

SUMMER – 16 EXAMINATIONS Model Answer

Page No:

Subject Code: 17621 ___/ N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Q.	MODEL ANSWER	MARK	TOTAL
NO.		S	MARK S
Q.1.	Attempt any FIVE	5x4	<u> </u>
a.	Wint Oct Wat Spot that bh	2m	4m
Ans.	Spoor Spoor	(dia)	
	trede 00 00 00 00 00 00 00 00 00 00 00 00 00		
	welding Are	2m expl.	
	Travel Device Sheiding	Zin expi.	
	variation find to enible within toin 411		
	Working:-		
	In automatic welding some of the activities are carried out		
	without manual work.		
	In this type of welding the control of welding variable and relative movement between the welding head and work are		
	automatic		
	Usually a single switch working through sequencing device operator the control for power and consumables like wire and gas		
	This may also bring crater filling device, if incorporated, into action automatically. fig.shows a block diagram for a typical		
	automatic welding system.		
	As soon as welding is started first in manual way automatic welding controls the variables like arc voltage, welding current. Wire feed rate etc. to control the arc length in the case of arc welding processes and to control the depth of molten metal and		
	slag pool in electro slag welding.		

b.			
Ans.	 Prevoure Redubblistic Relition Guide Tube Prevoure Redubblistic Relition Guide Tube Guide Tube Welding Gui Redubblistic Relition Guide Tube Working:- Switch ON the electrical current, insert gas supply and water The arc is strucked by the any one method. By scratching the electrode by scrap metal work piece as usual practice In the second method electrode is touched to the job. It is refracted and then move forward to carry out welding About 15mm length of the electrode is projected from the torch before striking the arc. During welding torch remain about 10 to 12mm away from the job and arc length is kept between 1.5mm to 4mm Normally forehand technique is used, the angle made by torch with the horizontal is 70⁰ The welding Gun is moved in forward manner steadily to achieve good welding. 	2m (Dia) 2m expl.	4m
c.	Advantages:-	4m	4m
	 Molten flux provides very suitable conditions for high current to flow. Great intensities of heat can be generated and kept concentrated to weld thicker sections with deep penetrations. Because of high heat concentration, considerably higher welding speeds can be caused. Because of high heat concentration and high welding speeds weld distortion is much less. High metal deposition rates can be achieved. Single pass welds can be made in thick plates with normal equipment. Welding is carried out without sparks, smoke, flash or spatter. Weld metal deposit possesses uniformity, good ductility, 	(1m for each any 4)	

		corrosion resistance and good impact strength.		
d.	i)	Application of PAW:-	2m	
Ans.	•	Manufacturing of tubing made of stainless steel, titanium.	(any 2)	4m
	•	Used for welding of foil thickness material.		
	•	It is also used for making small welds on weldments for		
	· ·	instruments manufacturing & other small components		
		made up of thin metal.		
	ii)	Applications of Ultrasonic Welding:-		
	•	In the electrical and computer industry ultrasonic welding		
		is often used to join wired connections and to create		
		connections in small, delicate circuits.	2m	
	•	For automobiles, ultrasonic welding tends to be used to	(any 2)	
		assemble large plastic and electrical components such as		
		instrument panels, door panels, lamps, air ducts, steering		
		wheels, upholstery and engine components.		
	•	In the medical industry ultrasonic welding is often used		
		because it does not introduce contaminants or degradation		
		into the weld and the machines can be specialized for use		
		in clean rooms.		
	•	Packaging is an application where ultrasonic welding is		
		often used. Many common items are either created or		
		packaged using ultrasonic welding. Sealing containers,		
		tubes and blister packs are common applications.		
	•	It is also used in packaging of dangerous materials like		
		explosives.		
		I		
e.	Advar	tages of Resistance Welding:		
	•	High welding rates;	4m	4m
Ans.	•	Low fumes;	(any 4)	
	•	Cost effectiveness;		
	•	Easy automation;		
	•	No filler materials are required;		
	•	Low distortions		
f.		ation:-		
Ans.		tion or deformation can occur during welding as a result of	2m	4m
		n-uniform expansion and contraction of the weld and base		
		during the heating and cooling cycle.		
	FOLL	OWING ARE THE TYPES OF DISTORTION		
	•	Longitudinal shrinkage		
	•	Transverse shrinkage	2m	
	•	Angular distortion	(any	
	•	Bowing and dishing	four)	
	•	Buckling		
	•	Twisting		

