

Model Answer

Subject: Design of Automobile Components

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub	Answer	Marking
	Q. N.		Scheme
1.	(A)	Attempt any three of the following:	12
	a)	Define factor of safety. State the factors affecting its selection.	04
		Answer: (Def^n - 2 marks, List of factors- 2 marks.)Factor of Safety: Factor of safety is defined as the ratio of the maximum stress to the working stress or design stress.Mathematically,Factor of Safety =Maximum stress Working stressIn case of ductile material, Factor of Safety =Yeild point stress Working stressIn case of brittle material, Factor of Safety =Ultimate stress Working stressIn case of brittle material, Factor of Safety =Ultimate stress Working stress	04
		The factors that influence the magnitude of factor of safety:(any two)	
		1. The reliability of applied load and nature of load,	
		2. The reliability of the properties of material and change of these properties during service,	
		3. The reliability of test results & accuracy of application of these results to actual	

Model Answer

Subject Code: 17525 Subject: Design of Automobile Components machine parts, 4. The certainty as to exact mode of failure, 5. The extent of simplifying assumptions, 6. The extent of localized stresses, 7. The extent of initial stresses setup during manufacture, 8. The extent of loss of property if failure occurs, 9. The extent of loss of life if failure occurs. Define the term: 04 b) i) Fatigue and ii) Endurance limit. Answer: i) Fatigue: 02 When the system or element is subjected to fluctuating (repeated) loads, the material of system or element tends to fails below yield stresses by the formation of progressive crack this failure is called as fatigue. The failure may occur without prior indication. The fatigue of material is affected by the size of component, relative magnitude of static and fluctuating load and number of load reversals. ii) Endurance limit with suitable example: 02 It is defined as maximum value of the completely reversed bending stress which a polished standard specimen can withstand without failure, for infinite number of cycles (usually 10^7 cycles). The term endurance limit is used for reversed bending cycle only. The endurance limit of material depends on: Type of load • • Surface finish Size of object Working temperature State the effect of keyways on the strength of shaft. c) 04 Answer: 04 **Effect of key way cut into the shaft:** The keyway cut into the shaft reduces the load carrying capacity of the shaft. This is due to the stress concentration near the corners of the keyway and reduction in the cross-sectional area of the shaft. It other words, the torsional strength of the shaft is reduced. The following relation for the weakening effect of the keyway is based on the experimental results by H.F. Moore. e = 1 - 0.2 (w/d) - 1.1 (h/d)where, e = Shaft strength factor, w = width of key way,d = diameter of shaft, andh = depth of keyway

Model Answer

Subject: Design of Automobile Components

	It is usually assumed that the strength of the leaved shaft is 75% of the solid shaft	
	It is usually assumed that the strength of the keyed shart is 75% of the solid shart.	
	Determine the bore and length of cylinder of 4-stroke diesel engine for following	04
d)	specification- Brake Power – 5KW, speed – 1200RPM, P _m -0.35 N/mm ² , Mechanical	-
-	efficiency - 80%, L/D =1.08.	
	Answer:	
	Given:	
	B.P. = 5kW = 5000 W	
	N=1200 r.p.m. or n= N/2 = 600 $P_{1} = 0.25N/(-2)^{2} = 0.25 - 10^{6} N/(-2)^{2}$	
	$P_{\rm m} = 0.35 \text{N/mm}^{-} = 0.35 \times 10^{\circ} \text{N/m}^{-}$	
	$\eta_{\rm m} = 80\% = 0.8$	
	L=1.08D	
	Bore and length of cylinder:	
	Let D= Bore of the cylinder in mm	
	A= across section area of the cylinder $=\frac{11}{4} \times D^2 mm^2$	
	We know that the indicated power,	
	B.P. 5000	
	$I.P. = \frac{1}{\eta_m} = \frac{1}{0.8} = 6250 \text{ watt}$	01
	We also know that the indicated power (I.P.),	
	$P_{\rm m} l.A.n = 0.35 \times 10^6 \times 1.08D \times \Pi D^2 \times 600$	
	$6250 = \frac{m}{60} = \frac{60 \times 4}{60 \times 4} = 2.96 \times 10^{6} D^{5}$	
	\therefore $D^3 = 6250/2.96 \times 10^6 = 2.11 \times 10^{-3} \text{ or } D = 0.128 \text{ m} = 128 \text{ mm}$	01
	$L = 1.08 \times 128 = 138.24mm \cong 139mm$	01
	Taking a clearance on both sides of the cylinder equal to 15 % of the stroke therefore	
	length of the cylinder.	0.1
	Length of cylinder= 1.15L= 1.15× 139 =160mm	01
B)	Attempt any one of the following:	06
a)	Explain the design procedure of Rocker arm for operating exhaust valve.	06
	Answer:	06
	Step I: Calculate reaction at the fulcrum pin	
	$R_{\rm F} = \sqrt{W^2 + P^2 - 2W \times P \times \cos\theta}$	
	Step II: Design of fulcrum pin:	
	(a) Let $d =$ Diameter of the fulcrum pin, and	
	l = Length of the fulcrum pin	
	= 1.25 d	

