	iii)	Differentiat	e between Isobaric and Isochoric pr	rocess (any four)	
	Sol.	Differentiate	between Isobaric and Isochoric Proce	ess:	
		Parameter	Isobaric	Isochoric	01 mark each
		Definition	Constant pressure process	Constant volume process	
		Law	Obeys Charle's Law	Obeys Gay Lussac's law	
		P-V-T	$V_1/T_1 = V_2/T_2 = C$	$P_1/T_1 = P_2/T_2 = C$	
		relation			
		Work	$W= P(V_2-V_1) = mRT_1$	0	
		done			
		Q1-2	$mCp(T_2-T_1)$	$mCv(T_2-T_1)$	
		P-V and			
		T-s	•2		
		Diagram		v=C	
			1	1	
			v	V S	
C).2.	Attempt any	FOUR of the following:		16 Marks
	a)	Explain the	term boiler drought. Why it is nece	ssary?	
	Sol.	Boiler draug	ght:	•	02 marks
		Boiler draug	ht may be defined as the small differ	ence between the pressure of outside air	
		and that of g	gases within a furnace or chimney at t	the grate level, which causes the flow of	
		air/hot flue g	ases to take place through the boiler.		
		Necessity:			02 marks
		The draugh	t is necessary to force air thro	ugh the fuel bed/ grate to aid in	
		proper comb	ustion of fuel and to remove the prod	lucts of combustion i.e. flue gases to the	
		atmosphere	after they have given their heat to	water being evaporated in the boiler.	
		braught also	provides velocity to flue gases and so	b increases the neat transfer coefficient in	
		of methods	Types of draught are natural (chin	oner and can be produced by a number	
		draught	Types of Graught are natural (Cliffi	incy draught, forced draught, induced	
		undin.			

b)	Explain the various losses in steam turbine.	
b) Sol.	 Explain the various losses in steam turbine. Losses in steam turbines (Any four losses to be explained briefly) The steam turbine is not a perfect heat engine. Energy losses tend to decrease the efficiency and work output of a turbine. This inefficiency can be attributed to the following causes. Residual Velocity Loss- The velocity of the steam that leaves the turbine must have certain absolute value (Vex). The energy loss due to absolute exit velocity of steam is proportional to (Vex2/2). This type of loss can be reduced by using multistage turbine. Presence of Friction- In real thermodynamic systems or in real heat engines, a part of the overall cycle inefficiency is due to the frictional losses by the individual components (e.g. nozzles or turbine blades) 	01 mark each
	 Steam Leakage- The turbine rotor and the casing cannot be perfectly insulated. Some amount of steam leaks from the chamber without doing useful work. Loss Due to Mechanical Friction in Bearings- Each turbine rotor is mounted on two bearings, i.e. there are double bearings between each turbine module. Pressure Losses in Regulating Valves and Steam Lines- There are the main steam line isolation valves (MSIVs), the throttle-stop valves and control valves between steam generators and main turbine. Like pipe friction, the minor losses are roughly proportional to the square of the flow rate. The flow rate in the main steam lines is usually very high. Although throttling is an isenthalpic process, the enthalpy drop available for work in the turbine is reduced, because this causes an increase in vapor quality of Steam- The exhausted steam is at a pressure well below atmospheric and the steam is in a partially condensed state, typically of a quality near 90%. Higher content of water droplets can cause the rapid impingement and erosion of the blades which occurs when condensed water is blasted onto the blades. Radiation Loss-Steam turbine may operate at steady state with inlet conditions of 6 MPa, t = 275.6°. Since it is a large and heavy machine, it must be thermally insulated to avoid any heat loss to the surroundings. 	
c)	Explain the function of steam nozzle? State it's any two applications in industry.	
Sol.	Steam nozzle: Nozzle is a duct by flowing through which the velocity of a fluid increases at the expense of pressure drop. If the fluid is steam, then the nozzle is called as Steam nozzle. The flow of steam through nozzles may be taken as adiabatic expansion. The steam possesses a very high velocity at the end of the expansion, and the enthalpy decreases as expansion occurs. A nozzle is often a pipe or tube of varying cross sectional area, and it can be used to direct or modify the flow of a fluid (liquid or gas). Nozzles are frequently used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the	02 mark

