## 17104

## 11819

3 Hours / 100 Marks
Seat No. $\square$
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

## Marks

1. Solve any TEN of the following:
a) Find the value of $x$ if $\left[\begin{array}{rrr}x & 4 & -4 \\ 3 & -2 & 1 \\ -2 & -4 & 4\end{array}\right]=0$
b) If $A=\left[\begin{array}{cc}3 & -1 \\ 0 & 4\end{array}\right]$ find the matrix $B$ such that $2 A+B=0$
c) If $A=\left[\begin{array}{rrr}3 & 4 & -2 \\ 2 & 1 & 0\end{array}\right], B=\left[\begin{array}{rr}2 & -1 \\ 3 & 4 \\ -0 & 2\end{array}\right]$ find $A B$.
d) Resolve into partial fraction $\frac{x}{x^{2}-x-2}$
e) Define compound angle.
f) Prove that $\tan \left(\frac{\pi}{4}-\theta\right)=\frac{1-\tan \theta}{1+\tan \theta}$
g) Prove that $\cos (2 \mathrm{~A})=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$
h) If $2 \cos 70^{\circ} \cdot \sin 50^{\circ}=\sin A-\sin B$ find angle $A$ and $B$.
i) Show that $2 x+y+3=0$ and $x-2 y-1=0$ are perpendicular lines.
j) Find the equation of line passing through $(4,-5)$ and having slope $-\frac{2}{3}$
k) Find the range and co-efficient of range of the following:

| $x_{\mathrm{i}}$ | 10 | 20 | 30 | 40 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{\mathrm{i}}$ | 7 | 5 | 3 | 2 | 1 |

1) If the mean is 82.5 , standard deviation is 7.2 . Find co-efficient of variance.
2. Solve any FOUR of the following:
a) Solve by using Cramer's Rule.
$x+y=0 ; \quad y+z=2 ; x+z=4$
b) If $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3\end{array}\right]$ find $A^{2}$
c) If $\mathrm{A}=\left[\begin{array}{rr}1 & 2 \\ -2 & 3\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{rr}-3 & 1 \\ 2 & 0\end{array}\right]$
verify that $A(B+C)=A B+B C$
d) Express the matrix A as sum of symmetric and skew symmetric matrix of A

$$
A=\left[\begin{array}{rrr}
-1 & 7 & 1 \\
2 & 3 & 4 \\
5 & 0 & 5
\end{array}\right]
$$

e) Resolve into partial fraction $\frac{x^{2}}{x^{4}+x^{2}-2}$
f) Resolve into partial fraction $\frac{2 x+1}{x^{2}(x+1)}$
3. Solve any FOUR of the following:
a) Find the inverse of the matrix using adjoint method.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]
$$

b) Resolve into partial fraction $\frac{x+2}{(x-1)\left(x^{2}+x+1\right)}$
c) Resolve into partial fraction $\frac{(\tan \theta+1)}{(\tan \theta+2)(\tan \theta+3)}$
d) Prove that $\sin (\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}+\cos \mathrm{A} \sin \mathrm{B}$
e) Prove that $\frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}=\tan 5 A$
f) Prove that $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$
4. Solve any FOUR of the following:
a) Prove that $1+\tan \mathrm{A} \cdot \tan 2 \mathrm{~A}=\sec 2 \mathrm{~A}$
b) Prove that $\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 8 \mathrm{~A}}}}=2 \cos \mathrm{~A}$
c) Without using calculator find the value of $\sin 420^{\circ} \cos 390^{\circ}+\cos \left(-300^{\circ}\right) \sin \left(330^{\circ}\right)$
d) If $\tan \mathrm{A}=\frac{1}{2}, \tan \mathrm{~B}=\frac{1}{3}$ find $\tan (\mathrm{A}+\mathrm{B})$
e) Find the principal value of $\sin ^{-1}\left(\frac{1}{2}\right)+\cos ^{-1}\left(-\frac{1}{2}\right)-\tan ^{-1}(\infty)$
f) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$
5. Solve any FOUR of the following:
a) Prove that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ}=\frac{1}{16}$
b) Prove that

$$
\tan ^{-1}(x)+\tan ^{-1}(y)=\tan ^{-1}\left[\frac{x+y}{1-x y}\right] \text { for } x>0, y>0, x y<1
$$

c) Prove that $\frac{\sin 4 \theta+\sin 2 \theta}{1+\cos 2 \theta+\cos 4 \theta}=\tan 2 \theta$
d) Find the angle between two lines $y=5 x+6$ and $y=x$
e) Prove that the distance between two parallel lines $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$ is $\left|\frac{c_{2}-c_{1}}{\sqrt{a^{2}}+b^{2}}\right|$
f) Find equation of line passing through the point of intersection of the lines $2 x+3 y=13,5 x-y=7$ and perpendicular to the line $3 x-y+7=0$
6. Solve any FOUR of the following:
a) If $m_{1}$ and $m_{2}$ are slopes of any two lines $L_{1}$ and $L_{2}$ then prove that angle between two lines $\mathrm{L}_{1}$ and $\mathrm{L}_{2}$ is
$\theta=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
b) Find the equation of line passing through the point $(6,5)$ and parallel to the line having intercepts 2 and 4 on X any Y axis respectively.
c) Two sets of observation are given below.

| Set-I | Set-II |
| :---: | :---: |
| $\overline{\mathrm{X}}=82.5$ | $\overline{\mathrm{X}}=48.75$ |
| $\sigma=7.3$ | $\sigma=8.35$ |

which set is more consistant.
d) Find the mean deviation from mean for the following data:

| Marks obtained | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of student | 4 | 6 | 10 | 18 | 9 | 3 |

e) Find the standard deviation from following:

| Class interval | $0-5$ | $5-10$ | $10-15$ | $15-20$ | $20-25$ | $25-30$ | $30-35$ | $35-40$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 3 | 5 | 9 | 15 | 20 | 16 | 10 | 2 |

f) Find the variance and co-efficient of variance for the following:

| Class interval | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 14 | 23 | 27 | 21 | 15 |