Model Answer

Subject: Design of Automobile Components

Model Answer

Subject: Design of Automobile Components

Model Answer

Subject: Design of Automobile Components

		$d_1/d_2 = r1/r2 - 1.25$	
		n=2	
		We know that power transmitted,	
		$P = \frac{2\pi NT}{2\pi NT}$	
		$r = \frac{1}{60}$	
		$7.5 \times 10^3 - \frac{2\pi \times 900 \times T}{10^3}$	
		60	01
		$\therefore T = 79.57 Nm = 79.57 \times 10^3 Nmm$	UI
		Since the intensity of pressure is considered as maximum,	01
		$C=P_{max}\times r_2=0.7 r_2$	UI
		Axial thrust transmitted by the frictional surface,	
		$\mathbf{W} = 2\pi \mathbf{c} \ (\mathbf{r}_1 - \mathbf{r}_2)$	
		$W = 2\pi \times 0.7 \mathbf{r}_2 \times (1.25\mathbf{r}_2 - \mathbf{r}_2)$	
		$W = 1.099 r_2^2 N$	01
		And mean radius of friction,	
		$\mathbf{R} = (\mathbf{r}_1 + \mathbf{r}_2)/2$	
		$R = (1.25r_2 + r_2)/2$	
		$\mathbf{R} = 1.125 \ \mathbf{r_2} \ \mathbf{mm}$	01
		We know that, torque transmitted,	
		$\mathbf{T} = \mathbf{n}.\ \boldsymbol{\mu}.\ \mathbf{W}.\ \mathbf{R}$	
		$79.57 \times 10^{3} = 2 \times 0.25 \times 1.099 r_{2}^{2} \times 1.125 r_{2}$	
		$r_2^3 = 128714.99$	
		$r_2 = 50.49 mm \cong 50 mm$	01
		Now $r = 1.25 r = 1.25 \times 50 = 63.50 mm = 64 mm$	
		Therefore diameters of frictional surfaces	
		Therefore diameters of metional surfaces,	
		$d_2 = 2r_2 = 100mm$	
		and $d_1 - 2r = 128mm$	01
		$u_1 - 2I_1 - I_2 0 H H H$	
2.		Attempt any four of the following:	16
	a)	Explain maximum shear stress theory of failure.	04
		Answer:	04
		According to this theory, the failure or yielding occurs at a point in a member when the maximum shear stress in a bi-axial stress system reaches a value equal to the shear	
		stress at yield point in a simple tension test	
		press at great point in a simple tension test.	

Model Answer

Subject: Design of Automobile Components

	Mathematically,	
	$\tau_{max} = \tau_{m}/F.S.$	
	$\tau_{\rm max} = Maximum$ shear stress in a bi-axial stress system.	
	τ = Shear stress at yield point as determined from simple tension test	
	and	
	F.S. = Factor of safety.	
	Since the shear stress at yield point in a simple tension test is equal to one-half	
	the yield stress in tension, therefore the equation (i) may be written as	
	$\sigma = \sigma_{yt}$	
	$r_{max} = \frac{1}{2 \times F.S.}$	
	This theory is mostly used for designing members of ductile materials .	
b)	Enlist any two applications of cotter and knuckle joint.	04
	Answer:	04
	Applications of cotter joint: (Any two – 1 mark each)	
	1. It is used in connecting a piston rod to cross head of steam engine	
	2. It is used in joining a tail rod with piston rod of an air pump	
	3. It is used in valve rod and its stem	
	4. Foundation bolt	
	Applications of Knuckle joint: (Any two – 1 mark each)	
	 The four joints for recentric red nump red joint Value red joint for accentric red nump red joint 	
	2. Valve fod john for eccentric fod pullip fod john	
	5. Tension link in ondge structure	
	4. Lever and rod connections 5. Swing arm of two wheeler	
	5. Swill all of two whether 6. Connection of link rod of leaf springs in multi ayle vehicles	
	7 Piston Piston Din Connecting Rod	
	8 Connections of leaf spring with chassis	
	o. Connections of real spring with chassis	
c)	State different types of levers with suitable applications (any two).	04
	Answer: (any two- 2 marks each)	04
	Types of leaver: First type, second type and third type levers shown in figure at (a),	
	(b) and (c) respectively.	
	$P \qquad P \qquad R_{\rm F}$	
	B F A A F A $-l_2 \rightarrow l_2$	
	$l_2 \rightarrow l_1 \rightarrow l_1 \rightarrow l_1 \rightarrow l_2 \rightarrow l_1 \rightarrow l_2 \rightarrow l_1 \rightarrow l_2 $	
	ψ $R_{\rm F}$ ψ W $R_{\rm F}$ W	
	$P \qquad W \qquad l_2 \qquad l_1 \qquad l_1 \qquad l_2$	
	(a) First type of lever. (b) Second type of lever. (c) Third type of lever.	
	Figure: Types of lever	
	a) First type lever: In the first type of levers, the fulcrum is in between the load	