g. Ans.	Plastic welding : welding for semi-finished plastic materials is described as a process of uniting softened surfaces of materials, generally with the aid of heat (except solvent welding). Welding of thermoplastics is accomplished in three sequential stages, namely surface preparation, application of heat and pressure, and cooling. Numerous welding methods have been developed for the joining of semi-finished plastic materials ,based on the mechanism of heat generation at the welding interface, welding methods for thermoplastics On the other hand, production of a good quality weld can not only depend on the welding methods, but also weld ability of base materials. Therefore, the evaluation of weld ability is of important critically before welding operation.	4m	4m
h.	 I. American Society of Mechanical Engineers (ASME) Codes II. American Welding Society (AWS) Standards III. American Petroleum Institute (API) Standards IV. Australian / New Zealand (AS/NZS) Standards V. British Standards (BS)[edit] VI. European Union (CEN) standards 	4m (any 4)	4m
<u> </u>			
0.2	Attempt any TWO	8X2	16
Q.2 a. Ans	Attempt any TWO	8X2 3m (dia)	16 8m

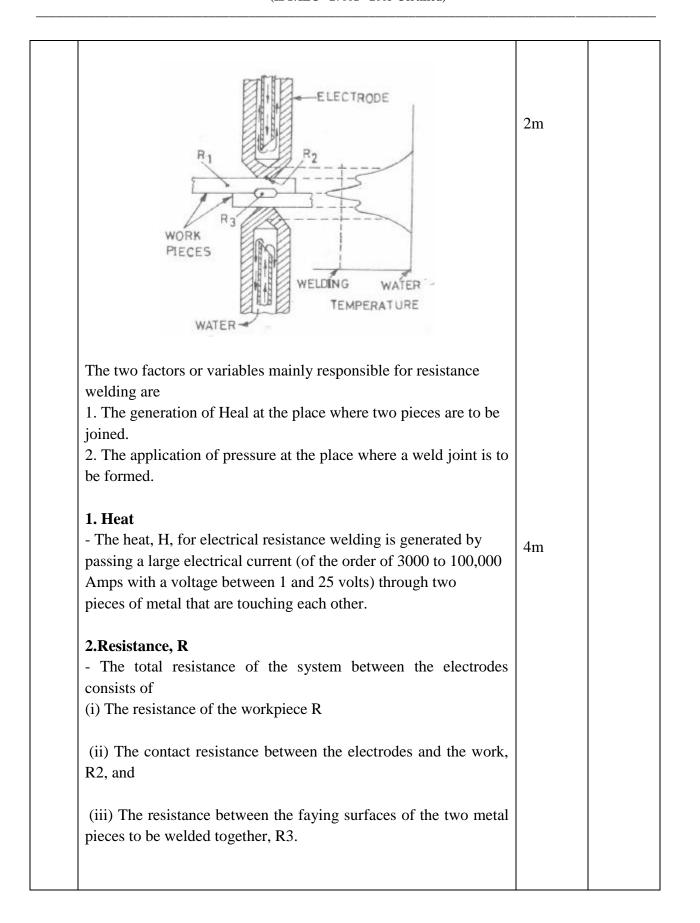
	 welds, do not require it. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma Applications:- While the aerospace industry is one of the primary users 		
	of gas tungsten arc welding, the process is used in a number of other areas.	2m	
	 Many industries use GTAW for welding thin workpieces, especially nonferrous metals. 	(any 2 applicati	
	3. It is used extensively in the manufacture of space	ons)	
	vehicles, and is also frequently employed to weld small- diameter, thin-wall tubing such as those used in the		
	bicycle industry.		
	4. In addition, GTAW is often used to make root or first-pass welds for piping of various sizes.		
	 In maintenance and repair work, the process is commonly 		
	used to repair tools and dies, especially components made of aluminum and magnesium		
b.	(1)Argon:	3m for	
υ.	It is the extensively used shielding gas because of its availability	list	8m
Ans.	as far as fusion welding is concerned. 0.94% is the % argon by	& 5m	
	volume prevent in the atmosphere.	for	
	It is used as a shield gas because of its low ionization potential, it forms stable and suite arc so there is less chance of spatter loss.	explain	
	It has one disadvantage because of its lower ionization potential		
	the voltage is reduced and less power in the arc is obtained.		
	Because of that it does not give deeper penetration		
	(2)Helium:		
	It is the second most abundant available natural gas in the atmosphere.		
	It has higher ionization potential than argon.so it gives deeper		
	penetration		
	It has high electrical resistance so the voltage required to produce		
	more and because of that high heat is generated in the arc		
	It again increases the penetration properties (3)CO2:		
	It is a combination of carbon and oxygen		
	The experiment showed that using straight CO2gives border and		
	deeper penetration as well as there is a less chance of under		
	cutting.		

