SUMMER – 15 EXAMINATIONS <u>Model Answer-</u> Design of Steel Structure

Subject Code: 17505

Page No- 0 /35

Important Instruction to Examiners:-

- 1) The answers should be examined by key words & not as word to word as given in the model answers scheme.
- 2) The model answers & answers written by the candidate may vary but the examiner may try to access to understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance.
- 4) While assessing figures, examiners, may give credit for principle components indicated in the figure.
- 5) The figures drawn by candidate & model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.
- 7) For programming language papers, credit may be given to any other programme based on equivalent concept.

Important notes to examiner

Model Answer

Page No: 02125

SOLUTION MARKS O.NO is Advantage of Steel 1> sted members have high strength per unit weight of M ii) sted being ductile material does not fail suddenly each iii) Sted members are light in weight hence easy to handle THO iv) Sted shutture has long life v) The proposites of sted mostly not changes with time vi) sted has hight scrap value among all building Matorial 11> Dis advantages 01 M each is steel smulture are subjected to corrosion hence Any requires frequent painting TWO ii) steel shutures required fire proof treatment which increases the cost. iii Sted is costly material iv) it required skill labour for exection b) Different type of limit state 1> limit state of strungth. 2> limit state of serviceability. 1> limit state of shungth 03 M FOY the limit State of strongth associated with failure onny under the action of probable and most unfavourable ONE combination of factored loads on the smuture

using the appropriate partial safety factors which may endanger the safety of life and property.

Page No: <u>63</u>/35

Q.NO	SOLUTION	MARKS
	limit State of strongth includes	
	is lost of equillibrium of the smuther as a whole	
	or any it's parts or components.	
	ii) loss of stability of the smuture (including the	
	effect of sway where appropriate and overturning))
	as any of its parts including supports and foundation	51
	iii) failure by excessive determation rupture of the	100
	smuture or any or its parts or component	
	iv) fact fracture due to fatique.	
	v) Brittle Fracture	
	cy.	
of Western	The limit state of serviceability.	
	- is it includes petormation and deflection which	
	may adversely affect the appearance or effects	ve
1	use of the structure or may cause. Improper	
	functioning of equipment or services or may	
	cause damages to finishes and non structural	
1	members.	
	is vibrations in the structure or any of its compo-	4
	nents causing dircomfort to peoply damages to	
	the structure its contents or which may limit	
	its functional effectiveness.	
	iii) Repairable damage or crack due to fatique	
	(v) corrusion, durability	
	V) fixe	
//		

Page No: 0 4 / 35 N

Q .NO	SOLUTION	MARKS
c)_	Types of Load with respective Is code	
- fri.	i> Dead 100d - 12 825 - 1987 part - [OIM
_	11) Live 10ad - 15875- 1987 point-II	for
	iii) Snow load - 15 875 - 1984 part IV.	each
	iv) wind load - 15 875- 1984 part IV	
	v) seismic force (5 1893-2002	
d)	List types of failure in case of Tension member	
	is pur to yielding oness section	
	ii) Rupture of Met section	
(Second	iii) failure due to block shear (shear lag)	02 M
(16)	is consider deformation of	02M
	the member in longitudinal direction may take	omy
	unserviceable	one
)	ii> Metsection Rupture.	
	the rupture of the member when the net moss	
	Section of the number reaches the altimate struct	
	iii) Blook Shear failure.	
	A signimit of block of mahriful at end of member	
	shears out due to the possiable use of high bearing	19
	strungth of the sted and high-strungth bolts	
	· resulting in smaller connection longth.	

Page No: 05/35 N

Subject Code: 17505 **Model Answer**

O.NO SOLUTION MARKS Q-1 B a) given data 1) arrial load = look N. (i) tie member 100 x 10 mm (ii) Shear struss in weld material = 108 Mpg conset plate D= ISOKN 100 P= IDKN mm Assume guiset plate of 12mm thick let s= size of wad .. minimum size of wuld for 12mm thicker plate = Smm alm manimum Size of weld for lomm thinner plan - Thence of Thinner plate - 1.5 = 10-1.5 = 8.2 WW alm -. we provide size of was (5) = 6mm Note -: Studings may desume s = 5 to 8 mm according to check the Answersheet Throat thicknes (t) = 0.7 x size of weld OIM

= 4.2mm -

Subject Code: 17505

Model Answer

Page No: 06 /35 N

Q .NO	SOLUTION	MARKS
, e.81	factored load (PW) = 150KN	
	$= 120 \times 10^{3} \text{ M}$	Olla
	for fe 410 grade sted (Assume	
	Ultimate strus (fu) = 410 N/mm² grase)	
	(et x = lap length	
	*	
	· Total lungth of well (1) - n+x+100+100	
	= 2x+200	OIM
	NOW, we know that	
	Design strongth of fille wed - tx Lx fy	
Verse-1	V3 X Ymw	
	150×103= 4.5× (5×+200)× 410	OIM
	13 X 1.2	
	Ymw=1:5	
	(student may arrang that)	
	100 ×103 = 662.79 × (2x +200)	
	26.31 = 201	
	X= 13.15mm	
	Say In= 15 mm	011
	Note: Student may assume shopwed or site	vud.
		- ×
	· \	12