	stream that emerges from them.	02 mark
	Applications:	
	Spray painting, steam turbines, turbo machines, jet propulsion, flow measurement,	
	injectors, ejector condensers	
d)	Find the condenser efficiency, when cooling water enters in condenser at a	
u)	temperature of 28° C and leaves at 39° C the vacuum produced is 705 mm of Hg and	
	harometer reads 760 mm of Hg.	
Sol.	Condenser efficiency :-	01 mark
~ ~ ~ ~		
	Data : $hv = Vacuum gauge pressure = 705 mm of Hg$	
	hh – Barometric pressure –760 mm of Ha	01 mark
	no – Darometre pressure –700 mm or rig	
	Two= 39° C; Twi= 28° C	
	Absolute pressure in condenser $Pc = nb - nv = 760-705 = 55 \text{ mm of Hg}$	01 mark
	$= (55/760) \times 1.1035 = 0.0733$ bar	
	From steam tables, saturation temp. corresponding to 0.0733 bar is 40°C (T _{sat})	
	Condenser efficiency = $(Two - Twi)/(T_{sat} - Twi) = 0.9166 = 91.66\%$	01 mark
e)	State the Sources of air leakage in condenser.	
Sol.	The sources of air in the condenser are due to the following:	
	i. Leakage through packing glands and joints of the parts which are at a pressure	01 mark each
	less than atmospheric pressure.	
	ii. Leakage through condenser accessories, such as atmospheric relief value, etc.	
	iii. Air associated with exhaust steam may also liberate at low pressure.	
	iv. In the jet condenser, the dissolved air in the cooling water liberates at low	
	pressures.	
e e	Numerical on bast therefore (also a set of a set	
 1)	Numerical on heat transfer; (please refer question paper)	
501.	Composite wall	01 mort
	Heat flow rate per m^2 area	от тагк
		02 mark
	Q/A = (T1-T3)/[(L1/K1) + (L2/K2) + (L3/K3)]	V2 mark
	=500/(0.02/370)+(0.003/150)+(0.045/74)	01 mark
	$=92.49 \text{ W/m}^2$	

Q.3.		Attempt any <u>FOUR</u> of the following:	16 Marks
	a)	One kg of gas at 1.2 bar and 50°C having 1 m ³ volume is heated at constant	
		pressure till its volume becomes 1.8 m ³ .Calculate the work done and change in	
		internal energy. Assume C _p =1.1 KJ/KgK.	
Sol.		Solt :	01 mark
		Given data :	01 mark
		ΤĄ	
		s s	
		Figure 6 P-V & T-S diagram for Isoboric process.	
		mass = 1 kg	01 mark
		$Pressure = P_1 = P_2 = 1.2 \text{ bar} = 1.2 \times 10^5 \text{ N/m}^2$	
		remperature = T, = 50 + 273 = 323 K	01 mark
		Volume of gas = $V_1 = 100^3$	01 mark
		Volume of gas = $V_2 = 1.8 \text{ m}^3$	
		CP = 1.1 KJ/KgK	
		. We know that !	
		$P_1 v_1 = m R T_1$	
		$R = \frac{P_{1}V_{1}}{mT_{1}} = \frac{1.2 \times 10^{5} \times 1}{1 \times 3^{2} 3} \implies B71.51 \text{ J} \text{ kgk}$	
		.: Charecteristic gas constant R=0.371 KJ/KgK	
		: We know that :	
		$c_{p} - (v = R = 1 + 1 - 0.371 = 0.729 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	