c.	Safety Rules:-	5m	
ι.	1) The light generated by MIG welding is extremely bright,	(any 5	8m
Ans.	working directly on welding arc even for a short time causes	rules)	om
	arc eye therefore it is recommended to use welding cap and	,	
	welding screen or welding mash or goggle.		
	2) Al.alloys vapour and zinc coating are poisonous exposure		
	can result in heavy metal poisoning flue like symptoms. The		
	zinc coating should be removed before welding and one can		
	wear charcoal mask.		
	β) Covering of arms and legs is essential because strong		
	ultraviolet light emiting from MIG may cause sun sum.		
	4) Welding gloves are required to be wear.		
	5) Ear protection device to avoid too much noise.		
	6) Clean atmosphere i.e. Surrounding is required because		
	molten metal may split several feet may catch fire.		
	7) Use our common sense while welding.		
	Welding protective Equipments:-	3m	
	Welding helmet, hand shield, or goggles.	(any 3)	
	Respirators.	(uny 5)	
	Fire/Flame resistant clothing and aprons.		
	Fire/Flame resistant clothing and aprons.		
	Boots, gloves, gauntlets.		
Q.3.	Attempt any TWO	8x2	16
Q.3. a.			
	Attempt any TWO	3M	16 8m
a.	Flux		
	Flux	3M	
a.	Flux Recovery	3M	
a.	Flux Recovery	3M	
a.	Flux Recovery Consumable	3M	
a.	Flux Recovery Solidified Slag Molten	3M	
a.	Flux Recovery Solidified Slag Molten Flux Arr	3M	
a.	Flux Recovery Solidified Slag Weld Weld Weld Weld Flux Arc	3M	
a.	Flux Recovery Solidified Slag Molten Flux Arr	3M	
a.	Flux Recovery Solidified Slag Weld Weld Weld Weld Flux Arc	3M	
a.	Flux Recovery Solidified Slag Weld Moten Flux Arc Weld Pool Flux Flux Arc Weld Pool Flux Flux Flux Hetal	3M	
a.	Flux Recovery Solidified Slag Weld Moten Flux Arc Weld Pool Flux Flux Arc Weld Pool Flux Flux Flux Hetal	3M	
a.	Flux Recovery Solidified Slag Weld Moten Flux Arc Weld Pool Flux Flux Arc Weld Pool Flux Flux Flux Hetal	3M	