Page No: 07 / 35 N

Model Answer

Subject Code: 17505

O.NO SOLUTION MARKS 6 MMOIXOPXOOL BSI 150 60000 mm lomm gomm Diameter of bolt = 18 mm Diameter of hole (dh) = 18+2= 20mm . Net sectional area of connected leg (Anc) = (150-5) + - dhxt = (150-10/2)×10-20×10 = 1250 mm2 1/2 M Goost area of outstanding leg (Ago) = (90-t/2) xt $= (90 - \frac{10}{2}) \times 10$ = 850 mm2 · Met sectional area (An) = Anct Ago = 850+ i250 = 2100 mm2 Mow find Met effective area Ane .. net effective unea (Ane) = < x An = 1980 MW5 . - . shear lug factor <=0.8 for No. 0+ bolts >4 M

Subject Code: 17505

Model Answer

Page No: 08 /35 N

Q .NO	SOLUTION	MARK
0.3	ii> Cose-II	
	when shorter leg connected to Gussel plate	
1 1	The gussel plan	
3.7	ISA ISOXOXIOMIN	
	mm T	T
	Tomm, Tomm	
	()OTTO	
	Diameter of bult = 18 mm	
	Diameter of hole (dh) = 18+2 = 20mm	LM
Securit	Met sectional array of connected long (And)	701
	$= (q_0 - t/) \times t - dh \times t$	
	$= (90 - \frac{1}{2}) \times t - dh \times t$ $= (90 - \frac{1}{2}) 10 - 20 \times 10$	
	$= 650 \text{mm}^2$	LM
		た)
2	gross Arcu of outstanding leg (Ago)	
	=(10-t/)xt	
	= (150-10/2) × 10	
	$= 1400 \text{ mm}^2$	
		12M
	Net sectional area = 650 + 1450 = 2100 mm2	1/2M
	()	11794
	- Ane - An xx	
	-0.8 × 7100	,
	= 1680 mm2	m
	shear lay factor < = 0.8 for number of bolt > 4	IM

Model Answer

Page No: 09 /35 N

Q .NO	SOLUTION	MARKS
g-2 (a)	m /	
,,,,	12mm.	
	Nominal diameter of bolt = 20mm	
	Het area of bolt at Hroad (Anb) = 0.78xT/xd2	
	= 0.78 × II × 202	
	Anb=245.04mm24	1,19
	for fe410 grade Steel plate (assumed)	
	Whiman striss for plate by = 410 N/mm2	
	Fox 4.6 grade of bolt	
o Steman	Whiman struss for bolt (FUB) = 4 X100= 400 N/mm	2
	yield strus for bolt (fyb)= 400 xo.6= 240 N/	nm2
1		OIM
l.	Now find design shearing shongth of bolt	
	(Vdrb)	
	:. We know that	
- X	Vdsb = fub [nn x Anb+ns+ Ans]	121
	Here number of shear plane with threat	
	into cepting the shear plane Mn=1	
	number of shear plane with out thread	
	intercepting the shear plane ns=0	
	·· Ngrp= 400 x [1x 542.04 +0]	m
	Ymb = partial factor or safety for	
	polt Warrin = 1.52	

Subject Code: 17505

Model Answer

Page No: 10 /35 N

Q .NO	SOLUTION	MARKS
-3	V35b = 45.23 x 103 N	
To	Now find begins bearing stringth of bolt (Vd	pa)
7 <u>2</u> 	Vaph = 25 x Kbx (dxt) x fy Ymb	12M
	Here coeff. Kb is minimum of	
	O e P our Fub	EM
	a) Diameter of hole (dh) = Nominal dia +2	
No.	= 20+2	
	= 22MM	1/2M
	b) End distance (e) = 2d = 2x20 = 40 mm	
1 - ·	c) pitch (P) = 2.5d	
	= 5.2×50 = 20 MM	1/2 M
)	$\frac{e}{3dh} = \frac{40}{3 \times 22} = 0.606$	
2	ii) P -0.25 = SD -0.25 = 0.507	1/2M
	iii) fub = 400 = 0.975 & iv) 1	1/2 M
	Hence Kb = 0.507 mm	
	take minimum value	
	Mow find design bearing Strongth of bolt (VIPP)	
	= 25 X Kb X (dxt) x fy	LM
	Ymb	10