	$\therefore \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$ at constant pressure process $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\therefore \frac{1}{323} = \frac{1 \cdot 8}{T_2} \implies T_2 = \frac{323 \times 1 \cdot 8}{1}$ $T_2 = S \cdot 8 \cdot 4 \cdot k$ $\therefore \text{ Work done} = m R (T_2 - T_1)$ $= 1 \times 0 \cdot 371 \times (S \cdot 8 \cdot 4 - 323)$	
	W = 95.86 kJ Internal Energy = mcy(t2-T1) = 1×0.729×(581.4-323) AU = 188.37 \text{ kJ}'	
b)	A heat exchanger is to be selected for pasteurization of milk. Which type of heat exchanger should be selected? Justify your answer.	
Sol.	Type of heat exchanger: Plate type heat exchanger Material used: Stainless steel corrugated parallel plates Justification: 1] Non-reactive material 2] Leak proof joint 3] No mixing of two fluid 4] Non-toxic material 5] Non corrosive material	02 marks 02 marks

Т

	c)	Draw a neat labelled sketch of surface condenser.	
Sol.		Exhaust steam	02 marks for
		Water Tubes Dista	Sketch
		outlet	
			02 marks for
			label.
		Baffle plate	
		Water	
		inlet	
		Condensate to extraction pump	
		Figure: Surface Condenser	
	d)	Discuss the important provision made in IBR.	
Sol.	,	IBR is Indian Boiler Regulations, which was created on 15th September 1950 in	02 marks for
		implementation of the powers conferred by section 28 & 29 of the Indian Boilers Act. The	each point
		Indian Boilers Act was formed in 1923, 23 rd February to consolidate and amend the law	-
		relating to steam boilers.	Any two
		Following are the important provision made in IBR;	point
		Which steam boilers and steam pipes are regulated by IBR?	
		Steam boiler:	
		Steam boilers under IBR means any closed vessel exceeding 22.75 liters in capacity and	
		which is used expressively for generating steam under pressure and includes any mounting	
		or other fitting attached to such vessel which is wholly or partly under pressure when the	
		steam is shut off.	
		Steam pipes:	
		IBR steam pipe means any pipe through which steam passes from a boiler to a prime	
		mover or other user or both if pressure at which steam passes through such pipes exceeds	
		3.5 kg/cm2 above atmospheric pressure or such pipe exceeds 254 mm in internal diameter	
		and includes in either case any connected fitting of a steam pipe.	
		How to register a new Boller?	
		[As per section 7 of indian Boner Act, 1925]	
		apply to the inspector to have the boiler register Every such application shall be	
		apply to the hispector to have the boner register. Every such application shall be accompanied by prescribed fee. On receipt of an application under subsection (1) the	
		inspector shall fix a date within thirty days or such shorter period as may be prescribed	
		from the date of the receipt, for the examination of the boiler and shall give the owner	
		there of not less than ten day notice of the date so fixed.	
		2. On the said date the inspector shall proceed to measure and examine the boiler and to	
		determine in the prescribed manner the maximum pressure. If any, at which such boiler.	
		may be used, and shall report the result of the examination to the Chief Inspector in the	
		prescribed from.	

3. The Chief Inspector, on receipt of the report, may - Register the boiler and assign a register number there to either forthwith or after satisfying himself that any structural alteration, addition or renewal which he may deem necessary has been made in or to the boiler or any steam-pipe attached, or Refuse to register the boiler - Provided that where the Chief Inspector refuses to register a boiler, he shall forthwith communicate his refusal to the owner of the boiler together with the reasons.

4. The Chief Inspector shall, on registering the boiler, order the issue to the owner of a certificate in the prescribed form authorizing the use of the boiler for a period not exceeding twelve months at a pressure not exceeding such maximum pressure as he thinks fit and as is in accordance with the regulations made under this Act. The Inspector shall forthwith convey to the owner of the boiler the orders of the Chief Inspector and shall in accordance therewith issue to the owner any certificate of which the issue has been ordered, and, where the boiler has been registered, the owner shall within the prescribed period cause the register number to be permanently marked there on in the prescribed manner.