	WORKING:-		
	Similar to MIG welding, SAW involves formation of an arc		
	between a continuously-fed bare wire electrode and the	3M	
	workpiece.	(workin g)	
	The process uses a flux to generate protective gases and slag,	g)	
	and to add alloying elements to the weld pool. A shielding gas is		
	not required. Prior to welding, a thin layer of flux powder is		
	placed on the workp iece surface		
	The arc moves along the joint line and as it does so, excess		
	flux is recycled via a hopper. Remaining fused slag layers can be		
	easily removed after welding.		
	As the arc is completely covered by the flux layer, heat loss is		
	extremely low.		
	This produces a thermal efficiency as high as 60% (compared		
	with 25% for manual metal arc). There is no visible arc light,		
	welding is spatter-free and there is no need for fume extraction.		
	Applications:-		
	Welding of following materials	2m	
	• Carbon steels (structural and vessel construction)	(2	
	Low alloy steels	applicati	
	Stainless steels	ons)	
	Nickel-based alloys		
	• Surfacing applications (wear-facing, build-up, and		
	corrosion resistant overlay of steels)		0
b.	Flux Cored Arc Welding:-		8m
	riux Corea Arc Welding:-		
	FCAW is a process in which joint is produced by heating the	4m	
	work piece with an electric arc between a continuous tabular	(FCAW)	
	consumable electrode and work.		
	The electrode is flux cored i.e. the flux is contained within the electrode which is hollow.		
	The flux inside the wire provided the necessary shielding of		
	the weld pool		
	FCAW utilizer the heat of an arc between a continuously fed		
	consumable flux cored electrode and the work piece which is		
	to be joined.		
	The heat of the arc melts the surface of base metal and the end of the electrode. The metal melted off the electrode is		
	transferred through the arc to the work piece.		
	r		

	Difference between FCAW & ESW:-		
	FCAW SAW	4M	
	Flux cored arc welding (FCAW) is an electric arc welding process that uses an arc between a continuously fed flux-filled electrode and the weld pool.Submerged arc welding process that fuses together the parts to be welded by heating them with one or more electric arcs between one or more bare electrodes and the work pieceThe electrode used in thisThe electrode used in this	(DIFFE RENCE)	
	process is flux coated. process is a bare one.	-	
	The electrode is hollowThe electrode is solid.The flux contained in the hollow electrode acts as a shielding.Separate required in this process.		
c.			
Ans.	Electroslag Welding	3M (dia)	8m
	Electrode wire feed Guide tube Power supply Weld pool Weld pool Starting plate Welded pieces www.substech.com		
	Working:- Electroslag Welding is a welding process, in which the heat is generated by an electric current passing between the consumable electrode (filler metal) and the work piece through a molten slag covering the weld surface. Prior to welding the gap between the two work pieces is filled with a welding flux. Electroslag Welding is initiated by an <u>arc</u> between the electrode and the work piece (or starting plate). Heat, generated by the arc, melts the fluxing powder and forms molten slag. The slag, having low electric conductivity, is maintained in liquid state due to heat produced by the electric current.	3m (workin g)	

	Advantages:-		
	 (i) Joint preparation is often much simpler than for other welding processes. (ii) Much thicker steels can be welded in single pass and more economically. Thicknesses up to 450 mm in plain and alloy steels can be welded without difficulty. (iii) Electroslag welding gives extremely high deposition rates. (iv)Residual stresses and distortion produced are low. 	2m (2 advanta ge)	
Q.4.	Attempt any TWO	8x2	16
a. Ans.	1) <u>b)</u> <u>LOW/LOC</u> Mirror Optical Cowity Lawer (Grichel (Audor) Lawer (Grichel (Audor) Carbonicate J Lawer Beam Concentrate J Lawer Beam THILL Jo b///////////////////////////////////	3M (dia)	8m
	 Working:(3M) Laser beam welding/cutting is that joint is produced by heat obtain from the application of the concentrated coherent light beam impinging upon the surface to be joined/cut Laser is device which creates intense beam that can impart tremendous energy on a small area to produce fusion for welding/cutting purpose. It consists of ruby crystal which contains at chromium in dispersed condition. The ends of their rods are like mirror and one end has a tiny hole. At the outside of the crystal one flash tube is fixed containing insert gas. It is defor producing thousands 	3m (workin g)	



