17105

21819

3 Hours / 100 Marks

Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Assume suitable data, if necessary.
 - (4) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any TEN of the following:

a) Solve
$$\begin{vmatrix} 2 & 3 & x \\ 1 & 0 & 3 \\ -2 & -1 & 0 \end{vmatrix} = \begin{vmatrix} -1 & 8 \\ 2 & 1 \end{vmatrix}$$

b) If
$$2\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ -8 \end{bmatrix}$$
, find x and y .

c) If
$$A = \begin{bmatrix} 3 & 2 \\ 1 & -1 \\ 0 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & -1 \\ 3 & 2 \\ 4 & -2 \end{bmatrix}$, Verify that $A + B = B + A$

d) If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ show that AB is non-singular.

e) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$ find $3A - B + I$.

(Where I is identity matrix)

17105 [2]

Marks

- f) Resolve into partial fractions $\frac{1}{x^2-1}$.
- g) Prove that $[\sin \alpha \cdot \cos [\beta \alpha] + \cos \alpha \sin (\beta \alpha)] = \sin \beta$
- h) If $\cos A = 0.4$, Find $\cos 3A$.
- i) If $2\sin 40^{\circ}\cos 10^{\circ} = \sin A + \sin B$, Find A and B.
- j) Find the principal value of $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
- k) Prove that $2 \tan^{-1} \left(\frac{1}{3} \right) = \tan^{-1} \left(\frac{3}{4} \right)$
- 1) Find the intercepts of the line 2x + 3y = 6 on both axis.

2. Attempt any FOUR of the following:

16

- a) Solve by Cramer's rule x+y+z=3, x-y+z=1, x+y-2z=0
- b) Resolve into partial fraction $\frac{2x+3}{(x+1)(x^2-1)}$
- c) If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & -1 & -1 \\ -2 & 2 & 3 \end{bmatrix}$ verify that A (B + C) = AB + AC.
- d) If $A = \begin{bmatrix} 2 & 7 \\ 1 & 0 \end{bmatrix}$, find $A^2 6A + 8I$ Where I is unit matrix
- e) If $\left\{3\begin{bmatrix}3&1\\4&0\\3&-3\end{bmatrix}-2\begin{bmatrix}0&2\\-2&3\\-5&4\end{bmatrix}\right\}\begin{bmatrix}-1\\2\end{bmatrix}=\begin{bmatrix}x\\y\\z\end{bmatrix}$ Find x, y, z.
- f) Resolve into partial fractions

$$\frac{13x+19}{(x+1)(x-2)(x+3)}$$

17105

[3]

Marks

3. Attempt any FOUR of the following:

16

- a) Find the adjoint of matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{bmatrix}$
- b) Using matrix inversion method solve the equations

$$x + 3y + 3z = 12$$

$$x + 4y + 4z = 15$$

$$x + 3v + 4z = 13$$

- c) If $A = \begin{bmatrix} 3 & 4 \\ -2 & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ verify that $(AB)^T = B^T \cdot A^T$
- d) Resolve into partial fractions $\frac{2x+1}{(x-1)(x^2+1)}$
- e) Resolve into partial fractions $\frac{e^x + 1}{(e^x + 2)(e^x + 3)}$
- f) Resolve into partial fractions $\frac{x}{(x+1)(x-2)^2}$

4. Attempt any <u>FOUR</u> of the following:

16

- a) If $A + B = \frac{\pi}{4}$, show that $(1 + \tan A)(1 + \tan B) = z$
- b) If $tan(x+y) = \frac{3}{4}$ and $tan(x-y) = \frac{1}{3}$ find tan2x and tan2y.
- c) Without using calculator prove that $\sin 420^{\circ} \cos 390^{\circ} + \cos(-300^{\circ})\sin(-330^{\circ}) = 1.$
- d) Prove that $\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \cos A \sin A \tan 3A$
- e) Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- f) Prove that $\cos^{-1}(\frac{4}{5}) + \tan^{-1}(\frac{3}{5}) = \tan^{-1}(\frac{27}{11})$

17105 [4]

Marks
16

5. Attempt any <u>FOUR</u> of the following:

a) Prove that
$$\sqrt{2 + \sqrt{2 + 2\cos 4\theta}} = 2\cos \theta$$

- b) Prove that $\sin A \cdot \sin(60^\circ A) \cdot \sin(60^\circ + A) = \frac{1}{4} \sin 3A$
- c) Prove that $\frac{\cos 3A 2\cos 5A + \cos 7A}{\cos A 2\cos 3A + \cos 5A} = \cos 2A \sin 2A \tan 3A$
- d) Prove that $\frac{\sin 19^\circ + \cos 11^\circ}{\cos 19^\circ \sin 11^\circ} = \sqrt{3}$
- e) Prove that $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right) = \sin^{-1}\left(\frac{77}{85}\right)$
- f) Prove that $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$

6. Attempt any FOUR of the following:

16

a) Find the angle between the lines

$$2x + 3y = 13$$
 and $2x - 5y = 7$

- b) Find the equation of the line passing through (1, 2) and point of intersection of two lines 2x + y 1 = 0 and x y = 14.
- c) Find the length of perpendicular from (-3,-4) on line 4(x+2) = 3(y-4).
- d) Find the perpendicular distance between 3x + 4y + 5 = 0, and 6x + 8y = 25.
- e) If m_1 and m_2 are slopes of two lines, prove that the acute angle

between two lines
$$\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

f) Find equation of line making equal positive intercept on coordinates axis and passing through the point (-2,7).