When and how the renewal of certification of a boiler is done?

1. A certificate authorizing the use of a boiler shall cease to be in force under the following:

a) On the expiry of the period for which it was granted.

b) When any accident occurs to the boiler.

c) When the boiler is moved (excluding vertical boilers with heating surface less than 200 sq. ft., (portable boilers or vehicular boilers).

d) When any structural alteration, addition or renewal is made in or to the boiler.

e) If the Chief Inspector in any particular case so directs when any structural alteration, addition or renewal is made in or to any steam pipe attached to the boiler.

f) On the communication to the owner of the boiler of an order of the Chief Inspector or Inspector prohibiting its use on the ground that it or any steam pipe attached thereto is in a dangerous condition.

2. When a certificate ceases to be in force the owner of the boiler may apply to the inspector for a renewal thereof for such period not exceeding twelve months as he may specify in the application. [Provided that where the certificate relates to an Economizer or an unfired boiler which forms an integral part of a processing plant in which steam is generated solely by use of oil, asphalt or bitumen as a heating medium, the application for its renewal may be for a period not exceeding twenty-four months].

3. An application under Sub Section (3) shall be accompanied by the prescribe fee and, on receipt thereof, the Inspector shall fix a date, within thirty days or such shorter period as may be prescribed from the date of the receipt, for the examination of the boiler.

4. Provided that, where the certificate has ceased to be in force owing to the making of any structural alteration, addition or renewal, the Chief Inspector may dispense with the payment of any fee.

5. On the said date, the Inspector shall examine the boiler in the prescribed manner and if he is

satisfied that the boiler has a steam pipe or steam pipes attached thereto are in good

		condition shall issue a renewed certificate authorizing the use of the boiler for the specified		
		period at a pressure not exceeding such maximum pressure as he thinks fit and as is in		
		accordance with the regulations made under this Act.		
	e)	Explain the concept of Mach number.		
Sol.		Mach number: It is the ratio of velocity of fluid to the sonic velocity of compressible	02 marks	
		fluid. Mathematically;		
		M=V/a		
		Where; V= Velocity of Fluid		
		A= Sonic velocity		
		rn = 1		
			02 marks	
		Subsonic nozzle Super sonic Subsonic Supersonic		
		nozzle		
		(a) (b) (c)		
		M<1Subsonic Velocity		
		If Velocity of fluid is less than the sonic velocity of fluid. Then it's a subsonic velocity.		
		M>1Supersonic Velocity		
		If Velocity of fluid is greater than the sonic velocity of fluid. Then it's a supersonic		
		velocity.		
		M=1 means the velocity of fluid is equal to the sonic velocity.		
	f)	State the function of boiler mounting and accessories.		
Sol.		Mountings: These are the fittings which are mounted on the boiler for its proper	02 marks	
		functioning. They include water level indicator, pressure, gauge, safety valve etc. It may be		
		noted a boiler cannot function safely without the mounting.		
		Accessories: These are the devices, which form an integral part of a boiler, but are not	02 marks	
		mounted on it. They include super heater, economizer, feed pump etc. It may be noted that		
		the accessories help in controlling & running the boiler efficiently.		
) 4	Attempt any FOUR of the following:	16 Marks	
	 	Popresent ideal gas processes on DV and TS diagram.		
	a)	i Isothermal process		
		ii Isentronic process		
Sol	1	i Isothermal Process:	01 mark for	
501.		1. <u>15001011101 1 100055.</u>	on mark ivi	
			cach figure	