Subject Code: 17505

Model Answer

Page No: 1) /35 N

Q .NO	SOLUTION	MARKS
200	= 2.5 × 0.503 × (20 ×12) × 410	
	1.25	
	1965 33.43 X 193 M.	0/12)
965	More find bott value te. Strongth of bolt	
	· · Bolt value = minimum strongth but showing &	
	bearing smarth of bolt	
	i.e. minimum bet Volub & Hapb	
2 Year-12	= 45.50 × 103 M	1/2M
	full shongth of member = 0.9x hu x Area of plan	
	= 09×410 (200-1×20) X12	
	= 630.54 × 103 N	1/M
2	ful strength of plan	1211
	:. No. of bolts - full strungth of plate Bolt value	
	- 630.54 X103	
	801×45.24	
	= 13.92 Say IH NOS	12 M

Page No: 12435 N

Model Answer

Subject Code: 17505

Q.NO SOLUTION **MARKS** Actual length (b)=24 = 2400 mm bJ : effective length (L) = Kb = 0.7 x 6 · fox angle connected by weld - 0.7 × 2400 L= 1680 mm M least radius of guration for single angle = min ·. 8min = 7vv = 17.5mm = 8vv NOW Find stunder new ratio (>) >= eff. length = 1686 $\lambda = 96$ Mow find design compressive stress (fed) for buckling class 'c) from table of slonderness ratio feed (N/mm²) By interpolation SYX 90 14 121-107 × (100-96)+107 96 107 1/2 M 100 X= 112.6 N/mm2 How ting gridu example of sking (bg) Pd = Agx fcd = 10H3 X 112.6

Page No: 13 / 35 N

Subject Code: 17505

Q .NO	SOLUTION	MARKS
(c)	makind ODT = 12 Kylm = 12 N/WW	
	effective span (le) = 6m= 6000 mm	
	= farming load (ma) = 12 × 12	
	= 55.8 N	1, 00
		12"
	Mow find factored moment (Mu)	
	- Muxle2	
	8	
•	= 22.5 × 60002	
	8	
	= (01.22 x 106 N/mm	1/2M
pl Service	Now find factored sheets force v	
	V = _ Hurle	
7	2	
	= 22.5 × 6000	
	2	
1	= 67.5 × 103 M	12M
	Moco find required Section modulus Zona as Ze	
	Zpreq = ma. Ymo = [01.25 x 106 x 1.]	
	79 250	
	= 4455 x 103 mm < Zpawailal	ole
	Terry = 445.5 × 183 - 390.78 × 183 mm3	0
	1.14 < Ze or Zmn availa	
	availa	ble
	oK	02.14

Page No: 14/35 N

Subject Code: 17505

Q.NO SOLUTION MARKS * Check for shear Here design shew strongth of section (Vd) = 0.525 x fy (twxh). = 0.525 X 250x 6.9 x250 = 226.40×103N As design shows strongth (Ud) > show strongth Home safe in shows check for deflection fallowable = le = 6000 = 20mm NOW Find maximum detection (&man) Smore = SW LET 384 ELXX = 5 X15 X 60004 384 XJX102 XZ131.6 X104 = 24.66 mm Az. Emons > fallowable Hence Lection is not sate in detection conclusion. the given IsmB-220 section is not OIM sate hence not suitable

01 M

each

any Two

SUMMER - 15 EXAMINATIONS

Subject Code: 17505 **Model Answer- Design of Steel Structure** Page No-15/35 Q.NO SOLUTION MARKS Q-3 Attempt any Four of the following 16 State types of bolted joints and types of failure in case of bolted joints. a) 04M i)Types of bolted joints 01M A) Lap Joint. -: Single line bolting -: Double line bolting B) Butt Joint. 01M -: Single cover Butt joint -: Double cover Butt joint ii)Failure of Bolted joint 01/2 M A)Failure of plate each -: by tearing of plate(shear failure) any Two -: by tensile failure of plate -: by bearing of plate 01/2 M B)Failure of bolt each -: by shear failure of bolt any Two -: by tensile failure of bolt -: by bearing failure of bolt State two advantages of welded joints and two disadvantages of bolted joints. b 04M **Advantages Of Welded Joints** 1) The welded structures are usually lighter than riveted structures. This is due to the reason, that in welding, gussets or other connecting components are not

used. 2) The welded joints provide maximum efficiency (may be 100%) which is not possible in case of riveted joints. 3) Alterations and additions can be easily made in the existing structures. 4) As the welded structure is smooth in appearance, therefore it looks pleasing. 5) In welded connections, the tension members are not weakened as in the case of riveted joints. 6) A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself. 7) Sometimes, the members are of such a shape (i.e. circular steel pipes) that they afford difficulty for riveting. But they can be easily welded. 8) The welding provides very rigid joints. This is in line with the modern trend of providing rigid frames. 9) It is possible to weld any part of a structure at any point. But riveting requires enough clearance.