Model Answer

Subject: Design of Automobile Components

Model Answer

Subject: Design of Automobile Components

		So for this reason nipping is provided in leaf spring.	
	、 、	Determine the thickness of plain cylinder head for 0.3 m cylinder. The maximum gas	04
	e)	pressure is 3.2 N/mm ² . Take C=0.1, σ_t = Tensile stress= 42 N/mm ² .	
		Answer:	
		Given Data: D= 0.3m= 300mm	
		$P = 3.2 \text{ N/mm}^2$	
		C=0.1	
		$\sigma_t = 42 \text{ N/mm}^2$	
		Thickness of plain cylinder:-	
		$t_h = D_v \sqrt{\frac{C.p}{\sigma_t}} = 300_v \sqrt{\frac{0.1 \times 3.2}{42}} = 26.18 \text{ say } 27 \text{ mm}$	04
3		Attempt any four of the following:	16
	a)	Explain aesthetic considerations in designing of automobile components.	04
	, , , , , , , , , , , , , , , , , , , ,	Answer: (Any two – 2 marks each)	04
		Aesthetic consideration in designing of automobile components:	
		1. Shape: The external appearance is an important feature, which gives grace & luster	
		to the product. This is true for automobile, household appliances. The role of designer	
		is to create the new shapes of machines which have aesthetic look. E.g. Aerodynamic	
		shape of aero plane for functional requirements to resist minimum air resistance.	
		2. Colour: Selection of proper colour is an impotent consideration in product design. Many colors are associated with different conditions. Morgan has suggested the	
		inearing of colors in the following table.	
		Colour Meaning	
		Colour Meaning	
		Red Danger-Hazard- Hot	
		Orange Possible danger	
		Yellow Caution	
		Green Safety	
		Blue Caution-Cold	
		Grey Dull Product	
		3. Surface finish: For greater strength, bearing loads, good fatigue life & wear	
		qualities of product, and the good surface finish is required. Better surface finish	
		always auracts the observers.	04
	b)	Explain the term:	V4
	U)	i) Interchangeability in design	
		A newar:	
		i) Standardization: It is defined as obligatory norms to which various	
		characteristics of a product should conform. The characteristics include	02

d)

Answer:

Material available
 Tensile strength
 Yield strength

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER- 17 EXAMINATION

Model Answer

Subject Code: 17525 **Subject: Design of Automobile Components** materials, dimensions and shape of the component, method of testing and method of marking, packing and storing of the product. Advantages of Standardization:-1. Mass production is easy. 2. Rate of production increases. 3. Reduction in labour cost. 4. Limits the variety of size and shape of product. 5. Overall reduction in cost of production. 6. Improves overall performance, quality and efficiency of product. 7. Better utilization of labour, machine and time. ii) Interchangeability in design: Interchangeable parts are parts (components) that are, for practical purposes, identical. They are made to specifications that ensure that 02 they are so nearly identical that they will fit into any assembly of the same type. One such part can freely replace another, without any custom fitting (such as filing). Write the type of Keys with their applications. c) 04 Answer: The following types of keys are :(Any four types- 2marks, and one application 04 each- 2 marks) 1. Sunk keys: (i) Rectangular Sunk Key (ii) Square sunk key (iii) Parallel sunk key (iv) Gib-headed key (v) Feather key (vi) Woodruff key 2. Saddle keys: (i) Flat saddle key (ii) Hollow saddle key 3. Tangent keys, 4. Round keys, 5. Splines Their applications 1 Sunk Keys- It is used, where key is to be removed frequently. 2 Saddle keys- They are suitable for light duty or low power transmission, as the power is transmitted due to friction. It is used as temporary fastening in fixing and setting eccentric parts, cams etc. 3 Splines- These splines are used for power transmission of very high order and also provide axial movement between shaft and mounted member. Practical applications of splines may be seen in gear shifting mechanism used in automobile gear boxes.

State the design considerations in semi-elliptical leaf spring.

Design considerations in semi-elliptical leaf spring:(Any Eight)

04

04

Model Answer

Subject Code: 17525 **Subject: Design of Automobile Components** 4. Young Modulus 5. Design stress 6. Total length 7. Spring Weight 8. Arc length between axle seat and front eye 9. Arc height at axle seat 10. Spring rate 11. Normal static loading 12. Available space for spring width Write the design procedure for designing of piston head or crown by strength 04 e) consideration. Answer: 04 **Design of Piston Head or Crown Strength basis:** The piston head or crown is designed keeping in view the following two main considerations, i.e. 1. It should have adequate strength to withstand the straining action due to pressure of explosion inside the engine cylinder, and 2. It should dissipate the heat of combustion to the cylinder walls as quickly as possible. I) On the basis of Strength:-The thickness of the piston head $(t_{\rm H})$, according to Grashoff's formula is given by $t_{\rm H} = \sqrt{\frac{3p.D^2}{16\sigma_t}} \text{ (in mm)}$ p = Maximum gas pressure or explosion pressure in N/mm², D = Cylinder bore or outside diameter of the piston in mm, and σ_t = Permissible bending (tensile) stress for the material of the piston in MPa or N/mm2. It may be taken as 35 to 40 MPa for grey cast iron, 50 to 90 MPa for nickel cast iron and aluminium alloy and 60 to 100 MPa for forged steel. 4 **(A)** Attempt **any three** of the following: 12 State the general design considerations. 04 a) Answer: **Design considerations in automobile design:** (Any eight) 04 1. Types of loads and stresses caused by the load. 2. Motion of parts and kinetics of machine. 3. Material selection criteria based on cost, properties etc. 4. Shape and size of parts. 5. Frictional resistance and lubrication. 6. Use of standard parts. 7. Safety operations.