	$ \begin{array}{c} P \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	
	ii Isentropic Process:	
	P 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
b)	State the characteristic gas constant and universal gas constant	
501.	Characteristic gas constant : Characteristics equation of a gas is; PV = mRT Where; R is known as characteristic gas constant or simply gas constant. The value of gas constant (R) is different for different gases. In S.I. units, its value foe atmospheric air is taken 287 J/KgK or 0.287 KJ/KgK. Universal gas constant: The universal gas constant or molar constant of a gas is the product of the gas constant and molecular mass of the gas. Mathematically; $R_u = MR$ Where; M= Molecular mass of the gas expressed in Kg-mole R=Gas constant. The value for universal gas constant(R _u) is same for all gases.in S.I. units the value of R _u is taken as 8314 J/Kg-mol K or 8.314 KJ/Kg-mol K	02 marks 02 marks

Sol. Tage O2 marks figure Sol. Tage Use of the system cycles. This is because the work done by or on the system and the heat added to or removed from the system can be visualized on the T-S diagram. By the definition of 02 marks figure	for on
Sol. Sol. Trant Tran	for for on
02 marks figure 02 marks explanation 03 marks explanation 04 marks figure 04 marks figure 05 marks figure 05 marks figure 05 marks figure 06 marks figure 06 marks figure 07 marks figure 08 marks figure 09 marks figure 09 marks figure 09 marks figure 00 marks figure	for on
explanation Figure: Temperature (T)- Entropy(S) diagram A T-S diagram is the type of diagram most frequently used to analyze energy transfer system cycles. This is because the work done by or on the system and the heat added to or removed from the system can be visualized on the T-S diagram. By the definition of	on
Figure: Temperature (T)- Entropy(S) diagram A T-S diagram is the type of diagram most frequently used to analyze energy transfer system cycles. This is because the work done by or on the system and the heat added to or removed from the system can be visualized on the T-S diagram. By the definition of	
A T-S diagram is the type of diagram most frequently used to analyze energy transfer system cycles. This is because the work done by or on the system and the heat added to or removed from the system can be visualized on the T-S diagram. By the definition of	
removed from the system can be visualized on the T-S diagram. By the definition of	
entropy, the heat transferred to or from a system equals the area under the T-S curve of the	
process. Figure is the T-S diagram for pure water. A T-S diagram can be constructed for	
any pure substance. In the liquid-vapor region in figure, water and steam exits together.	
d) State the advantages and disadvantages of superheated steam.	
Sol. Advantages of Superheated Steam: 02 marks	for
1] The efficiency of the boiler is increase with the use of superheated steam. Advantag	;es
2] It eliminates the erosion of the turbine blades.	
3] It reduces specific steam consumption of engine and turbine	
4] It has a high thermal capacity per unit volume. 02 marks	for
Dis-advantages of Superheated Steam: dis-	
1] Special material such as stainless steel is required for stud, valve, blade etc. These advantag	jes
metals retain their properties at high temperature and resistance to erosion.	
2] Increased maintenance caused by the Superheater and erosive nature of superheated	
steam.	
e) List the different types of heat exchangers? Write the application of heat	
exchangers.	
Sol. Following are the types of neat exchanger: Any 4 type 11 Shall and tube type best exchanger 1/	pe och
2] Plate type heat exchanger	acii
3] Plate fin heat exchanger	
4) Plate and shell heat exchanger	

	5] Spiral heat exchanger	
	6] Shell and coil heat exchanger	
	7] Radiator or automotive heat exchanger	
	Application of Heat Exchanger:	Any 4
	1] They are used in food industries.	applications
	2] They are used in dairy product industry.	¹ / ₂ marks each
	3] They are used in refrigeration application in close loop system.	
	4] In gasket and brazing technology made this heat exchanger in HVAC application.	
f)	Describe the construction of impulse turbine with neat sketch.	04 Marks
Sol		02 marks for
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	02 marks for Construction
0.5	Attempt any TWO of the following:	16 Marks
 	What is compounding of steam turbines? List different methods of compounding?	
	Explain any one method.	
Sol	 Compounding: The arrangement to reduce pressure from boiler pressure to condenser pressure by use of multiple system of rotors in series, keyed to common shaft or by increasing number of stages and the steam pressure or steam velocity is absorbed in stages as it flows over moving blades. This is known as compounding. Three types of compounding (a) velocity compounding and (b) pressure compounding. 	02 marks
	The Velocity - Compounding of the Impulse Turbine: The velocity-compounded impulse turbine was first proposed by C.G. Curtis to solve the problems of a single-stage impulse turbine for use with high pressure and temperature steam. The <i>Curtis stage</i> turbine, as it came to be called, is composed of one stage of nozzles as the single-stage turbine, followed by two rows of moving blades instead of one. These two rows are	03 marks