	of flashes per second which further converts electrical energy into light energy.		
	 Capacitor bank which strikes electrical energy energizes flash tube by an triggering system because of that xenon transforms a high proportion of electrical energy into white light flashes 		
	• As ruby is exposed to intense light flashes chromium atomic to excite and pumped to high energy level because of that they form radiation in the form of red Fluor cent light. When that red light escape through mirror through a small hole and by focusing on a narrow laser beam on optical lenses produces intense spot of laser on the job.		
	 Advantages:- 1. Low heat applications therefore minor changes in microstructure. 2. Welding of complicated geometry is possible. 3. Precise welding is possible. 4. Low thermal distortion. 5. Low post weld operation is required. 	2m (any 2)	
b.	Principle:- Friction welding (FRW) is a solid-state welding process that generates heat through mechanical friction between workpieces in relative motion to one another, with the addition of a lateral force called "upset" to plastically displace and fuse the materials. Explanation:-	2m	8m
	Tubbing Curfaces. Head chuck latin Movable Part Shek Part Part Movable Part Contails BASE Fig: Friction Welding Machine PART ROTATED	2m (dia)	
	BRALE Africo		
	PRESSURE		

	 The two workpieces to be friction welded are held in axial alignment. One component is held in the chucking spindle of the machine is rotated and accelerated to the desired speed. The other component that is stationary & is held in a movable clamp is moved forward to come into pressure contact with the rotating component. Pressure & rotation are maintained until the resultant high temperature makes the components metal plastic for welding with sufficient metal. Advantages:- i) Simplicity of operation ii) Low power requirement. iii) Surface impurities & oxides are broken up & thrown off during the friction heating process. iv) There is no flux , gas, or filler metal is required. 	2m(expl ain) 2m (any2)	
c. Ans.	PRESSURE CU ALLOY ELECTRODE WELD WORK PIECES TRANSFORMER	2m	8m

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Q.5	Attempt any Two	8x2	16
a.	The various causes of distortion are :		
	1. More number of passes with small diameter electrodes.		8m
Ans	2. Slow arc travel speed.	3m	
	3. Type of joint. A V joint needs more metal to be deposited to	(any 3)	
	fill the groove as compared to a U joint, thus leading to		
	comparatively more distortion.		
	4. High residual stresses in plates to be welded.		
	5. Welding sequence being improper. Use of jigs and fixtures,		
	clamps, presetting, wedging and proper tacking may minimize distortion.		
	The control of welding distortion:-		
	There are various practical ways for minimizing the distortion		
	are:.	3m	
	1. Keep the contraction forces as low as possible by using only	(any 3)	
	that amount of weld metal as is required by the joint. Another		
	way to state this is do not overweld. The more the metal placed in		
	a joint, the greater the		
	contraction forces.		
	2. Use as few weld passes as possible		
	- The more the number of passes, the more is resulting shrinkage		
	(because shrinkage of each pass tends to be cumulative), and		
	hence the distortion. Apply fewer passes with large electrodes.		
	- Select electrodes for highest deposition efficiency.		
	3.Place welds near the neutral axis		
	This reduces distortion by providing a smaller leverage for the		
	shrinkage (contraction) forces to pull the plates out of alignment.		
	4. Balance welds around the neutral axis		
	This will balance one shrinkage force against another. Design and welding sequence can be used to effectively control distortion.		
	5. Use of backstep welding or skip method of welding		
	- With this welding technique, weld bead increments are		
	deposited in the direction opposite to the progress of welding the		
	joint e.g., each bead is deposited from right to left, but the		
	welding progresses from left to right.		
	6 Make shrinkage forces work in the desired direction		
	- Several assemblies can be preset out-of-position before welding		
	so that the shrinkage forces will pull the plates into alignment.		
	- Prebending or prespringing the parts to be welded is a simple		
	example of the use of mechanically induded opposing forces to		
	counteract weld shrinkage.		
	7 Welding sequences		
	- Welding sequence implies the order of making the welds in a		
	weldment.		
	- The weld metal is placed at different points about the structure		
	so that as it shrinks at one place it will counteract the shrinkage		