Model Answer

Subject: Design of Automobile Components

8. Work shop facilities available.	
9. Manufacturing cost. 10. Convenient of assembly and transportation.	
b) Design turn buckle rod diameter to withstand a load of 1600 N, if permissible stresses are 70 N/mm ² and 60 N/mm ² in tension and shear respectively.	04
Answer: Given,	
P=1600 N,	
$ft = 70 \text{ N/mm}^2$,	
$fs = 60 N/mm^2$	
Design load, $P_d = 1.3 P = 1.3 x 1600 = 2080 N$	01
Let, Core diameter of $rod = dc$	
Now,	
$Pd = \Pi/4. dc^{2}. ft$	
$2080 = \Pi/4. \ dc^2. \ 70$	
dc = 6.15 mm	02
Rod diameter, $d = 6.15 / 0.84$	
$= 7.32 \text{ mm} \approx 8 \text{ mm}$	01
c) Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa.	04
c)Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa.Answer: Given:-P = 40 kW	04
c)Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa.Answer: Given:-P = 40 kW N = 2000 rpm,	04
c)Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa.Answer: Given:- $P = 40 \text{ kW}$ $N = 2000 \text{ rpm}$, Lower gear ratio, $G_1 = 3 : 1$,	04
c) Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa. Answer: Given:- $P = 40 \text{ kW}$ N = 2000 rpm, Lower gear ratio, $G_1 = 3 : 1$, Differential reduction $G_d = 5:1$,	04
c)Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa.Answer: Given:- $P = 40 \text{ kW}$ $N = 2000 \text{ rpm}$, Lower gear ratio, $G_1 = 3 : 1$, Differential reduction $G_d = 5:1$, Now the torque transmitted by the engine Te :-	04
c) Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa. Answer: Given:- $P = 40 \text{ kW}$ N = 2000 rpm, Lower gear ratio, $G_1 = 3 : 1$, Differential reduction $G_d = 5:1$, Now the torque transmitted by the engine Te :- $P = (2 \times \pi \times N \times \text{Te}) / 60$	04
c) Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa. Answer: Given:- $P = 40 \text{ kW}$ N = 2000 rpm, Lower gear ratio, $G_1 = 3 : 1$, Differential reduction $G_d = 5:1$, Now the torque transmitted by the engine Te :- $P = (2 \times \pi \times N \times \text{Te}) / 60$ $40 \times 10^3 = (2 \times \pi \times 2000 \times \text{Te}) / 60$	04
c) Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa. Answer: Given:- $P = 40 \text{ kW}$ N = 2000 rpm, Lower gear ratio, $G_1 = 3 : 1$, Differential reduction $G_d = 5:1$, Now the torque transmitted by the engine Te :- $P = (2 \times \pi \times N \times Te) / 60$ $40 \times 10^3 = (2 \times \pi \times 2000 \times Te) / 60$ Te =190.98 Nm= 190.98 × 10 ³ Nmm	04
c) Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa. Answer: Given:- $P = 40 \text{ kW}$ N = 2000 rpm, Lower gear ratio, $G_1 = 3 : 1$, Differential reduction $G_d = 5:1$, Now the torque transmitted by the engine Te :- $P = (2 \times \pi \times N \times \text{Te}) / 60$ $40 \times 10^3 = (2 \times \pi \times 2000 \times \text{Te}) / 60$ Te =190.98 Nm= 190.98 × 10 ³ Nmm Now torque transmitted by rear axle shaft TRA,	04
c) Design a rear axle for engine power- 40 KW at a speed of 2000rpm. Lower gear box ratio -3:1 and differential reduction as 5. Take allowable shear stresses 56MPa. Answer: Given:- $P = 40 \text{ kW}$ N = 2000 rpm, Lower gear ratio, $G_1 = 3 : 1$, Differential reduction $G_d = 5:1$, Now the torque transmitted by the engine Te :- $P = (2 \times \pi \times N \times Te) / 60$ $40 \times 10^3 = (2 \times \pi \times 2000 \times Te) / 60$ Te =190.98 Nm= 190.98 × 10 ³ Nmm Now torque transmitted by rear axle shaft TRA, TRA = Te $\times G_1 \times G_d$	04

Model Answer

Model Answer

Subject: Design of Automobile Components

(B)	Attempt any one of the following:	06
a)	Define stress concentration. State it causes. Explain the different methods to reduce stress concentration with suitable example.	06
	Answer: Stress Concentration: Whenever a machine component changes the shape of its cross section, the simple stress distribution no longer holds good and neighborhood of the discontinuity is different. This irregularity in the stress distribution caused by abrupt changes of form is called stress concentration.	01
	OR	
	Whenever there is a change in cross section of machine components, it causes high localized stresses. This effect is called as stress concentration.	
	Causes of Stress Concentration: (Any Four – ¹ / ₂ Marks Each)	02
	i. Variation in properties of material from point to point due to cavities, cracks or air pockets.	
	ii. Abrupt changes of shape and cross section.	
	iii. Concentrated loads applied at points or small areas of machine elements.	
	iv. Force flow line is bent as it passes from the shank portion to threaded portion of component due to changes in cross section. This results in stress concentration in transition plane.	
	v. Local Pressures	
	Methods of reducing stress concentration: (Any three)	03
	1. The methods of reducing stress concentration in cylindrical members subjected to tensile load.	
	(a) Poor	
	(c) Preferred (d) Preferred	
	In Fig. (a) it is seen that stress lines tend to bunch up and cut very close to the sharp re-entrant corner. In order to improve the situation, fillets may be provided, as shown in Fig. (b) and (c) to give more equally spaced flow lines. It may be noted that it is not practicable to use large radius fillets as in case of ball and roller bearing mountings. In such cases, notches may be cut as shown in Fig.(d)	

