17105

21819

3 Hours / 100 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Figures to the right indicate full marks.
(3) Assume suitable data, if necessary.
(4) Use of Non-programmable Electronic Pocket Calculator is permissible.
(5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any TEN of the following:
a) Solve $\left|\begin{array}{rrr}2 & 3 & x \\ 1 & 0 & 3 \\ -2 & -1 & 0\end{array}\right|=\left|\begin{array}{rr}-1 & 8 \\ 2 & 1\end{array}\right|$
b) If $2\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}12 \\ -8\end{array}\right]$, find x and y.
c) If $\mathrm{A}=\left[\begin{array}{rr}3 & 2 \\ 1 & -1 \\ 0 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}-1 & -1 \\ 3 & 2 \\ 4 & -2\end{array}\right]$, Verify that $A+B=B+A$
d) If $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$ show that AB is non-singular.
e) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right], B=\left[\begin{array}{rr}2 & 1 \\ 1 & -1\end{array}\right]$ find $3 A-B+I$.
(Where I is identity matrix)
f) Resolve into partial fractions $\frac{1}{x^{2}-1}$.
g) Prove that $[\sin \alpha \cdot \cos [\beta-\alpha]+\cos \alpha \sin (\beta-\alpha)]=\sin \beta$
h) If $\cos \mathrm{A}=0.4$, Find $\cos 3 \mathrm{~A}$.
i) If $2 \sin 40^{\circ} \cos 10^{\circ}=\sin \mathrm{A}+\sin \mathrm{B}$, Find A and B .
j) Find the principal value of $\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
k) Prove that $2 \tan ^{-1}\left(\frac{1}{3}\right)=\tan ^{-1}\left(\frac{3}{4}\right)$
1) Find the intercepts of the line $2 x+3 y=6$ on both axis.
2. Attempt any FOUR of the following:
a) Solve by Cramer's rule

$$
x+y+z=3, x-y+z=1, x+y-2 z=0
$$

b) Resolve into partial fraction $\frac{2 x+3}{(x+1)\left(x^{2}-1\right)}$
c) If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 0 & 1\end{array}\right], \mathrm{C}=\left[\begin{array}{rrr}2 & -1 & -1 \\ -2 & 2 & 3\end{array}\right]$ verify that

$$
\mathrm{A}(\mathrm{~B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}
$$

d) If $A=\left[\begin{array}{ll}2 & 7 \\ 1 & 0\end{array}\right]$, find $A^{2}-6 A+8 I$ Where I is unit matrix
e) If $\left\{3\left[\begin{array}{rr}3 & 1 \\ 4 & 0 \\ 3 & -3\end{array}\right]-2\left[\begin{array}{rr}0 & 2 \\ -2 & 3 \\ -5 & 4\end{array}\right]\right\}\left[\begin{array}{r}-1 \\ 2\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ Find x, y, z.
f) Resolve into partial fractions

$$
\frac{13 x+19}{(x+1)(x-2)(x+3)}
$$

3. Attempt any FOUR of the following:
a) Find the adjoint of matrix $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7\end{array}\right]$
b) Using matrix inversion method solve the equations

$$
\begin{aligned}
& x+3 y+3 z=12 \\
& x+4 y+4 z=15 \\
& x+3 y+4 z=13
\end{aligned}
$$

c) If $A=\left[\begin{array}{rr}3 & 4 \\ -2 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{r}-1 \\ 3\end{array}\right]$ verify that $(A B)^{T}=B^{T} \cdot A^{T}$
d) Resolve into partial fractions $\frac{2 x+1}{(x-1)\left(x^{2}+1\right)}$
e) Resolve into partial fractions $\frac{e^{x}+1}{\left(e^{x}+2\right)\left(e^{x}+3\right)}$
f) Resolve into partial fractions $\frac{x}{(x+1)(x-2)^{2}}$
4. Attempt any FOUR of the following:
a) If $A+B=\frac{\pi}{4}$, show that $(1+\tan \mathrm{A})(1+\tan \mathrm{B})=z$
b) If $\tan (x+y)=\frac{3}{4}$ and $\tan (x-y)=\frac{1}{3}$ find $\tan 2 x$ and $\tan 2 y$.
c) Without using calculator prove that $\sin 420^{\circ}-\cos 390^{\circ}+\cos \left(-300^{\circ}\right) \sin \left(-330^{\circ}\right)=1$.
d) Prove that $\frac{\cos 2 \mathrm{~A}+2 \cos 4 \mathrm{~A}+\cos 6 \mathrm{~A}}{\cos \mathrm{~A}+2 \cos 3 \mathrm{~A}+\cos 5 \mathrm{~A}}=\cos \mathrm{A}-\sin \mathrm{A} \tan 3 \mathrm{~A}$
e) Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16}$
f) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{3}{5}\right)=\tan ^{-1}\left(\frac{27}{11}\right)$
5. Attempt any FOUR of the following:
a) Prove that $\sqrt{2+\sqrt{2+2 \cos 4 \theta}}=2 \cos \theta$
b) Prove that $\sin \mathrm{A} \cdot \sin \left(60^{\circ}-\mathrm{A}\right) \cdot \sin \left(60^{\circ}+\mathrm{A}\right)=\frac{1}{4} \sin 3 \mathrm{~A}$
c) Prove that $\frac{\cos 3 \mathrm{~A}-2 \cos 5 \mathrm{~A}+\cos 7 \mathrm{~A}}{\cos \mathrm{~A}-2 \cos 3 \mathrm{~A}+\cos 5 \mathrm{~A}}=\cos 2 \mathrm{~A}-\sin 2 \mathrm{~A} \tan 3 \mathrm{~A}$
d) Prove that $\frac{\sin 19^{\circ}+\cos 11^{\circ}}{\cos 19^{\circ}-\sin 11^{\circ}}=\sqrt{3}$
e) Prove that $\sin ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{8}{17}\right)=\sin ^{-1}\left(\frac{77}{85}\right)$
f) Prove that $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$
6. Attempt any FOUR of the following: 16
a) Find the angle between the lines
$2 x+3 y=13$ and $2 x-5 y=7$
b) Find the equation of the line passing through $(1,2)$ and point of intersection of two lines $2 x+y-1=0$ and $x-y=14$.
c) Find the length of perpendicular from $(-3,-4)$ on line $4(x+2)=3(y-4)$.
d) Find the perpendicular distance between
$3 x+4 y+5=0$, and $6 x+8 y=25$.
e) If m_{1} and m_{2} are slopes of two lines, prove that the acute angle
between two lines $\theta=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
f) Find equation of line making equal positive intercept on coordinates axis and passing through the point $(-2,7)$.

