THE PARTY OF THE PARTY OF

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER- 2018 EXAMINATION Model Answer

Subject Code:

17208

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
1		Attempt any nine of the following:	18
	(a)	Name two methods used for preparation of steel	2
		i) Open hearth process or Siemen-Martin's process.	
		ii) Basic oxygen steel (BOS) Process or L-D process.	2
	(b)	Name two oxide ores of Fe. Write their chemical formulae.	2
			1 mark
		i) Hematite − Fe ₂ O ₃	each
		ii) Magnetite - Fe₃O₄	
		iii) Limonite –2 Fe ₂ O ₃ .3H ₂ O	
		iv) Siderite – FeCO₃	
		v) Iron Pyrite – FeS ₂	
	(c)	Write any four properties of mild steel.	
			2
		i) Soft, tough, malleable, ductile.	
		ii) Suitable for welding.	
		iii) Responds to heat treatment.	
		iv) Tensile Strength is low.	
		v) Can be magnetized permanently.	1
		vi) Can resist shock and impact.	1 mark
		vii) Undergo corrosion quickly.	each

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER- 2018 EXAMINATION <u>Model Answer</u>

Q.	Sub	Answe	r	Marking
No.	Q. N.			Scheme
	(d)	Distinguish between galvanizing and sherardizing (any two points).		
1		Calvaniaina	Ch anaudiain a	
		Galvanizing 1) It is the process of coating iron or steel	Sherardizing 1) It is the process of coating small iron or	
		sheets with a thin coat of Zn by hot dipping.	steel article by alloying at the surface of base	1 mark
		l	metal (iron)	each
		2) This process is carried out in large tanks by	2) This process is carried out in rotating	
		dipping iron sheet in a bath of molten Zinc at	closed drum like furnace by packing the small	
		a temp of about $425 - 460^{\circ}$ C by covering the	iron or steel article in Zinc powder at a temp	
		bath with a flux of NH ₄ Cl.	of about $350 - 400^{\circ}$ C in reducing atmosphere.	
		3) In galvanizing a layer of Zn – Fe alloy is formed to which the outer layer of Zinc sticks.	3) In sherardizing Zinc gets diffused into iron forming Fe – Zn alloy at the surface only.	
		4) This process is widely used for protecting	4) This process is used for protecting small	
		iron exposed to the atmosphere as in the	iron and steel articles like bolts, screws, nails	
		case of roofs, wire fences, pipes & fabricated	nuts etc. There is very little change in	
		articles from galvanized sheets like buckets,	dimensions of small articles due to the	
		tubes etc.	formation of very thin layer of Zinc.	
	(e)	State the constituents of paint and one function	of each.	2
		1) Pigments		
		Functions: -1) Provide opacity and colour to pain	t film.	
		2) Give strength to the film.		
		3) Give protection to the paint film		1 mark
		4) Provide resistance to paint film against abrasic	on, moisture and weather.	each
		5) It gives an aesthetical appeal to the paint film.		
		2) Drying Oil / Medium		
		Functions: -		
		1) It is a main film forming constituent.		
		2) it provides durability and water proofness to t	he film.	
		3) It improves toughness and adhesion of the pai	nt film.	
		4) It forms protective film by oxidation.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(15 0/12 0 2/00 200 00/0000)

