17315

21819 3 Hours / 100 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions : (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. (A) Attempt any FOUR of the following :

- (i) State Henry's law & Raoult's law.
- (ii) Define limiting reactant & excess reactant.
- (iii) Define standard heat of formation and standard heat of combustion.
- (iv) What is Recycling operation? State one purpose of recycling operation.
- (v) Define partial pressure and pure component volume.
- (vi) The carbon monoxide is reacted with hydrogen to produce methanol.

P.T.O.

Marks

(B) Attempt any TWO of the following :

- (i) A mixture of phenol & water forms two separate liquid phases, one rich in phenol and other rich in water, composition of layers is 70% and 9% (by weight) phenol resp. If 500 kg of phenol & 700 kg of water are mixed and layers allowed to separate, what will be the weights of two layers ?
- (ii) Calculate the numbers of cubic metres of acetylene gas at a temperature of 313 °k and pressure of 100 kPa that may be produced from 5 kg of calcium carbide.
- (iii) SO_2 is oxidised to SO_3 . If the conversion is 70% and air is used in 80% excess than theoretical requirement.

Calculate : (a) kmol of air fed per kmol of SO_2 , (b) Composition of gases leaving the reactor on mole basis.

2. Attempt any FOUR :

- (i) A combustion reactor is fed with 50 kmol/h of butane and 2100 kmol/h of air.Calculate the % excess of air used.
- (ii) State and explain Hess's law of constant heat summation.

12

(iii) It is desired to make up 1000 kg of solution containing 35% by weight of substance 'A'.

Two solutions are available, one containing 10% by weight A and other containing 50% by weight A.

How many kilograms of each solution will be required ?

(iv) Tray dryer is fed with 1000 kg of wet orthonitro aniline (ONA) containing 10% water. The dried product contains 99.5% ONA and rest water.

Calculate the percentage of original water removed in dryer.

- (v) A mixture of CH_4 and C_2H_6 has the average molecular weight of 22.4. Find the mol % of $CH_4 \& C_2H_6$ in mixture.
- (vi) A feed containing A, B and inert enters a reactor. The reaction taking place is 2A + B → C. The product leaving the reactor contains 23.08% A, 11.54% B, 46.15% C and 19.23% inert (by mole). Find the analysis of feed on mole basis.

3. Attempt any TWO of the following :

(i) In the manufacture of chlorine, feed containing hydrochloric acid gas and air are fed to an oxidiser. The product gases leaving the oxidiser are found to contain 13.2% HCl, 6.3% O₂, 42.9% N₂, 30% Cl₂ and 7.6% H₂O (by weight). Calculate : (a) The percent excess air used. (b) Composition of gas mixture entering the oxidiser, by weight.

Р.Т.О.

(ii) A stream flowing at a rate of 15000 mol/h containing 25 mol% N_2 & 75 mole

% $\rm H_2$ is to be heated from 298 °K to 473 °K.

Calculate the heat that must be transferred, using C_p° data given below :

Gas	а	$b \times 10^3$	$c \times 10^6$	$d imes 10^9$
N ₂	29.5909	- 5.41	13.1829	- 4.968
H ₂	28.6105	1.0194	- 0.1476	0.769

 $C_{p}^{\ \circ}=a+bT+cT^{2}+dT^{3}$, kJ/k mol.K.

(iii) In one case, 26.6 lit of NO_2 at 80 kPa & 298 °K is allowed to stand until the equilibrium is reached. At equilibrium, the pressure is found to be 66.662 kPa.

Calculate the partial pressure of N_2O_4 in the final mixture.

The reaction is $2NO_2 \rightarrow N_2O_4$.

4. Attempt any TWO of the following :

(i) The waste acid from a nitrating process contains $30\% H_2SO_4$, $35\% HNO_3 \& 35\% H_2O$ by weight. The acid is to be concentrated to contain $39\% H_2SO_4 \& 42\% HNO_3$ by adding conc. H_2SO_4 acid containing $98\% H_2SO_4$ and conc. HNO₃ acid containing $72\% HNO_3$ (by weight).

Calculate the quantities of acids to be mixed to get 1000 kg of desired mixed acid.

17315

(ii) A feed containing 60 mole % A, 30 mole % B & 10 mole % inerts enters a reactor. The product stream leaving the reactor is found to contain 2 mole %
A. The reaction taking place is 2A + B → C.

Find the percentage of original 'A' getting converted to 'C'.

(iii) 10,000 kg/hr of feed containing 20% methanol is continuously fed to a distillation column. Distillate is found to contain 98% methanol and waste solution (bottom product) contains 1% methanol. All percentages are by weight. Calculate : (a) mass flow rates of top & bottom product. (b) Percent loss of methanol.

5. Attempt any TWO of the following :

 (i) Centrifuge is fed with a slurry containing 25% solid by weight and wet solid obtained after drying is found to contain 8% moisture by weight and filtrate is found to contain 200 PPm solids.

If centrifuge machine produces 100 kg/h desired wet product and quantity of slurry to be handled is 5000 kg per batch. Calculate : (i) time required for filteration, (ii) Loss of solids in filtrate per batch.

(ii) Pure sulphur is burnt in a sulphur burner with dry air. Oxygen is used 20% excess for complete combustion of sulphur to SO₃. The efficiency of burner is such that only. 30% sulphur is converted to SO₃ and remaining to SO₂. Calculate (a) Composition of gases leavning the burner, (b) The weight of gas per kg of sulphur burnt.

[6 of 8]

(iii) Calculate the heat that must be removed in cooling 32 kg of oxygen from 488 °K to 313 °K. Using Cp° data.

Gas	a	$b \times 10^3$	$c \times 10^6$	$d \times 10^9$
0 ₂	26.0257	11.7551	-2.3426	- 0.5623

 $Cp^{\circ} = a + bT + cT^2 + dT^3 kJ/(kmol. \circ K)$

6. Attempt any FOUR of the following :

(i) Calculate the change in enthalpy between reactants and products if both are at 298 K & if 5 mol of C_2H_4O is produced as per following reaction

$C_{2}H_{4}(g) + \frac{1}{2}O_{2}(g) \rightarrow C_{2}H_{4}O(g)$				
Data :	Component	ΔH_{f}^{o} , kJ/mol at 298 K		
	C ₂ H ₄ (g)	52.50		
	$C_2H_4O(g)$	- 52.63		

- (ii) A natural gas has the following composition by volume. $CH_4 82\%$, $C_2H_6 - 12\% \& N_2 - 6\%$. Calculate the density of gas at 288 k & 101.325 kPa.
- (iii) The NH_3 air mixture containing 0.2 kg NH_3 per kg air, enters into absorption system where NH_3 is absorbed in water. The gases leaving the system is found to contain 0.004 kg NH_3 per kg of air. Calculate the percentage recovery of NH_3 .

17315

[7 of 8]

- (iv) Ethylene oxide is produced by oxidation of ethylene. 100 kmol of ethylene is fed to reactor and product contains 80 kmol of ethylene oxide & 10 kmol of CO₂. Calculate % conversion of ethylene & % yield of ethylene oxide.
- (v) 100 kmol of ethanol are charged to dehydrogenation reactor to produce acetaldehyde. The product stream contains 45 kmol acetaldehyde. Calculate percent conversion of ethanol.
- (vi) A wet lumber containing 5% H₂O, is dried to 1% water in a hot air dryer. Air containing 0.5 wt% water is fed to the dryer. The moist air leaving the dryer contains 2% water. Calculate the air required to dry 2000 kg/h of wet lumber.