Model Answer

Subject: Design of Automobile Components

Model Answer

Subject: Design of Automobile Components

Model Answer

Subject: Design of Automobile Components

Model Answer

Subject: Design of Automobile Components

$F_{\rm L} = \frac{\pi D^2}{4} \times p$	
Where	
D = Cylinder here or piston diameter in mm and	
$p = Maximum gas pressure in N/mm^2$	
Let	
$d_{\rm c} = {\rm Diameter}$ of the crank pin in mm	
$l_e = D failed of the crank pin in mm.$	
$pb_{a} = Allowable bearing pressure in N/mm2 and$	
d_n l _n and pb _n = Corresponding values for the piston pin	
load on the crank pin = Projected area × Bearing pressure	
$= dc_1 c_2 pb_2 $ (ii)	
Similarly, load on the piston pin = dp, lp, pbp (iii)	
Equating equation (i) and (ii).	
we have	
$FL = dc \cdot lc \cdot pbc$	
Taking $lc = 1.25 dc$ to 1.5 dc.	
the value of dc and lc are determined from the above expression.	
•	
Again, equating equations (i) and (iii),	
we have,	
$FL = dp \cdot lp \cdot pbp$	
Taking $lp = 1.5 dp$ to 2 dp,	
the value of dp and lp are determined from the above expression	
3. Size of bolts for securing the big end cap:	
FI = Inertia load acting on bolts	
Let $aco = \text{Core}$ diameter of the bolt in fifth, at = Allowable tensile stress for the material of the bolts in MPa	
ot = Anowable tensile stress for the inaterial of the obits in for a,and $wh = Number of holts. Generally, two holts are used$	
Force on the holts: $Centerally two bons are used.$	
$F_{\rm I} = \frac{\pi}{4} (d_{cb})^2 \sigma_t \times n_b$	
From this expression, dcb is obtained. The nominal or major diameter (db) of the	
bolt is given by	
d _{eb}	
$d_h = \frac{d_{cb}}{Q_{cb}}$	
0.84	
4. <u>Thickness of the big end cap:</u>	
The thickness of the big end cap (tc) may be determined as below,	
Maximum bending moment acting on the cap will be taken as	

Model Answer

Subject: Design of Automobile Components

		$M_{C} = \frac{F_{1} \times x}{6}$ Where, x = Distance between the bolt centers. = Dia. of crankpin or big end bearing (dc) + 2 × Thickness of bearing liner(3 mm) + Clearance(3mm) Let, bc = Width of the cap in mm. It is equal to the length of the crankpin or big end bearing (lc), and ob = Allowable bending stress for the material of the cap in MPa. Section modulus for the cap, $Z_{C} = \frac{b_{c}(t_{c})^{2}}{6}$ \therefore Bending stress, $\sigma_{b} = \frac{M_{C}}{Z_{C}} = \frac{F_{1} \times x}{6} \times \frac{6}{b_{c}(t_{c})^{2}} = \frac{F_{1} \times x}{b_{c}(t_{c})^{2}}$ From this expression, the value of tc is obtain.	
5.		Attempt any two of the following:	16
	a)	Design socket & spigot type cotter joint with the following data; Load = 30kN, Allowable tensile stresses =50Mpa, Allowable crushing stresses = 90 Mpa & Allowable shear stresses =35 Mpa.	08
		Answer: Given: $P=30x10^3 N$ $\sigma_t = 50N/mm^2$ $\tau = 35N/mm^2$ $\sigma c=90N/mm^2$ Let- d= diameter of rod d1 = outer diameter of spigot d3 = diameter of spigot collar d4 = diameter of spigot collar a = distance between end of slot and end of spigot b = width of cotter c = width of socket collar e = width of socket neck t = thickness of cotter t1 = thickness of spigot collar l = length of cotter	

Model Answer

Subject: Design of Automobile Components

Subject Code: 17525

1.Find diameter of rod "d" considering failure in tension: $P = \frac{\pi}{4} (d)^2 \times \sigma t$ $30 \times 10^3 = \frac{\pi}{4}(d)^2 \times 50$ d=27.64 mm say 28 mm 2. Find outside diameter of spigot " d2" considering failure in tension : 01 $P = \left[\frac{\pi}{4}(d2)^2 - d2 \times t\right] \times \sigma t$ $30 \times 10^3 = \left[\frac{\pi}{4}(d2)^2 - d2 \times \frac{d2}{4}\right] \times 50$ (assuming $t = \frac{d2}{4}$) $30 \times 10^{3} = \frac{(d_{2})^{2}}{4} [\pi - 1] \times 50$ $t = \frac{d_{2}}{4} = \frac{34}{4} = 8.5 = 9 mm$ $\underline{d_{2}=33.46 \text{ mm say } 34 \text{ mm}}$ $\underline{t=9 \text{ mm}}$ 01 3. <u>Check the crushing stress considering failure at cotter in crushing :</u> $P = (d_2 \times t)\sigma_c$ $30 \times 10^3 = (34 \times 9) \sigma_c$ $\sigma_c = 98.03 \frac{N}{mm^2} > Permissible \ crushing \ stress \ 90 \ \frac{N}{mm^2}$ So design is not safe.. Hence redesign the values of d2 & t $P = (d_2 \times t)\sigma_c$ $30 \times 10^3 = (d_2 \times \frac{d_2}{4}) \times 90$ $d_2 = 36.51 mm = 37 mm$ $t = \frac{d2}{d} = \frac{37}{d} = 9.25 = 10 \ mm$ <u>d₂= 37 mm and t=10 mm</u> 01 4. Find outside diameter of socket "d1 " considering failure socket in tension $P = \left[\frac{\pi}{4}(d_1^2 - d_2^2) - (d_{1-}d_2)t\right] \times \sigma t$ $30 \times 10^3 = \left[\frac{\pi}{4}(d_1)^2 - \frac{\pi}{4}(37)^2 - (d_1 \times 10) + (37 \times 10)\right] \times 50$ $\frac{30 \times 10^3}{50} = 0.785(d_1)^2 - 1075.21 - 10d_1 + 370$ $0.785(d_1)^2 - 10d_1 - 1305.21 = 0$ (d_1)^2 - 12.74d_1 - 1662.69 = 0 For this quadratic equation- a=1,b=-12.74 & c=-1662.69 $d_1 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2\sigma}$ $d_1 = 47.64 \ mm \ say \ 48 \ mm$ <u>d₁= 48 mm</u> 01