WINTER-2018 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	(e)	3) Thinners	
		Functions: -	
		1) They are suspended pigments.	
		2) They dissolve film forming materials.	
		3) They reduce viscosity of paints for proper handling and to impart better covering power.	
		4) They help the drying of film by evaporation.	
		4) Driers	
		Functions of driers:	
		1) They improve drying quality of paint film.	
		2) They act as oxygen carrier catalysts.	
		3) They accelerate the drying of oil film.	
		5) Extenders	
		Function: -	
		1) They reduce the cost of paint.	
		2) They increase durability of paint.	
		3) They help to reduce the cracking of dry paint.	
		4) They act as carriers for pigmented colour.	
		6) Plasticizers	
		1) To give elasticity to the film.	
		2) To prevent cracking of the film.	
		(Note: Consider two constituents and one function of each)	
	(f)	Define corrosion. Give its types. Definition: The process of chemical or electrochemical decay or destruction of a metal due to the action of surrounding medium is called as corrosion.	2 1
		Types:	
		i) Atmospheric corrosion / Direct chemical corrosion / Dry corrosion.ii) Immersed corrosion / Electrochemical corrosion / Wet corrosion.	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER- 2018 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	(g)	Give two applications of metal cladding process	2
		1) Al clad sheets used in aircraft industry in which a plate of duralumin is sandwiched between two layers of 99.5% pure Al.	1
		2) Cu – clad steel wire is obtained by forcing steel rod into closely fitted cu-tube is used for electrical conductors possessing combining strength of steel with the high conductivity of Cu.	1
	(h)	Write four characteristics of potable water.	2
		i) It should be clear, colourless, odourless with pleasant in taste.	½ mark
		ii) It should be free from diseases producing micro-organisms. iii) Its hardness should be 150-250 ppm CaCO ₃ equivalent.	each
		iv) It should not contain any poisonous or objectionable matter.	
		v) The total dissolved solids should not exceed 500 mg/lit.	
		vi) Turbidity & colloidal impurities should not be more than 10 ppm.	
	(i)	State two causes of hardness of water.	2
		1) Rain water absorbs CO ₂ from air and also from decaying plants. It forms carbonic acid.	
		$H_2O + CO_2 \longrightarrow H_2CO_3$ (Carbonic Acid)	
		Such a water flows over the rocks containing calcium carbonate and Magnesium carbonate. These	
		react with carbonic acid present in water and forms calcium bicarbonate and magnesium	
		bicarbonate, which are highly soluble in water. These salts i.e. Ca(HCO ₃) ₂ and Mg(HCO ₃) ₂ give	
		hardness to water.	1
		$H_2CO_3 + CaCO_3 \longrightarrow Ca(HCO_3)_2$	
		$H_2CO_3 + MgCO_3 \longrightarrow Mg(HCO_3)_2$	
		2) Chlorides and sulphates of Ca and Mg are highly soluble in water. Theses salts are present over	
		the earth surface. Therefore when water flows over the surface these salts enters in water and	
		water becomes hard water.	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION

17208

Model Answer

Q. No.	Sub Q. N.	Ansv	ver	Marking Scheme
1.	(j)	Draw diagram of reverse osmosis cell for desalir	nation of sea water	2
1.	W .	Inlet To 0 0 0 0		2
	(k)	Name two constituents of cement with its form		2
		Constituents	Formula	
		Lime	CaO	
		Silica	SiO ₂	1 mark
		Alumina	Al ₂ O ₃	each
		Iron Oxide	Fe ₂ O ₃	
		Magnesia	MgO	
		Sulphur trioxide	SO ₃	
		Soda & Potash	Na ₂ O +K ₂ O	
		Gypsum	CaSO ₄ .2H ₂ O	
	(1)	Give chemical composition of lean lime. It contains 75% CaO and 25% clay, reminder being	ng mostly silica, alumina, Fe₂O₃, MgO.	2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(25 0/1220 27001 2000 001011100)