separated by one row of fixed blades attached to the turbine stator, which has the function of redirecting the steam leaving the first row of moving blades to the second row of moving blades. A Curtis stage impulse turbine is shown in Fig a. with schematic pressure and velocity changes through the stage. In the Curtis stage, the total enthalpy drop and hence pressure drop occur in the nozzles so that the pressure remains constant in all three rows of blades.

	hence pressure drop occur in the nozzles so that the pressure remains constant in all three rows of blades.	
	rows of blades.	03 marks
	Pi= inlet pressure Pe= exit pressure Vi= Inlet Velocity Ve=Exit Velocity	
	N= Nozzle	
	M= Moving Blade	
	Fig: Velocity Compounding	
b)	State steady state energy equation. Give the meaning of all parameter contained in it. Apply this equation to boiler and nozzle.	
Sol.	The steady flow energy equation	02 mark
	[m (K.E. + P.E.+I.E.)1+ m (PV)1 + Heat transfer] Energy entering = [m (K.E. + P.E.+I.E.)2 +m (PV)2 + work transfer] Energy leaving	
	Therefore, $H_1+C_1^2/2+Z_1g +Q = H_2+C_2^2/2+Z_2g +W$	

Whore	
where,	
H1& H2 = Enthalpy at inlet and outlet inJ/Kg	02 mark
$C_{1} \& C_{2} = velocity at inlet and out of fluidm/sec$	
Z_1 and Z_2 = height of inlet & outlet above datum m	
O = heat suppliedJoule	
W = work done by 1 kg of fluidJoule	
PV = Flow workN-m or Joule	
Boiler	
Boiler is a steel closed vessel, which converts the water into steam	02 marks
Applying energy equation.	
Steam out.	
,†.	
1	
<u></u>	
For Boiler,	
W = 0, C1 = C2, Z1 = Z2	
Therefore, $H1 + Q = H2$	
Q = H2 - H1	
H1 = Enthalpy of feed water entering the boiler	
H2 = Enthalpy of steam going out of the boiler	
Nozzle	
It is the passage of varying cross sectional area in which heat energy of fluid is converted	
into kinetic energy.	