forces of weld already made .		
Relief of stresses:-		
Relief of stresses are as follows		
1 Thermal method:-		
The thermal method involves changing the temperature of the		
entire part uniformly, either through heating or cooling. When	2m	
parts are heated for stress relief, the process may also be known	(any 2)	
as stress relief bake. Cooling parts for stress relief is known as	(any 2)	
cryogenic stress relief and is relatively uncommon.		
2 Stress relief bake:-		
Most metals, when heated, experience a reduction in yield		
strength. If the material's yield strength is sufficiently lowered by		
heating, locations within the material that experienced residual		
stresses greater than the yield strength (in the heated state) would		
yield or deform. This leaves the material with residual stresses		
that are at most as high as the yield strength of the material in its		
heated state.		
Stress relief bake should not be confused with annealing or		
tempering, which are heat treatments to increase ductility of a		
metal. Although those processes also involve heating the material		
to high temperatures and reduce residual stresses, they also		
involve a change in metallurgical properties, which may be undesired.		
3 Cryogenic stress relief:- Cryogenic stress relief involves placing the material (usually		
steel) into a cryogenic environment such as liquid nitrogen. In		
this process, the material to be stress relieved will be cooled to a		
cryogenic temperature for a long period, then slowly brought		
back to room temperature.		
4 Nonthermal methods:-		
Mechanical methods to relieve undesirable surface tensile stresses		
and replace them with beneficial compressive residual stresses		
include shot peening and laser peening. Each works the surface of		
the material with a media: shot peening typically uses a metal or		
glass material; laser peening uses high intensity beams of light to		
induce a shock wave that propagates deep into the material.		
5 Vibratory Stress Relief, often abbreviated VSR, is a non-		
thermal stress relief		
method used by the metal working industry to enhance the		
dimensional stability and mechanical integrity of castings,		
forgings, and welded components, chiefly for two categories of		
these metal work pieces.		

b.	Difficulties incurred in welding of alloys		
	1. MAGNESIUM AND ITS ALLOYS		8m
	I.An important characteristic of magnesium is its rapid	3m	
	oxidation when heated to its melting point in air. Shielding of		
	molten metal pool with the help of inert gas or suitable fluxes,		
	therefore is very necessary.		
	II.Difficulties in welding magnesium arise from its high thermal		
	conductivity and coefficient of thermal expansion which		
	combine to cause severe stresses, distortion and even cracking		
	unless precautions are taken. Faster welding speeds, smaller		
	welding beads, holding parts in a jig, and the use of lower-		
	melting point and lower shrinkage welding rods are beneficial.		
	III.Mg-AI-Zn alloys, particularly those containing over 1% Zn		
	are susceptible to hot cracking. For critical welding application		
	(severe restraint, heavy sections, etc.), calcium free alloys should		
	be specified. Moreover, welds in hot short alloys should be started		
	away from the end of the seams.		
	Magnesium alloys containing more than 1.5% Aluminium are		
	susceptible to stress corrosion and residual stresses must be		
	relieved.		
	2. COPPER AND ITS ALLOYS		
	(i) Higher thermal conductivity necessitates high heat input into the		
	parent metal to raise the temperature sufficiently to produce the	3m	
	fusion desirable for most welding processes. High heat input is		
	provided by using higher welding currents, gas nozzles with larger tips		
	and by preheating the parts to be welded.		
	(ii) Greater thermal expansion coefficients are responsible for the		
	introduction of residual welding stresses in and around the welded		
	joints. Residual stresses, however, can be minimized by preheating the		
	base metal before welding and by slowing down the weld metal		
	cooling rate by covering the welded joint with a heat insulating		
	material such as asbestos. Suitable fixtures need be employed to		
	minimize distortion when welding thinner workpieces.		
	(iii) Copper has relatively low strength above 482"C, therefore,		
	cracking may occur where severe stresses are introduced into the		
	weldment.		
	(iv) Copper has a tendency to absorb oxygen in molten state. Severe		
	oxidation on heating to temperatures above 4000C offers difficulties in		
	welding, since the oxides which form arc soluble in the molten weld		
	metal. The presence of oxygen tends to reduce the melting point and		
	corrosion resistance and decreases the mechanical properties,		
	particularly the formability. Welded joints become brittle and porous.		
	To avoid oxidation problem, a suitable flux or an inert gas is necessary		