WINTER-2018 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Ans	wer	Marking Scheme
		Assessed and form of the fall and a		
2	(a)	Attempt any four of the following: Write chemical reactions taking place in the zon The reduction is done in stages as given below:-		16 4
		Fe ₂ O ₃ \rightarrow Fe3O ₄ \rightarrow FeO \rightarrow Fe i) In between 300 – 500°C, when charge is heate (Ferroso ferric oxide) 3Fe ₂ O ₃ + CO \rightarrow 2Fe ₃ O ₄ + CO ₂ This Fe ₃ O ₄ is stable upto 650°C in presence of CC ii) In between 650 – 700°C, Fe ₃ O ₄ is reduced to F Fe ₃ O ₄ + CO \rightarrow 3FeO + CO ₂ iii) At temperature between 700 – 800°C, FeO is FeO + CO \rightarrow Fe + CO ₂ iv) Simultaneously, the limestone present in the CaCO ₃ \rightarrow CaO + CO ₂ v) The metal produced is spongy; simultaneously Fe ₂ O ₃ or Fe ₃ O ₄ . 2Fe + 3CO \rightarrow Fe ₂ O ₃ + 3C 3Fe + 4CO \rightarrow Fe ₃ O ₄ + 4C (Note: Consider any four reactions)	$_{2}$, CO_{2} & free coke. FeO reduced to metallic iron. charge is also decomposed to produce lime.	1 mark each
	(b)	Distinguish between Annealing and Normalizin		4
		Annealing	Normalizing	
		 It is the process of heating the steel at a temperature (760- 925°C) and cooling it slowly in the furnace. Due to annealing steel becomes more soft, pliable, malleable & ductile. 	 1.It is the process of heating the steel at a temperature of 50°C above the critical temperature (725°C) and cooling it freely in air at a rate of 5 °C/Sec. 2. Due to normalizing steel becomes homogenous & softer. The mechanical properties of steel are more improved than annealing. 	1 mark
		3.Time required for annealing is more than normalizing 4. Consumption of fuel or electric power is	3.Time required for normalizing is less than annealing4. Consumption of fuel or electric power is	each
		more.	less.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-2018 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	(c)	State the effect of alloying element Ni and Co on the properties of steel.	4
		Effect of alloying element Ni:-	2
		i) It improves corrosion & heat resistance.	2
		ii) It also improves hardness, toughness, strength, elasticity & ductility.	
		i) It also imparts strength & hardness to the steel which persists at red heat.	2
		ii) It also helps to retain permanent hardness.	
	(d)	Explain the mechanism of immersed corrosion with evolution of H_2 – gas.	4
		H ₂ †	
		Fe Steel Tank	1
		Harris Ha	
		Fe → Fe + 2e Acidic Water	
		Anode Small Copper Anode	
		Cathode Anode	
		Steel tank: - Anode ,Cu - strip:- Cathode These types of corrosion occur usually in acidic	
		environments like industrial waste, solutions of non – oxidizing acids. Consider a steel tank	1
		containing acidic industrial waste and small piece of copper scrap in contact with steel. The	
		portion of the steel tank in contact with copper acts as anode & is corroded most with the evolution of hydrogen gas.	
		Reactions:	
		At Anode: Fe \rightarrow Fe ⁺⁺ + 2 e ⁻ (Oxidation)	2
		These electrons flow through the metal from anode to the cathode that is piece of copper	
		metal where they are accepted by H ⁺ ions to form H ₂ gas	
		At cathode: H^+ ions are eliminated as H_2 gas $2H^+ + 2e^- \rightarrow H_2 \uparrow$ (Reduction)	
		Thus, over all reaction is $\mathbf{Fe} + \mathbf{2H}^{+} \rightarrow \mathbf{Fe}^{++} + \mathbf{H}_{2}$	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(150/1EC - 27001 - 2005 CCI (incu)

WINTER-2018 EXAMINATION

Model Answer

Q. No.	Sub	Answer	Marking
	Q. N.		Scheme
2.	(e)	Explain any two factors affecting rate of atmospheric corrosion.	4
		1) Impurities in the atmosphere	
		Corrosion rate is fast in the presence of all impurities such as H ₂ S, SO ₂ , CO ₂ , Cl ₂ , gases along with	2
		vapors of HCl & H ₂ SO ₄ etc. Atmospheric air in industries areas contains these impurities. 2) Moisture in the atmosphere	
		Atmospheric gases & chemical vapors dissolve in moisture and reaction between such dissolved	_
		gases and metal becomes faster. Therefore moisture acts as conducting medium and enhances	2
		the corrosion	
	(f)	Explain metal cladding process with suitable diagram.	4
		Metal cladding involves bonding firmly and permanently a dense, homogenous layer of a	
		coating metal to the base metal on one or both sides.	
		760 M	
		Alclad sheet	
		Rollers	
		Rollers	2
			_
		The Commence of the Commence o	
		" Sugal min	
		Aluminium	
		Process:	
		i) The base metal is sandwiched or cladded between the two sheets of coating metal.	
		ii) This sandwich is then passed through two heavy rollers maintained at high temperature &	2
		pressure.	
		iii) Cladded metal is cathodic with respect to base metal so that electrolytic protection is	
		provided.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(150/1EC - 27001 - 2005 Certifica)

