11819
3 Hours / 100 Marks
Seat No. \square

Instructions : (1) All Questions are compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any TEN of the following :

(a) Define terms frequency \& time period related to A.C. quantity.
(b) Draw the waveform of voltage \& current of purely capacitive circuit.
(c) Draw the waveform of 3ϕ a.c.-supply.
(d) Define phase sequence.
(e) State Faraday's law of electromagnetic induction.
(f) Define dynamically induced emf \& statically induced emf.
(g) State the working principle of transformer.
(h) Define kVA rating of a transformer.
(i) What changes should be done in supply system in order to reverse the direction of rotation of 3ϕ I.M.
(j) Define synchronous speed. Which speed is greater synchronous speed or slip speed?
(k) Draw the voltage and current waveform for following equation $\mathrm{i}=200 \sin$ (314 $t+\pi / 4)$. Also find I_{m} \& phase angle.
(1) List any two applications of stepper motor \& servo motor.
(m) What is the role of centrifugal switch in split phase motors ?
(n) State the need of fuse.

2. Attempt any FOUR of the following :

(a) Explain the concept of lagging \& leading by waveform \& mathematical equation in ac circuits.
(b) Draw a circuit diagram for series R-L circuit. Also draw vector diagram \& waveforms \& write down expression for impedance.
(c) If a.c. current is represented by equation $\mathrm{i}=25 \sin (314 \mathrm{t})$. Calculate rms value, average value, frequency \& time period of current.
(d) A circuit consist of a resistance of $4 \Omega \&$ inductance of $0.5 \mathrm{H} \&$ variable capacitance in series across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate 1. value of capacitance to produce resonance 2. voltage across capacitor 3. the Q-factor of the circuit.
(e) Equation for current and voltage in a circuit are given by $V=v_{m} \sin \omega t i=I_{m}$ $\sin (\omega t+60)$. State what type of circuit it is ? Draw waveform of voltage \& current \& power in the circuit.
(f) What is power factor ? State its significance. What is condition for unity power factor?

3. Attempt any FOUR of the following :

(a) A coil of resistance $10 \Omega \&$ inductance $0: 1 \mathrm{H}$ is connected in series. Calculate :
(i) impedance
(ii) current
(iii) power factor
(iv) power consumed
(b) For the fig. 1 shown below.

Fig. 1
Find : (i) impedance (ii) nature of circuit (iii) power consumed.
(c) Three impedances of $(8+\mathrm{j} 6) \Omega$ each are connected in star to $3 \phi, 44050 \mathrm{~Hz}$ balance a.c. supply. Calculate line \& phase values of voltage \& currents, \& power consumed.
(d) What is phase sequence? What is its physical significance?
(e) State and explain Fleming's Right hand rule \& Lenz's law for deciding the direction induced emf.
(f) State the advantages of AC over DC.
4. Attempt any FOUR of the following :
(a) Compare electric circuit \& magnetic circuit on any four points.
(b) State the advantages of 3 phase system over 1 phase system.
(c) State specification of isolation transformer, power transformer, pulse transformer \& R.F. transformer.
(d) A $3300 / 200 \mathrm{~V}, 100 \mathrm{kVA}, 1 \phi$ transformer has 80 turns on secondary winding, calculate full load current in both the windings, flux \& primary turns.
(e) What are the various types of losses in transformer and explain.
(f) Define regulation \& efficiency of transformer. Which transformer will be said to be quality transformer :
(i) transformer regulation 2% or 4%.
(ii) transformer efficiency 89% or 92%

5. Attempt any FOUR of the following :

(a) Explain working principle of 3ϕ I.M.
(b) Compare auto-transformer \& two winding transformer.
(c) Explain the effect of change in rotor resistance on starting torque \& maximum torque of induction motor.
(d) Give the various types of speed control methods of 3ϕ I.M. and explain any two methods.
(e) Explain the necessity of starter in induction motor. State any four starters used in 3ϕ I.M.
(f) What is the value of slip when 3ϕ I.M. is in (1) stand still position (2) runs with synchronous speed? Why 3ϕ I.M. stops when it is made to run at synchronous speed?
6. Attempt any FOUR of the following :
(a) Explain working of stepper motor with neat diagram.
(b) Draw circuit diagram of 1ϕ resistance split phase induction motor \& explain its working.
(c) Which type of single phase induction motor is used in domestic ceiling fans, why?
(d) Draw a neat diagram of AC servo motor and give its operation.
(e) Explain the necessity of earthing.
(f) What is MCCB, ELCB, Megger? Is fuse is necessary in wiring even if MCB or MCCB is connected ?