10) The process of welding takes less time than the riveting.

SUMMER - 15 EXAMINATIONS Model Answer- Design of Steel Structure

Page No- 16/35

Q.NO	SOLUTION	MARKS
b) Cont.	 Disadvantages of bolted joints Due to holes made in members to be connected, tensile strength of the members is reduced. Rigidity of joint is affected due to loose fit. Deflection may increase due to affected Rigidity of joint Nuts are likely to loose due to moving load vibration. Bolted structures are heavier than welded structure due to use of connecting angles. Circular section can not be bolted It is not possible to get 100% efficiency in case of bolted connection Problem may arise in case of mismatching of holes. 	01 M each any Two
c)	Draw sketches of Howe type and Pratt type truss showing pitch, rise, panel Point, panel, principal rafters and all members in one of the above types.	04M
	Principal Peak doint Ratte Panel Point Sag Tie Bottom chord Howe Truss	02M
	Pratt Trus	02M

SUMMER – 15 EXAMINATIONS <u>Model Answer-</u> Design of Steel Structure

Page No-12-135

Q.NO	SOLUTION	MAI KS
(d) -	State different types of loads and its combination Considered during design of roof truss. Explain in brief any one of them along with its relevant IS Code.	04M
	Types of loads Dead Load Imposed load or live load Snow load Wind load Earth quack load	02M
	Load Combinations The following combination of loads with appropriate Partial safety factors (see Table 4) maybe considered. a) Dead load + imposed load b) Dead load + imposed load + wind or earthquake load c) Dead load + wind or earthquake load d) Dead load+ erection load.	02N
(e)	Draw a neat sketch and label of an angle Purlin with principal rafter at Panel Point having root covering is A.C. sheets.	04N
	Angle pulling clear angle principal Rafter	04N

SUMMER - 15 EXAMINATIONS Model Answer- Design of Steel Structure

Subject Code: 17505

Q.NO			SOLUTION		MARK
b)	The second secon		of gyration and Slenderness Ratio. Also state maxim erness ratio for any two conditions of compression m		04M
	ine ma (of ii. Sle	mponer ertia, it ass (of r mass, enderne	f gyration or gyrations refers to the distribution of the acts of an object around an axis. In terms of mass momen is the perpendicular distance from the axis of rotation to mass, m) that gives an equivalent inertia to the original m). The ess ratio is the ratio of the length of a column and the lean of its cross section.	o a point object(s)	01M 01M
			values of slenderness ratio	/#	
	state ma	XIIIIUIII	values of sienderness ratio		01M FOR
	>	Table 7.4	Maximum Slenderness Rațio (λ) for Compression Members		WRITI ANY
		S. No.	Type of Member	λ	TWO
of Street,			A tension member in which a reversal of direct stress occurs due to loads other than wind or seismic forces.	180	
		2.	A member carrying compressive loads resulting from dead loads and imposed loads.	180	
	7	3.	A member subjected to compressive forces resulting only from combination with wind/earthquake actions, provided the deformation of such members does not adversely effect the stress in any part of the structure.	250	
		4.	Compression flange of a beam restrained against lateral torsional buckling.	300	
		5.	A member normally acting as a tie in a roof truss or a bracing system is	350	

Page No: 20/25

Q.NO	SOLUTION	MARKS
Q-4 (A)	Explain limit of width to thickness ratio to proun	
c)	buckling for a single angle strut, the limiting	
	width to thickness ratio for a semi-compact class	
	is 15.7 € check whether . IsA goxgox6mm is	
-	of semi-compact class or not fy=250 Mpa.	
	compression element Ratio	
	single angle, or double b/t	
	angles with the components d/t	
i i	<u></u>	
d Warren		
	15A 90x90x6mm Ag= 1047 mm², b=40, d=90 t=6mm	
	$b/t = \frac{90}{6} = 15 < 15.7e$	011M
-)	$\frac{3}{16} = \frac{90}{6} = 15 \times 15.76$	oilm
	The given section is: in semi-compacted class.	
2		
		,