						T No.	5516 .	-			
						[un	1			
			-444	and	11A	1 de la constanción de la constancición de la constanción de la constanción de la constanción de la co					
		C 1 6 0 00							-		
		Fro -						1 Steo	4 .		
			ant	und	1111	11111	am	ц,			
			L								
			- Convel	9-0077	- D)	past.		7			
	Applying S	. F. E. E .									
	For Nozzle										
	$H_{\rm c} + C_{\rm c}^2/2 + 7$	$Z_{1,\alpha} \mid \Omega = H_{\alpha}$	$C_{2}^{2/2} + Z_{2}$	W							
	Π \top C $/$ 2 ± 2	$21g + Q = 11_{2}$	$-C_2/2+L_2g$	Τ ΥΥ							
	Since $Q = 0$,	, Z1, Z2=0, V	W = 0 where	е,							
	H1 - H2 = ($(C2^2/2) - (C1)$	$^{2}/2)$								02 mark
	2(H1 - H2)	$= C_2^2 - C_1^2$									
	$C_{2} = \sqrt{2(H)}$	$(2 - H_1) + C_1$	^2								
	$c_2 = \sqrt{2}(m)$	2 111) 1 01	. 2								
c)	Refer the o	uestion pap	er								
 Sol.	Given Data	:									
	Mass(m) =	1 Κσ									
	$\frac{1}{2}$	-7 har - 7	X 10 ⁵ N/mr	m?							
	Dryness fra	f = 7 but $= 7$	5% - 0.85	112.							
	Dryness na	$d hy 100^{0} C$	5 70 - 0.85								
	Super neate	a by 100° C.	C 7		V						
	Sp. Heat at	constant pres	ssure $Cp = 2$.1 KJ/Kg	K						
	What to Fi	nd out: -									
	i) Enthalpy	(h)									
	ii) Entropy	(S)									
	iii) Sn. Volu	(\mathbf{y})									
	iv) Internal	Eporgy (dII)									
	iv) internar	Ellergy (dO)									
	From Steam	n Table:									
	Abashuta	Caturated	C. Val	····· · ···	C	Frethal		C	Entron	:	
	Absolute	Saturated	$\mathbf{Sp. von}$	ime in	эр.	Enthal	py in	5p.	Entrop	y m	
	pressure	1 emp.	m5/Kg		KJ/K	g		KJ/K§	ŚК		
	in bar										
	Р	Tsatu	V _f	Vg	hf	h _{fg}	hg	Sf	Sfg	Sg	
										5	
	7.0	165.0	0.001108	0.2726	697.	2064.	2762.	1.992	4.173	6.705	
				8	1	9	0				

First Condition Steam with dryness fraction 85 %	
1) hwet = $hf + x hfg$	
	01 mark
= 165 + 0.85 * 2064.9	01 mark
hwet = 2452.265 KJ/Kg	
2) Swet = $Sf + x Sfg$	
= 1.992 + 0.85 * 4.173	01 mark
Swet = 5.99805 KJ/ Kg K	
3) vwet = $x vg$	01 mark
= 0.85 * 0.27268	
$vwet = 0.231778 m^3/Kg$	
	01 mark
4) hwet = $dU + P$ vwet	
$2452 * 103 = dU + 7 * 10^5 * 0.231778$	
$dU = 2452 * 103 - 7 * 10^5 * 0.231778$	
$dU = 2289.755 * 10^3 J/Kg$	
dU = 2289.755 KJ/Kg	
Second Condition Steam is superheated by 100 ⁰ C, It means that	
Tsup = Tsatu + 100	
$Tsup = 165 + 100 = 265^{\circ}C$	
$Tsup = 265 + 273 = 538^{\circ} K$	
$1 \text{ satu} = 165 + 273 = 438^{\circ} \text{ K}$	01 mark
1) $h_{sup} = h_g + C_p (T_{sup} - h_{satu})$	
= 2762 + 2.1 (538 - 438)	
$n_{sup} = 29/2 \text{ KJ/Kg}$	
2) $S_{sup} = S_g + C_p * \log_e (T_{sup}/T_{satu})$	01 mark
$S_{sup} = 6.705 + 2.1 \log_e (538/438)$	
$S_{sup} = 7.1368 \text{ KJ/Kg}$	01 mark
3) $V_{sup} = V_g * (T_{sup}/T_{satu})$	
V _{sup} =0.27268 *(538/438)	

		$V_{sup} = 0.334936 \text{ m}^{3}/\text{Kg}$ 4) hsup = dU + P vsup 2972 * 103 = dU + 7 * 105 * 0.334936 dU = 2972 * 103 - 7 * 105 * 0.334936 dU = 2737.5448 * 103 J/Kg dU = 2737.5448 KJ/K	01 mark
Q	.6.	Attempt any <u>TWO</u> of the following: Explain the construction and working of forced drought and natural drought cooling	16 Marks
	a)	tower with neat sketch.	
	Sol.	Forced draught cooling tower: Forced draft cooling tower consist of spray nozzles, circulating pipe lines, water tank, nozzles fan, pump and valves. Basically water is sprayed from topside by using spray nozzle. Air is taken inside by using fan. They flow in opposite direction. Fan is provided at bottom of tower as shown in figure. As fan is located at the base & air is blown by the fan up through the descending water. The water particles are removed at the top of tower by eliminator. Make up water is supplied as and when required. Make up water is supplied as and when required. Make up water is supplied as and when required. AIR IN AIR IN FAN COLD WATER CIPCULATION FORCED DRAUGHT COOLING TOWER. Fig: Forced draught cooling tower	02 marks explanation 02 marks diagram
		ii) Natural draught cooling tower:	
		In natural draught cooling tower, the circulation of air is produced by the pressure difference of air inside the tower and outside atmospheric air Hot cooling water falls down in a form of sprays and atmospheric air enters from bottom of the tower. The falling water	02 marks explanation