Model Answer

Subject: Design of Automobile Components

Model Answer

Subject: Design of Automobile Components

b)	A hollow propeller shaft of a car with outside diameter of 75mm transmits 22.5kW at 1500 rpm to the wheels which are 900 mm in diameter. If the allowable shear	08
	stress is 60 N/mm^2 , find the cross-section of shaft. Take gear box reduction 5.	
	Answer:	
	Given data:	
	$\mathbf{d}_0 = 7511111$	
	$\tau = 60 \text{N/mm}^2$	
	P = 22.5 kW P = 22.5 kW	
	$P = 22.5 \text{KW} = 22.5 \times 10^{\circ} \text{W}$	
	Sear reduction $O_1 = 5$	
	Now torque produced by the engine I_e	
	$P = \frac{2111NI_{e}}{60}$	
	00 2×3 14×1500×T	
	$22.5 \times 10^3 = \frac{2 \times 5.11 \times 1500 \times 1_e}{60}$	
	$T_{a} = 143.24 \times 10^{3} \text{ N-mm}$	02
	e	
	Now torque transmitted by the propeller shaft ' T_p '	
	we know that	
	$T_p = T_e \times G_l$	
	$=143.24 \times 10^3 * 5 \mathrm{N} - \mathrm{mm}$	
	$T_p = 716.2 \times 10^3 \text{ N-mm}$	02
	r	
	For hollow shaft	
	Let	
	d_0 = outer diameter of shaft	
	$d_i = inner diameter of shaft$	
	$k = \frac{d_i}{d_0} = \frac{d_i}{75}$	
	We know that	01
	$T_{\rm P} = \frac{\prod}{16} \tau (d_0)^3 (1 - k^4)$	01
	7162×10^3 3.14 $\times 60 \times (75)^3 (1 - k^4)$	
	$710.2 \times 10^{-10} = \frac{16}{16} \times 00 \times (75)(1-k^{-1})$	
	$1 - k^4 = 0.14$	
	k^{4} -0.855	
	K -0.033	

Model Answer

Subject: Design of Automobile Components

	$\frac{(d_i)^4}{(75)^4} = 0.855$	
		03
	$d_i = 72.1 \text{mm} = 73 \text{mm}$	00
c)	Design piston pin for following data: Max. gas pressure = 4 N/mm. Diameter of piston =70mm, Allowable stresses due to bearing, bending and shear are 30 N/mm^2 ,80 N/mm ² ,60 N/mm ² respectively.	08
	Answer: Given data,	
	Dia. of piston = $D = 70$ mm.	
	Max. pressure = $P_{max} = 4 N/mm^2$	
	Bearing pressure $P_b = 30 \text{ N/mm}^2$	
	Bending stress = $\sigma_b = 80$ N/mm ²	
	Shearing stress = $\tau = 60 \text{ N/mm}^2$	
	Maximum gas load,	
	$=\frac{\pi D^2}{4} \times p_{\text{max}}$	
	$\mathbf{F} = \frac{\pi}{4} (70)^2 \times 4 = 15.3938 \times 10^3 \mathrm{N}$	02
	(a) Design the piston pin on the basis of bearing pressure	
	Let, $d_{po} = outer dia.$ of piston pin	
	$l_p = length of piston pin in small end of connecting rod$	
	$l_p = 0.45 \text{xD} = 0.45 \text{x70}$	
	$l_{p} = 31.5 \text{ mm}$	
	$\mathbf{F} = d\mathbf{p}_0 \times l_p \times \mathbf{P}_b$	
	$dp_0 = 15.3938 \times 10^3 / 31.5 \times 30$	
	$dp_0 = 16.29 \text{ mm}$	a -
	$dp_o \approx 17 \text{ mm}$	02
	(b)Designing the piston pin on the basis of bending.	
	'Bending moment 'M' is calculated as	
	$\mathbf{M} = \mathbf{F} \mathbf{x} \mathbf{D} / 8$	
	$= \frac{15.3938 \times 10^3 \times 70}{8} $ N-mm	

Model Answer

Subject: Design of Automobile Components

		$M = 134.69 \text{ x } 10^3 \text{ N-mm}$	
		$M = \pi / 32x\sigma_b x (d_{po})^3$	
		$\sigma_{b} = 279.2589 \text{N/mm}^{2}$ The induced bending stresses are greater than permissible bending stress 80N/mm ²	
		Hence redesign is necessary. Now redesign value of d _{po}	
		$M = \pi / 32x \sigma_b x (d_{po})3$	
		d _{po} =25.79 mm	
		$d_{po} = 26 \text{ mm}$	02
		c) Designing piston pin on the basis of shear stress, due to double shear.	
		$F = 2x\pi/4(Dpo)^2 x \tau$	
		$15.39 \ge 10^3 = 2x \pi/4 \ge 26^2 \ge \tau$	
		$T = 14.49 \text{ N/mm}^2$	
		The induced shear stresses are less than permissible shear stress. Hence design is safe.	
		d) The total length of piston pin is taken as	02
		$L_{pt} = 0.9D = 0.9x70 = 63mm$	
			1.6
6.	a)	Attempt any two of the following: Design a flange coupling to transmit 15kW at 900 rpm, for the following data.	16 08
	,	Service factor =1.35, Shear stress = 40MPa; Shear stress for C.I. = 8 MPa, Crushing stress = 80 MPa .	
		Answer: C^{1} D 151 W 15 10 ³ W N 000 C 1	
		Given: $P = 15KW = 15 \times 10^{4} W$, $N = 900$ r.p.m. Service	
		$\sigma = \sigma = 80MPa = 80N/mm^2 \cdot \tau = 8MPa = 8N/mm^2$	
		The protective type flange coupling is designed:	
		1. Design for hub:	
		First of all let us find the diameter of the shaft (d). $P \times 60 = 15 \times 10^3 \times 60$	
		$T = \frac{T \times 00}{2\Pi N} = \frac{13 \times 10^{\circ} \times 00}{2\Pi \times 900} = 159.13N - m$	
		Since, the service factor is 1.35 therefore the maximum torque transmitted by the shaft,	
		$T_{\rm max} = 1.35 \times 159.13 = 215N - m = 215 \times 10^3 N - mm$	
		Torque transmitted by the shaft (t),	