Page No- 4 /35

	Arran (A) Single I		Lucing in Face A.	Lacing on Face B	04M
	Eucreg en Face A Preferre Arran (A) Single I	Lacing on Face H	Face A Preferre		02M
]	Face A Preferre Arran (A) Single I	Face B td Lacing gement	Face A Preferre		
	Face A Preferre Arran (A) Single I	Face B td Lacing gement	Face A Preferre		- 1
]	Preferre Arran (A) Single I	td-Lacing gement	Preferre		
	(A) Single I		Avenue	ed Locing	-
	state meaninements of			Local System	
	state meaninements of	Figure 6.5 L	aced column		
	state requirements of				01M
	Lacing to be used.				EACH WRIT
	Width of Lacing Bars In bolted/riveted construction	, the minimum	width of lacing	bars shall be three time	
t	the nominal diameter of the e	0			TWO
	Thickness of Lacing Bars	1 11 .1	1 1 0		
1 3	The thickness of flat lacing b length for single lacings and				
1	Angle of Inclination			and the same of th	_
	Lacing bars, whether in doub less than 40° nor more than 7		stems, shall be	inclined at an angle not	
77	Spacing	0			
\ \tag{t}	The maximum spacing of lac welding, shall also be such the main member (al/rl), between	at the maximun ween consecutive	n slenderness rave lacing conne	atio of the components o	HT.

Model Answer- Design of Steel Structure

Page No- 27/35

Q.NO	SOLUTION	MARKS
B)	Attempt any one	06M
a)	Draw sketches of three different modes of failure in case of members Subjected to Axial Tension.	06M
	Three different modes of failure in case of members Subjected to Axial Tension. i) Block Shear Itential Measure Itential	02M FOR EACH FIG.
	iii) Gross section yielding	
	Tensile Yielding Happens Here	

Subject Code:

Page No: <u>\$\lambda\$</u> /35 N

Q .NO	SOLUTION	MARKS
0-4(0)		
	Step-I) calculate Ag rego =	12
9	Agray = 1.15 (Td) = 1.15 (210×103) = 1061.53 m.	m ² /2
	Step-II) selection of Trial section	
	Select Is A goxgo x 8 mm having Ag = 1137 mm²	
-	Step-SII) Nos of bolts rayd Bolt value = 453 KM (given)	
*	NOS. OF boit = 210/45.3 = 4.63 = 5 MOT	加加
	step-17 Check the shungth of section for goxgo a) Design Shungth due to yielding of gross-section	X3
2	Tag= Ag X Fy 8mo	
	= 1137 X YD	
	Tdg = 258-40KM	km
	b) Design strongth due to rupture of critical section	£1
	2	E
	$\frac{g_0}{mm} = \frac{1}{30mm}$	
		Ar

Page No: 24/38

Q.NO	SOLUTION	MARKS
	Ton= < An fu Ymi	1/217
	An = Anc + Ago	
	$Anc = \left(B_1 - dh - t/2 \right) \times t$	
	Anc= $\left(90 - 22 - \frac{8}{2}\right) \times 8$	
	Anc= SI2 mm2	
a want	$Ago = \left(B_1 - \frac{1}{2} \right) t$	
	$Ago = \left(go - \frac{8}{2}\right) 8$	
	Ago = 688 mm ²	
	$An = Anc + Ago = S12 + 688$ $An = 1200 mm^2$	1/2M
3	Ton= & An fy &= 0.8 8mi Assuming more than 4 hol	K 3
	0-8 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	Ton= 0.8 x1200 x 410	
	Ton= 314.88 KM	とり

Page No: <u>\(\mathbb{Y}\)/3\(\sigma\)</u>

Q.NO	SOLUTION	MARKS
		+
		100
	c) nesign strongth due to Block clc sheer	
	Decian Immu de Malene shake	-
	C. Keelly same of the Late of the control	
	Ltg= 4smm O O O O O	
	9=45 mm	
	Lvg = 240 mm	
	somm somm 40 mm	
	* * * * * * * * * * * * * * * * * * * *	
	Somm Somm	
	Assume edge distance = 40 mm	
	9 = 45 mm / Ltg = 45 mm	
	Spainy of bolt = 50mm Aug = 240×8 = 1920 mm ²	1
	Hug = 240 x 8 = 19 10 mm	1/2M
	A SI Famber allowing a SALTE	
	Hnu = 5 mg - [nampa of polty - 0.2 an] }	
	Aun = \{ Lug - [numbus of bolfi - 0.5dh] \} t = \{ 240 - [(5-0.5)\gamma2] \} \x 8	
		1
	Aun = 272 mm	12M

Page No: <u>4</u>135

Q.NO	SOLUTION	MARKS
	Atg = Litgxt = 45x8 = 360 mm ²	
	$Atg = 360 \text{ mm}^2$	
	$Atn = (Lty - 0.5 dh) \times t$ $= (45 - 0.5 \times 272) \times 8$ $Atn = 292 mm2$	
	Atn = 272 mm2	12M
	Tabl = Avg fy O-9 Atn fu J3 x Ymo + Ymi	
A	- 1920 × 250 0.9 × 272×410 - 13 × 1.10 1.25	
	- 480000 1. 100368	
	1.73 X 1.10 1.125	
	Toby = 341.156 KM	12M
?	Tdbz= 0.9 Avn fu + Atg &4 T3 rm1 rmo	
	- 6.9 × 1128 × 410 , 360 × 250	
	1/3 × 1.25 1:10	
	Tdb2 = 274.07 KM Tdb = 1ess of Tdb1 & Tdb2	1/2M
	Sotake value Tdb = 274.07 KM	
	The tensile strength of angle = lesser of Tdg, Tdn & Tdb (258.40, 314.88 & 274.07)	
	This is axeater than acquired 210KN < 258.40KN	12 M

