17301

11819

3 Hours / 100 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Solve any TEN of the following:
a) Find the gradient of the curve $x y=6$ at $\mathrm{pt}(1,6)$
b) Divide 50 into two parts such that product is maximum
c) Evaluate $\int \frac{x}{x+1} d x$
d) Evaluate $\int \frac{\cos 2 x}{\sin ^{2} x \cdot \cos ^{2} x} d x$
e) Evaluate $\int x \cdot \sin x d x$
f) Evaluate $\int_{2}^{4} \frac{1}{2 x+3} d x$
g) Find area between the line $y=2 x, x$-axis and ordinates $x=0$ and $x=2$
h) Find order and degree of $\frac{d^{2} y}{d x^{2}}=\sqrt[3]{1+\frac{d y}{d x}}$
i) Form a differential eq^{n} if $y=a x^{2}+b$
j) A fair dice is rolled. What is probability that no. appear on the dice is greater than 2.
k) If two cards drawn from a pack of 52 cards. What is probability that both are king.
1) An unbiased coin is tossed 6 times. Find probability of getting 2 Heads.
2. Solve any FOUR of the following: 16
a) Find eq^{n} of tgt and normal to the curve $y=x(2-x)$ at pt. $(2,0)$
b) Show that radius of curvature of the curve $x^{2}+y^{2}=25$ at $(3,4)$ is 5 units.
c) Find maximum and minimum values of $y=x^{3}-9 x^{2}+24 x$
d) Evaluate $\int \frac{e^{x}(x+1)}{\cos ^{2}\left(x e^{x}\right)} d x$
e) Evaluate $\int \frac{3 \tan ^{-1} x}{1+x^{2}} d x$
f) Evaluate $\int \frac{1}{4 \sin ^{2} x+5 \cos ^{2} x} d x$
3. Solve any FOUR of the following:
a) Evaluate $\int_{0}^{\pi / 2} \frac{d x}{3+4 \cos x}$
b) Evaluate $\int_{0}^{\pi / 2} \frac{d x}{1+\sqrt{\cot x}}$
c) Find area enclosed by parabolas

$$
y^{2}=9 x \text { and } x^{2}=9 y
$$

d) Solve : $y^{2} d x-\left(x y-x^{2}\right) d y=0$
e) Solve : $\frac{d y}{d x}=\left(\frac{y}{x}\right)+\tan \left(\frac{y}{x}\right)$
f) Solve : $\frac{d y}{d x}+2 \tan x \cdot y=2 \sin x$
4. Solve any FOUR of the following:
a) Evaluate $\int_{2}^{5} \frac{\sqrt{7-x}}{\sqrt{x}+\sqrt{7-x}} d x$
b) Evaluate $\int_{5}^{10} \frac{1}{(x-1)(x-2)} d x$
c) Using integration find area of the loop $y^{2}=x^{2}(1-x)$
d) Solve : $\frac{d y}{d x}=e^{3 x-2 y}+x^{2} e^{-2 y}$
e) Solve : $\left(3 x^{2}+6 x y^{2}\right) d x+\left(6 x^{2} y+4 y^{2}\right) d y$
f) Verify that $y \cdot \sec ^{2} x=\sec x+c$ is solution of differential eq ${ }^{n}$ $\frac{d y}{d x}+2 y \cdot \tan x=\sin x$. Also find its particular sol ${ }^{n}$ when $x=0$ and $y=0$
5. Solve any FOUR of the following:
a) The probability of solving problem by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. What is probability that problem is solved.
b) The probability that a machine manufactured by a company will be defective $\frac{1}{10}$. If 5 such machines are manufactured find probability that.
(i) Exactly two will be defective.
(ii) At least two will be defective.
c) Fit a Poisson's distribution for the following observations

$x i$	0	1	2	3	4
$f i$	21	18	7	3	1

d) Evaluate $\int x^{2} \tan ^{-1} x d x$
e) Evaluate $\int_{0}^{\pi / 2} \sin 5 x \cos 3 x d x$
f) Solve : $(x+1) \frac{d y}{d x}-y=e^{x}(x+1)^{2}$
6. Solve any FOUR of the following:
a) If $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}\left(\mathrm{B}^{\prime}\right)=\frac{2}{3}$. Find $\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$ and $\mathrm{P}(\mathrm{A} / \mathrm{B})$
b) If 5% of electric bulbs manufactured by a company are defective. Use Poisson's distribution to find probability that in a sample of 100 bulbs.
(i) None is defective
(ii) Five are defective
c) In a certain examination 500 students appeared. Mean score is 68 and standard deviation is 8 . Assuming data normally distributed. Find no of students scoring
(i) less than 50 and
(ii) more than 60
where $\mathrm{A}(2.25)=0.4878$

$$
A(1)=0.3413
$$

d) A bullet is fired into a mud bank and penetrates $\left(120 t-3600 t^{2}\right)$ meters in t seconds after impact. Calculate maximum depth of penetration.
e) Find equation of tangent to the curve $y=9 x^{2}-12 x+7$ which is parallel to x-axis
f) Find area bounded by parabola
$y=4 x-x^{2}$ and x-axis.