		I
The first and the foremost consideration is the effect of the thin film of oxide which is always present on the surface of aluminium. This film contains moisture which may react during fusion welding, with the liquid metal in the weld pool, to form further oxide and to liberate hydrogen which can cause porosity.	2m	
 The oxide film on the surface of the base metal is removed chemically or mechanically (by brushing, scrubbing, etc.) before welding. The oxide film forms rapidly during welding also. This difficulty is overcome by Using a suitable flux in gas welding and brazing. Employing a suitable thickly coated electrode in metallic arc welding. Use of DCRP (electrode +) has been found effective for MIG 		
Micro welding-	3m	8m
Micro Arc Welding is the short and long-run service provider	5111	0111
delivering hand held micro TIG and micro laser welding repair		
using the technology of electric current being applied to the work		
piece to generate heat at the point of the <i>arc gap</i> . At the point of the arc gap, a molten pool is established and the filler rod is introduced into the malten and		
-		
micro welding is done at extremely low amperages (usually less		
than 10 amps) in combination with fine control of the amperage		
Problems:-		
As Micro welding is a state of the art process that is used for	3m	
welding small areas. Often the micro weld requires the		
surrounding area to be minimally effected by heat, requiring		
precise heating of the weld to only allow proper fusion of the		
joint.		
Micro welding requires the use of miniature TIG welding		
equipment (Gas Tungsten Arc) that is not much larger than a pen.		
Micro TIG welding is the latest in tool welding technology.		
Micro welding repairs—although not the rule—can still exhibit		
sink areas, fractures, separation of weld and other incidents		
	 oxide which is always present on the surface of aluminium. This film contains moisture which may react during fusion welding, with the liquid metal in the weld pool, to form further oxide and to liberate hydrogen which can cause porosity. The oxide film on the surface of the base metal is removed chemically or mechanically (by brushing, scrubbing, etc.) before welding. The oxide film forms rapidly during welding also. This difficulty is overcome by Using a suitable flux in gas welding and brazing. Employing a suitable thickly coated electrode in metallic arc welding. Use of DCRP (electrode +) has been found effective for MIG Micro welding:- Micro welding is the short and long-run service provider delivering hand held micro TIG and micro laser welding repair work. Micro welding is the name given to the process that has evolved from traditional TIG welding (or more recently termed GTAW), using the technology of electric current being applied to the work piece to generate heat at the point of the <i>arc gap</i> . At the point of the arc gap, a molten pool. The difference between traditional TIG and micro welding is that micro welding is done at extremely low amperages (usually less than 10 amps) in combination with fine control of the amperage range, along with the aid of a high-powered (10-20X or more) microscope. Problems:- As Micro welding is a state of the art process that is used for welding small areas. Often the micro weld requires the surrounding area to be minimally effected by heat, requiring precise heating of the weld to only allow proper fusion of the joint. Micro welding requires the use of miniature TIG welding equipment (Gas Tungsten Arc) that is not much larger than a pen. Micro welding requires the use of miniature TIG welding equipment (Gas Tungsten Arc) that is not much larger than a pen.	3.AI AND ITS ALLOYS2mThe first and the foremost consideration is the effect of the thin film of oxide which is always present on the surface of aluminium. This film contains moisture which may react during fusion welding, with the liquid metal in the weld pool, to form further oxide and to liberate hydrogen which can cause porosity.2mThe oxide film on the surface of the base metal is removed chemically or mechanically (by brushing, scrubbing, etc.) before welding.2mThe oxide film orms rapidly during welding also. This difficulty is overcome by1. Using a suitable flux in gas welding and brazing.11. Employing a suitable thickly coated electrode in metallic arc welding.3mMicro welding:-Micro Arc Welding is the short and long-run service provider delivering hand held micro TIG and micro laser welding repair work.3mMicro welding is the name given to the process that has evolved from traditional TIG welding (or more recently termed GTAW), using the technology of electric current being applied to the work piece to generate heat at the point of the <i>arc gap</i> . At the point of its introduced into the molten pool.3mThe difference between traditional TIG and micro welding is that micro welding is a state of the art process that is used for welding small areas. Often the micro weld requires the surrounding area to be minimally effected by heat, requiring precise heating of the weld to only allow proper fusion of the joint.3mMicro welding requires the use of miniature TIG welding equipment (Gas Tungsten Arc) that is not much larger than a pen.3m