This is greater than required 210KN < 258.40KN

SUMMER – 15 EXAMINATION <u>Model Answer</u>

Page No: 29/35

Q.NO	SOLUTION	MARK
Q 5	Attempt any two	
a)	A column ISMB 300 @ 46.1 Kg/m carries an axial load of 1200 KN. Design a slab base and concrete pedestal for column. The SBC of soil is 180 kN/m ² . M20 – Concrete is used for concrete pedestal.	
	For ISMB 300 b_f = 140 mm, t_f = 13.1 mm, fy = 250 MPa, fu = 410 MPa r_{mo} = 1.1. Draw a neat sketch as per designed details.	
	Solution:	
	Given P = 1200 KN	
	Calculate the required area(A) of base base plate	
	A = column load/ 0.6 f _{ck}	
	$A = (1200 \times 10^3) / (0.6 \times 20) = 100 \times 10^3 \text{ mm}^2$	1/2M
	2) To find the size of base plate.	(FR# NOT BESS)
of Western	L _P & B _p be the sizes of plate	
	D =length or longer length = 300 mm	
	B = width or shorter side of the column = 140 mm.	
	$L_P = (D-B)/2 + \sqrt{[\{(D-B)/2\}^2 + A]}$	
	$L_P = (300-140)/2 + \sqrt{(300-140)^2/2 + 100 \times 10^3}$	
	= 406.19= say 410 mm.	
	$B_p = A/L_p = 100 \times 10^3 / 410 = 243.90 \text{ mm say } 245 \text{mm}$	
	Larger projection $a = (L_P - D)/2 = (410 - 300)/2 = 55 \text{ mm}.$	
	Shorter projection b = $(B_P - B)/2 = (243.90 - 140)/2 = 52$ mm.	02M
	Area of base plate provided = $L_P \times B_p = (D + 2a) \times (B + 2b)$	1
	= (300+2x55) x (140+2x52)	
	$= 100 \times 10^3 \text{ mm}^2.$	
	Calculate ultimate bearing pressure	
	$W = P/(L_P \times B_p) = 1200 \times 10^3 / (410 \times 245) = 11.95 \text{ N/mm}^2$	1/2M
	4) Calculate thickness of base plate	
	$t_s = [(2.5 \times w (a^2 - 0.3 \times b^2) \text{ rmo / fy})]^{0.5}$	

= $[(2.5 \times 12 (55^2 - 0.3 \times 52^2) 1.1/245)]^{0.5} 17.26$ = say 18 mm t_f = 13.1 mm. 01M Size of base plate provided 410 x 245 x 18 mm 5) Calculate the size of concrete pedestal Area of concrete pedestal = 1.1 P/(SBC X 1.5) = 1.1 X 1200 /(180 X 1.5) = 4.88 m² $Lf = \frac{Lp - Bp}{2} + \sqrt{\frac{(Lo - Bp)^2}{2} + Af} = \frac{o \cdot 4 - o \cdot 150}{2} + \sqrt{\frac{(o \cdot 4 - o \cdot 15)^2}{2} + 4.88}$ $Br = \frac{Ar}{2.28} = \frac{4.88}{2.28} = \frac{2.14m}{2.14m}$, $0r = \frac{Lr - Lp}{2} = 940mm$ 02M 6) Neat sketch 02M Note: Student can also take square shape of base plate. Accordingly full marks should be given b) An industrial bldg. has Howe roof truss having 12 m span. Take A/C sheet covering weighing 175 N/m², eight panel lengths along the tie member, pitch of roof =1/6 and weight of purlin is 55 N/m². Assume self wt of truss as 90 N/m². Calculate the panel point loads for dead load and live load. Solution: Span = 12 mPitch of roof = 1/62_m

Rise = pitch x span = $1/6 \times 12 = 2m$.