Model Answer

Subject: Design of Automobile Components

Subject Code: 17525

 $215 \times 10^3 = \frac{\Pi}{16} \times \tau_s \times d^3 = \frac{\Pi}{16} \times 40 \times d^3 = 7.86d^3$ 02 $d^3 = 215 \times 10^3 / 7.86 = 27.4 \times 10^3$ or d = 30.1 saY 35 mmOuter diameter of the hub, $D = 2d = 2 \times 35 = 70mm$ Length of hub, $L=1.5d=1.5\times35=52mm$ Let us now check the induced shear stress for the hub materials which is cast iron. Considering hub as a hollow shaft. We know that the maximum torque transmitted $(T_{\rm max})$ $\left| 2.15 \times 10^{3} = \frac{\Pi}{16} \times \tau \left[\frac{D^{4} - d^{4}}{D} \right] = \frac{\Pi}{16} \times \tau_{c} \left[\frac{(70)^{4} - (35)^{4}}{70} \right] = 63147\tau_{c}$ $\tau_c = 215 \times 10^3 / 63147 = 3.4 N / mm^2 = 3.4 MPa$ Since the induced shear stress for the hub material (i.e. cast iron) is less than the permissible value of 8 MPa therefore the **design of hub is safe.** 2. Design for key: Since the crushing stress for the key material is twice its shear stress therefore a square key may be used. Width of key w = 12 mmThickness of key t=w=12mm The length of key(1) is taken equal to the length of hub 02 \therefore 1=L=52.5mm Let us now check the induced stresses in the key by considering it in shearing and crushing considering the key in shearing we know that the maximum torque transmitted (T_{max}) . $2.15 \times 10^3 = l \times w \times \tau_k \times \frac{d}{2} = 52.5 \times 12 \times \tau_k \times \frac{35}{2} = 11025\tau_k$ $\tau_k = 215 \times 10^3 / 11025 = 19.5 N / mm^2 = 19.5 M Pa$ Considering the key in crushing. We know that the maximum torque transmitted (T_{max}) $2.15 \times 10^3 = l \times \frac{t}{2} \times \sigma_{ck} \times \frac{d}{2} = 52.5 \times \frac{12}{2} \times \sigma_{ck} \times \frac{35}{2} = 5512.5 \sigma_{ck}$ $\sigma_{ck} = 215 \times 10^3 / 55125 = 39N / mm^2 = 39MPa$ Science the induced shear and crushing stresses in the key are less than the permissible stresses therefore the **design for key is safe**. 3. Design for flange: The thickness of flange (t_f) is taken as 0.5 d $t_f = 0.5d = 0.5 \times 35 = 17.5$ mm Let us now check the induced shearing stress in the flange by considering the flange at

Model Answer

Subject: Design of Automobile Components

		the junction of the hub in shear	
		We know that the maximum torque transmitted (T_{-})	
		ΠD^2	
		$215 \times 10^{3} = \frac{\Pi D^{2}}{2} \times \tau_{c} \times t_{f} = \frac{\Pi (70)^{2}}{2} \times \tau_{c} \times 17.5 = 13473\tau_{c}$	02
		\therefore $\tau_c = 215 \times 10^3 / 13473 = 1.6 \text{MPa}$	
		Since the induced shear stress in the flange is less than 8 MPa therefore the design of	
		safe.	
		4. Design for bolts:	
		Let d_1 = nominal diameter of bolts.	
		Since the diameter of the shaft is 35 mm therefore let us take number of bolts N=3	
		And pitch circle diameter of bolts	
		$D_1 = 3d = 3 \times 35 = 105mm$	
		The bolts are subjected to shear stress due to the torque transmitted. We know that	
		maximum torque transmitted (T_{max})	
		$215 \times 10^{3} = \frac{\Pi}{4} \times (d_{1})^{2} \tau_{b} \times n \times \frac{D_{1}}{2} = \frac{\Pi}{4} (d_{1})^{2} 40 \times 3 \times \frac{105}{2} = 4950(d_{1})^{2}$	
		\therefore $(d_1)^2 = 215 \times 10^3 / 4950 = 43.43$ or $d_2 = 6.6mm$	
		Assuming coarse threads the nearest standard size of bolt is M 8	02
		Other proportion of the flange are taken as follows:	
		Outer diameter of the flange.	
		$D_{2} = 4d = 4 \times 35 = 140mm$	
		Thickness of the protective circumferential flange	
		$t = 0.25d = 0.25 \times 35 = 8.75 \text{ say 10 mm}$	
		$r_p = 0.254 = 0.25735 = 0.753491011111$	
	h)	A four speed year box is to be constructed for providing the ratios of 1.0 , 1.46 , 2.28	08
	U)	and 3.93 to 1 as nearly as possible. The module of each gear is 3.25 mm and the	00
		smallest pinion is to have at least 15 teeth. Determine the suitable number of teeth of	
		the different gear. Also calculate the distance between shafts.	
		A nswer•	
		First Gear Ratio	
		ТТ	
		$G_1 = \frac{T_B}{T_A} \times \frac{T_D}{T_C} = 3.93$	
		$T_{\rm B}$, $T_{\rm D}$ $\sqrt{202}$ 100	
		We have $\frac{1}{T_A} \times \frac{1}{T_C} = \sqrt{5.95} = 1.98$	
		Adopting $T_A = T_C = 15$ the lowest value given	02
		We get $T_{\rm B} = T_{\rm D} = 1.98 \times 15 = 29.7 = 30$	