-		-	
	occasional to the TIG welding process.	2m	
	Methods:-	(any 2)	
	GMAW		
	GTAW		
	Micro laser welding		
Q.6.	Attempt any two	8x2	16
a.	API1104:- American Petroleum Institute (AP!) Standard 1104 –		8m
	Welding of Pipelines and Related Facilities	4	
Ans.	This standard was prepared by a formulating committee that included representatives of the American Petroleum Institute, the	4m	
	American Gas Association, the Pipe Line Contractors Association, the American Welding Society, and the American Society for Nondestructive Testing, as well as representatives of pipe manufacturers and individuals associated with related industries. BS4515-1: specifies requirements for the welding of carbon, carbon manganese and low alloy steel pipelines with specified minimum yield strengths not exceeding 555 N/mm ² and designed in accordance with PD 8010-1 and PD 8010-2 BS 4515-1 applies to pipes of outside diameter 21.0 mm and larger having a thickness of 3.0 mm or greater and is applicable to transmission pipelines for gases, liquids or slurries, both on land and offshore. Information on hyperbaric welding and on brazing and aluminothermic welding of corrosion resistant alloy clad and lined pipelines, are provided.	4m	

b. (i) Ans.	 AWS D1.1:- All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties. AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards. AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein. 	4m	4m
b (ii) Ans	Process equipment code (ASME) The ASME Code section 8 is the construction code for pressure vessel and cover design, manufacturing and pressure vessel inspection and testing in the manufacturing shop. This code section addresses the mandatory requirement, specific prohibitions, and non-mandatory guided for pressure vessel material design fabrication, examination, inspection, testing, certification and pressure relief.	4m	4m

	In this article you will learn about different subsection s and		
	guidelines for the use and application of this code.		
	For ASME code section 8 Scope and boundaries, review the		
	pressure vessel definition article		
	You may ASME code section 8 has three division. Division 1		
	covers pressure up to 3000psi,Division 2 Has an alternative rule		
	and covers up to 1000psi and Division 3 can be used for pressure		
	· · · ·		
<u> </u>	higher than 10000psi.	4	
C	Robotic Gun	4m	4
i)	Auto darkening welding helmates	(any 4)	
	Pedestal boom manipulators Nozzle		
	Electronic control unit		
	Wire feed roller		
	Electrode		
	Hopper		
	Welding filter lens		
С	Dia:-	2m	4
ii)	I GAVITER	(dia)	
	Working:-		
	Exothermic welding , also known as exothermic bonding ,		
	thermite welding (TW), and thermit welding, is a welding that employs molten metal to permanently join the conductors. The process employs an exothermic reaction of a thermite composition to heat the metal, and requires no external source of heat or current. The chemical reaction that produces the heat is an	1m (explain)	
	aluminothermic reaction between aluminium powder and a metal		
	oxide.	1m	
	Applications:-	(any 1)	
	Rail track repair work		