SUMMER – 15 EXAMINATION <u>Model Answer</u>

29/35 Page No: ___/N

	Ø =18.43°	01M	
	Sloping length = $\sqrt{(6^2 + 2^2)}$ = 6.32 m		
	We have 8/2 = 4 panel along each sloping length.		
	c/c spacing of purlins at panel points = 6.32/4 = 1.58 m.		
	Assume spacing of truss = 4m		
21	A) Dead load calculation		
	Weight of A/C sheet = 175 N/m ²		
	Weight of purlin = 55 N/m ²		
	Self wt of truss = 90 N/m ²		
	Total Dead load = i+ii+iii = 175+55+90 = 320 N/m ²		
	spacing of trusses = 4massumption	01M	
	Length of each panel = 1.58 x cos 18.43 = 1.5 m		
d Minnet	Load at each panel point = 320 x plan area =320 x (1.5 x 4)/1000	01M	
	=1.92 KN	½M	
	Load at each panel point = 1.92/2 = 0.96 kN.		
	B) Live load calculation		
	As slopeis 10^{0} , the imposed load on purlin is 750 N/m ² less 20 N/m ² for every degree increase in slope in excess of 10^{0} but > 400 N/m ²		
	Imposed load on purlin = 750- (18.43-10) x 20		
	= 581.4 N/m ² > 400 N/m ²	01M	
	Imposed load on truss supporting purlins = (2/3) x 581.4 =387.6 N/m ²		
	Imposed load at each interior panel = 387.6 x (1.41 X 4)/1000	01	
	= 2.186 KN.	½M	
	Imposed load at each end panel = 2.186/2 = 1.093 KN.		
	Note: as c/c spacing of trusses is not mentioned, student can take any appropriate value, accordingly full marks should be given.	½M	
C)	Find the wind load per panel point for designing a roof truss of span 10 m and pitch as $\frac{1}{2}$. The height of eaves is 5 m above ground. Assume $V_b = 4$ m/s, probability factor $K_1 = 1$, Size factor $K_2 = 0.8$, topography factor $K_3 = 1$.		

SUMMER - 15 EXAMINATION **Model Answer**

Solution:

Rise =
$$\frac{1}{4}$$
 x 10 = 2.5 m

$$\tan \theta = 2.5/5 = 0.5$$
,

$$\theta = 26.56^{\circ}$$

1/2M

$$V_z = V_b \times K_1 \times K_2 \times K_3$$

$$= 3.2 \text{ m/s}$$

1/2M

II) Design wind speed

$$P_d = 0.6 (V_z)^2$$

$$= 0.6 \times 3.2^{2}$$

$$= 6.144 \text{ N/m}^2$$

III) Wind normal to ridge

1/2M

IV) Wind force calculation

Normal permeability $C_{pi} = +-0.2$

To find Cpe

building height ratio h/w = 5/10 = 0.5

1/2M

for

$$\theta = 26.56^{\circ}$$

Note full mank's give to student's if up to above Cpe

-0		345
0°	Wind angle	90°
GH	EG	FH
-0.4	-0.7	-0.6
-0.4	-0.7	-0.6
	GH -0.4	GH EG -0.4 -0.7

01M

1. Wind normal to ridge,

for
$$\theta = 20^{\circ}$$
, Cpe =-0.4 and $\theta = 30^{\circ}$, Cpe = 0

by interpolation Cpe = -0.1376 for $\theta = 26.56^{\circ}$

31 35 Page No: __/N

	Wind force = F = (Cpe - Cpi) x P _d	
	= (-0.1376 - 0.2) x 6.144 = - 2.07 (Upward pressure)	
	= (-0.1376 + 0.2) x 6.144 = + 0.38 (Downward pressure)	
	= (- 0.4 -0.2) x 6.144 = - 3.68 (Upward pressure)	01M
	= $(-0.4 + 0.2) \times 6.144 = -1.22$ (Upward pressure)	
	2. Wind parallel to ridge $\theta = 90^{\circ}$	
	Wind force = F = (Cpe – Cpi) x P _d	
	= (- 0.7 – 0.2) x 6.144 = - 5.52 (Upward pressure)	
	= (-0.7 + 0.2) x 6.144 = - 3.07 (Upward pressure)	01N
	$= (-0.6 - 0.2) \times 6.144 = -4.91$ (Upward pressure)	
	= (-0.6 + 0.2) x 6.144 = - 2.45 (Upward pressure)	
	Design wind pressure maximum value	
	+ 0.38 (Downward pressure)	
	- 5.52 (Upward pressure)	1/2M
	as c/c spacing of trusses are not given.	72.00
	Take c/c spacing as 4 mAssumption	
	Then sloping line will be = $[5^2+2.5^2] = 5.59$ m.	
		01M
	Then plan area = $5.59 \times 4 = 22.36 \text{ m}^2$.	OTIVI
	Downward wind load on each intermediate panel = wind pressure x area exposed	½M
	= 0.38 x 22.36 = 8.49 N	/2IVI
	Downward wind load on each end panel = 8.49/2 =4.24 N.	
	Upward wind load on each intermediate panel = 5.52 x 22.36 = 123.42 N	01M
		OTIVI
	Upward wind load on each end panel = 123.42/2 =61.71 N.	
	Note: as Cpe values are not given student may write Cpe value more or less nearer to actual value, full marks should be given. Also spacing is not mentioned, student can take any appropriate value, accordingly full marks should be given.	
,		