	gives up its heat to the rising column of air and temperature of circulating water reduces	
	In natural draught cooling tower, hot water is pumped to ring troughs. Trough sprays water	
	form of droplets, which is placed at bottom of towers. Most advantage is of no use of fan	
	for air	
	circulation. An air circulation takes place by the pressure difference of air inside and	
	outside of	
	cooling tower (natural flow).	
	WATER TO BE COOLED. MATER COOLED. MATER MATER MATER MATER MAKE UP WATER FIG- Natural Draught Cooling Tower	02 marks diagram
 b)	Discuss the application of second law of thermodynamics on heat engine and	
	refrigerator.	
Sol.	Second Law of Thermodynamics Contains Two Statements:	
	Kolvin Plank Statement of second law of thermodynamics: Kelvin Planck Statement of	
	Second Law of Thermodynamics	
	"It is impossible to construct an engine, which while operating in a cycle produces no other	
	effect except to extract heat from a single reservoir and do equivalent amount of work".	
	Clausius statement of second law of Thermodynamics: It states that it is impossible to	
	the form of heat from a body at a lower temperature (sink) to a body at a higher	
	temperature (source).	
	Or	
	It is impossible for energy in the form of heat to flow a body at a lower temperature to a	
	body at a higher temperature without the aid of external work.	
	Application of Second Law of Thermodynamics to Heat Engine	
	There are three important applications of Statement of Second Law of Thermodynamics	
	namely:	
	a) Heat Engine	

	Atmosphere (T1) B1 = B2+W.	01 mark diagram
	R R R R R R R R	03 mark
	Refrigerator: It is a device which working in Cycle and maintains the temperature lower than the temperature of surroundings. As shown in diagram body A is maintained at temperature T2 which is lower than atmospheric temperature T1.The heat leakage Q2 into the body A from the surroundings is to be removed from it by doing work W by the refrigerator R. The performance of refrigerator is given as COP = Heat Absorbed/Work supplied = Q2/W = Q2/Q1-Q2	explanation
	Refrigerator obeys and follows Clausius statement of second law of Thermodynamics. From the above discussion it is clear that Heat Engine and Refrigerator is are important applications of Second Law of Thermodynamics.	
c)	Describe various mode of heat transfer. Give one example of each mode. Also define transmissivity and emissivity.	
Sol.	Modes of heat transfer: 1. Conduction, 2. Convection, 3. Radiation	01 mark for definition
	 1. Conduction – It is transmission of heat energy between two bodies or two parts of same body through molecules which are more or less stationery e.g. heating of solid- fins provided on engine motor 	01 mark for example
	 2. Convection – It is process of heat transfer from higher temperature to lower temperature due to movement of matter or fluid molecules (density differences) is called convection. 	
	e.g. heating of water.	
	3. Radiation – It is process of heat transfer between two bodies without any carrying	

me	edium through different kind of electro-magnetic wave.	
e.g	g. heating of earth surface by sun	
Tr Tr	ransmissivity: The fraction of radiation transmitted to incident radiation is called the ransmissivity and it is denoted by τ .	01 mark
En at	missivity: it is defined as total emissive power to total emissive power of a black surface, the same temperature.	01 mark