Model Answer

Subject: Design of Automobile Components

Thus actual ratio = $\frac{30}{15} \times \frac{30}{15} = 4:1$	01
$T_A + T_B = T_C + T_D = T_E + T_F = T_G + T_H = 45$	
Second gear ratio:	
$G_2 = \frac{T_B}{T_A} \times \frac{T_F}{T_E} = 2.28$	
Or $\frac{T_{\rm F}}{T_{\rm E}} = 2.28 \times \frac{T_{\rm A}}{T_{\rm B}} = 2.28 \times \frac{15}{30} = 1.14$	01
Hence, $T_{\rm E} + T_{\rm F} = 2.14 \times T_{\rm E} = 45$	
Or $T_{\rm E} = \frac{45}{2.14} = 21$	
	01
and $T_F = 45 - 21 = 24$	
The actual ratio $=\frac{30}{15} \times \frac{24}{21} = 2.286:1$	
Third gear ratio:	
$G_3 = \frac{T_B}{T_A} \times \frac{T_H}{T_G} = 1.46$	01
Or $\frac{T_{\rm H}}{T_{\rm G}} = \frac{1.46}{2} = 0.73$	
But $T_{\rm H} + T_{\rm G} = 45$	01
Or $T_{\rm G} = \frac{45}{1.73} = 26$	
Hence, $T_{\rm H} = 45 - 26 = 19$	
Actual ratio $=\frac{30}{15} \times \frac{19}{26} = 1.461 : 1$	
Top gear ratio $G_4 = 1:1$	01
The center distance between the shaft	UI
$=\frac{3.25\times45}{2}$	
=73.125 mm	

Subject: Design of Automobile Components

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER- 17 EXAMINATION

Model Answer

i) Design piston ring for following: Number of ring =5, wall pressure $P_w = 0.035$ 04 c) N/mm^2 , Bending Stress for ring =85 N/mm², Diameter of cylinder bore =240 mm. Answer: Given data: Number of ring $n_R=5$, D =240 mm Pw=0.035 N/mm² $\sigma_t = 85 \text{ N/mm}^2$ The radial thickness (t_1) of the ring may be obtained by considering the radial pressure between the cylinder wall and the ring. From bending stress consideration in the ring, the radial thickness is given by $t_1 = D \sqrt{\frac{3p_w}{\sigma_t}}$ $t_{1=}240\sqrt{(3x0.035)/85}$ 01 $t_{1=}8.43 \text{ mm} = \text{say 9mm}$ where D = Cylinder bore in mm, p_w = Pressure of gas on the cylinder wall in N/mm². σ_t = Allowable bending (tensile) stress in MPa. The axial thickness (t_2) of the rings may be taken as 0.7 t_1 to t_1 . =0.7x9=6.3 mm The minimum axial thickness (12) may also be obtained from the following empirical relation: $t_2 = \frac{D}{10 n_P}$ where $n_{\rm R}$ = Number of rings. 01 $t_2 = 240/(10*5)$ *t*₂=4.8 mm Selecting maximum value of above t_2 =6.3mm Width of other ring lands, $b_2 = 0.75 t_2$ to $t_2 = 0.85 t_2 = 0.85 x_6.3 = 5.35$ mm 01 The gap between the free ends of the ring is given by $3.5 t_1$ to $4 t_1$. =3.75t1=3.75x9=33.75mm Length of the Ring section Length of the Ring section = $5 t_2 + 4b_2$ 01 =(5x6.3)+4x5.35)= 52.90 mm ii) Design the skirt length of the piston with the following data of petrol engine. 04 c) Maximum pressure inside the cylinder $=6.5 \text{ N/mm}^2$. Piston diameter =100 mm, side

Model Answer

Subject: Design of Automobile Components

thrust is limited to 10% of maximum load on the piston. Allowable bearing pressure = 0.3 N/mm^2 .	
Answer: Given data	
$Pmax = 6.5 \text{ N/mm}^2$	
Piston diameter =D= 100 mm	
Side thrust = 10% =0.10	
$P_{\rm b} = 0.3 {\rm N/mm^2}$	
Let,	
R = Normal side thrust acting on piston skirts	
F = Total force produced due to combustion	
$P_{max} = max.$ gas pressure inside the engine	
D = Dia. Of piston	
$F = P_{max} \times \frac{\pi}{4} D^2$	01
$F= 6.5 \times 0.786 \times 100^2$	
F=51050.8N	
R=0.1F Side thrust = 10%=0.10	01
·· R 5105.08N	
Let,	
$l_1 = \text{length of piston skirt}$	
The piston skirt act as a bearing inside the liner	01
We have $R = l_1 \times D \times P_1$	Ŭ.
Where P_{i} = allowable bearing pressure on the piston skirt	
1.5105.08/(100m0.2)	01
$I_{1=5}105.08/(10000.5)$	01
$I_1 = 1/0.10$ IIIII	