SUMMER – 15 EXAMINATION <u>Model Answer</u>

Page No: ___/N

Q.6	Attempt any four	4x4 =1
a)	Write the steps to calculate the thickness of base plate used in slab base. Why anchor bolts are used in slab base.	
	Solution:	
	Design steps to find thickness	
	1) To calculate area (A) of base plate	
	A = Column load/ Bearing strength	01M
	Bearing strength of concrete = 0.6 f _{ck}	1
	2) Select the size of base plate.	
	L _P & B _p be the sizes of plate	
	D =length or longer length	
	B = width or shorter side of the column	
	Consider square plate	
	$L_P = (D-B)/2 + \sqrt{[\{(D-B)/2\}^2 + A]}$	01M
	$B_p = A/L_p$	
	Larger projection $a = (L_P - D)/2$	
	Shorter projection b = $(B_P - B)/2$	
	Area of base plate provided = $L_P \times B_p = (D + 2a) \times (B + 2b)$	
	3) Calculate ultimate bearing pressure	-
	$W = P/(L_P \times B_p)$	01M
	4) Calculate thickness of base plate	
	$t_s = [(2.5 \times w (a^2 - 0.3 \times b^2) \text{ rmo / fy})]^{0.5}$	01M
	Function of anchor bolt: To connect concrete pedestal and base plate anchor bolts are used.	
	A SAME AND	
	·	

SUMMER - 15 EXAMINATION Model Answer

b)	Differentiate between Laterally supporter showing all details	d and unsupported beam with neat sketch	04M
	Laterally supported beam	Laterally unsupported beam	
	In laterally supported beam, compression flanges are embedded in concrete	In laterally unsupported beam, compression flanges are not embedded in concrete	01M
	Compression flange of Beam is restrained against rotation	Compression flange of Beam is free for rotation	01M
	Lateral deflection of compression flange is not occur	Lateral deflection of compression flange is is occur	01M
, Seeming	Laterally supported. (It means compression flange is restrained)	Laterally unsupported.	01M
	**		
c)	with axial load, base is provided called gu	large or column subjected to moment along	\$1 L

34 | 35 Page No: ___/N

	Cover plate Gusset plate Gusset plate Clear angle Plan(Top view) Anchor bolt	03M
	Elevation Fig Gusseted Base.	
d)	How beam section are classified for bending as per IS 800:2007. Describe any two of them.	04M
	Solution:	
,	Classification beam: 1) Plastic or class-I 2) Compact or class –II 3) Semi compact or class – III 4) Slender or class- IV Explanation in detail 1) Plastic or class-I Cross section which can develop plastic hinge, sustain large rotation capacity	02
	required to develop plastic mechanism are called as plastic section. These sections are unaffected by local buckling and are able to develop their full plastic moment capacities until a collapse mechanism is formed. 2) Compact or class –II	01 for
?	In compact section, the full cross section forms first plastic hinge but local buckling prevents subsequent moment redistribution. These sections develop full plastic moment capacities M _P but fails by local buckling due to inadequate plastic hinge rotation capacity.	(any two)
4.5	3) Semi compact or class – III In semiplastic section the extreme fibres reach the yield stress but local buckling prevents the development of plastic moment resistance.	
	4) Slender or class- IV. The slender section cannot attain even the first yield moment because of premature local buckling of web or flange.	. I
3		

35/35 Page No: ___/N

Subject Code: 17505

e)	A simply supported beam of 6 m span supports on RCC slab where in comp. flange is embedded. The beam is subjected to a dead of 25 KN/m and super imposed load of 20 KN/m, over entire span. Calculate plastic and elastic modulus required. Assume $r_f = 1.5$, $r_m = 1.1$ fy = 250 N/mm ²	04M
	Solution:	
	1)Calculation of factored load	01
	Dead load = 1.5 x 25 =37.5 KN/m	
	Live Load = 1.5 x 20 = 30 KN/m	
	2) Calculate Maximum bending moment and shear force	
	B.M =WL ² /8 + WL ² /8 =37.5 x 6^2 /8 + 30 x 6^2 /8 =303.75 KN.m	02
	S.F =WL/2 +WL/2 = 37.5 X 6/2 +30 X 6/2 = 202.5 KN.m	1/2
	3) Plastic modulus = $Z_p = M \times r_{mo}/f_y = 303.75 \times 10^6 \times 1.1 / 250 = 1.3365 \times 10^6 \text{ mm}^3$ 4) Elastic modulus = $Z_e = Z_p / 1.14 = 1.3365 \times 10^6 / 1.14 = 1.17236 \times 10^6 \text{mm}^3$	1/2