11819 3 Hours / 100 Marks

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Figures to the right indicate full marks.

Marks

1. Attempt any FIVE:

 $5 \times 4 = 20$

- (a) Define with examples 'dibasic' acid and 'diacidic' base. Write reaction, showing their dissociation in water.
- (b) Define:
 - (i) saturated solution
 - (ii) colloid
 - (iii) hydrophylic sols
 - (iv) hydrophobic sols
- (c) (i) Define:
 - (1) normality
 - (2) molarity
 - (ii) Explain preparation of 0.1 N (1lit) hydrochloric acid from 0.5 N solution of the acid.
- (d) (i) Define 'surface tensions'. Write its unit.
 - (ii) Define 'angle of contact'. State its significance in wetting.

[1 of 4] P.T.O.

17222 [2 of 4]

- (e) Define:
 - interface (i)
 - (ii) interfacial tension
 - (iii) cohesive force
 - (iv) adhesive force
- (f) Describe use of sodium – meta – nitrobenzene sulphonate in reactive dyeing.
- Describe principle of extraction process. (g)

2. Attempt any FOUR:

 $4 \times 4 = 16$

- Explain use of salts in textile processing with suitable example. (a)
- Define an emulsion. Explain, with an example, two types of emulsions. (b)
- (c) State and explain, law of mass action.
- Explain with examples, role of surface tension in textile wet processing. (d)
- Define reduction reaction. Explain with two examples, reduction reactions. (e)
- Explain with examples: (f)
 - (i) dissociation
 - (ii)association

3. Attempt any TWO:

 $2 \times 8 = 16$

- Define and give two examples, each: (a)
 - (i) acid salt,
 - (ii) double salt,
 - (iii) mixed salt,
 - complex salt (iv)

17222 [3 of 4]

- (b) Explain factors, affecting rate of:
 - (i) diazotisation
 - (ii) polyester dyeing
- (c) Explain with examples, theory of oxidation, through:
 - (i) addition of oxygen
 - (ii) removal of electron

4. Attempt any TWO:

 $2 \times 8 = 16$

- (a) (i) Describe Arrhenius concept of acids and bases.
 - (ii) Explain with examples, concept of strength of acids and bases.
- (b) (i) Define viscosity. State its unit. Explain factors, affecting viscosity.
 - (ii) Describe preparation of 500 ml 0.1 N anhydrous sodium carbonate.

$$(A.W. : H = 1, O = 16, C = 12, Na = 23)$$

- (c) Explain following terms with reaction:
 - (i) heat of dilution
 - (ii) heat of solution
 - (iii) heat of formation
 - (iv) heat of neutralisation

5. Attempt any TWO:

 $2 \times 8 = 16$

(a) (i) Define 'Osmosis'. Explain its mechanism.

- 3
- (ii) Name two commercially used semi-permeable membranes. What is an ideal semipermeable membrane?
- (iii) Explain 'reverse osmosis'.

3

2

P.T.O.

17222 [4 of 4]

- (b) (i) Distinguish: endothermic and exothermic reaction. Give an example of each.
 - (ii) Define and give an example of reversible reaction. Explain conditions, under which reaction will be favoured in forward direction.
- (c) Describe use of hydrose $(Na_2S_2O_4)$ and sodium sulphite in :

Vat dyeing and sulphur dyeing respectively.

6. Answer any TWO:

 $2 \times 8 = 16$

(a) (i) Define pH.

An aqueous solution has $[H^+] = 10^{-8.5}$. find its pH. Is the solution, acidic or alkaline?

- (ii) Explain role of alkali liberating, acid liberating agent in wet processing.
- (b) Distinguish between : emulsifying agent ; dispersing agent, wetting agent. Give two examples of each.
- (c) (i) State and explain two laws of thermodynamics.
 - (ii) State and explain 'distribution law'.