WINTER- 2018 EXAMINATION

17208

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
3.		Attempt any four of the following:	16
	(a)	Define: i) Hard water ii) Soft water iii) Degree of hardness iv) Filtration	4
		i) Hard water: The water which does not produce good lather but develops white scum (White curd) with the soap solution is called as hard water.	1
		(ii) Soft water: The water which readily produces good lather (foam) but not develops white scum (White curd) with the soap solution is called as soft water.	1
		(iii) Degree of hardness: The degree of hardness of water can be measured in 1) degree Clark 2) degree French 3) Parts per million. OR It is a measure of the concentration of divalent metal ions such as calcium and	1
		magnesium per volume of water. (iv) Filtration: A process of removing insoluble colloidal and bacterial impurities present in the water by passing it through a bed of proper sized material is called as filtration.	1
	(b)	Write any two causes of scale and sludge formation in boiler. Give two disadvantages.	4
		1) Chemical Decomposition Calcium bicarbonate & Magnesium bicarbonate decomposes at higher temperature to form insoluble carbonates which precipitates to form scale. Ca(HCO ₃) ₂ → CaCO ₃ + H ₂ O + CO ₂ Scale	1
		2) Decrease in solubility of salts Some salts present in hard water become insoluble at higher temperature. e.g. CaSO ₄ , CaSiO ₃ , MgSiO ₃ . These salts form hard scale at high temperature.	1
		Disadvantages:	
		1) Wastage of fuel The scales are hard and bad conductors of heat. Hence does not show the ready transfer of heat from the hot plates of boiler to the water inside. Therefore, in order to get a steady supply of steam more heat has to be applied. This results in a large consumption of fuel.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(150/1EC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION

Model Answer

Q. No.	Sub	Answer	Marking
	Q. N.		Scheme
3.	(b)	 2) Lowering safety of boilers: Due to scale formation, overheating of boiler is to be done in order to maintain a constant supply of steam. This makes the boiler material softer and weaker. This causes distortion in boiler tube and makes the boiler unsafe to bear the pressure of the steam, especially in high pressure boilers. 3) Danger of explosion: When thick scales crack due to uneven expansion of scale and boiler material, the water comes suddenly in contact with overheated iron plates of boiler. This causes the formation of a large amount of steam suddenly inside the boiler. Hence, sudden high pressure is developed, which may cause explosion of the boiler. 4) Decrease in efficiency of boiler: Scales may sometimes deposit in the valves and condensers of boiler and choking them partially. This results in decrease in efficiency of the boiler. 5) Shortening the life of the boiler: The life of the boiler is shortened due to the following reasons: iii) The steam reacts with red hot iron plates of the boiler forming non-adherent iron oxide and 	1 mark each
	(c)	liberates the hydrogen gas. This causes thinning of the boiler plates with the continuous reaction of steam. ii) Magnesium chloride, if present in the scale will bring about corrosion of tubes and boiler plates like a chain reactions producing HCl again and again. Explain the permutit process of water softening with neat sketch diagram and write the reactions of regeneration.	4
		GRAVEL SOFT WATER PERMUTIT'S PROCESS OF SOFTENING OF HARD WATER	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-2018 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
3	(c)	Explanation :-In this process sodium permutit is placed in a suitable container and hard water is allowed to pass through it. The calcium & magnesium salts present in the hard water react with the sodium permutit to form water insoluble calcium & magnesium permutit which are retained by filter bed. Thus water obtained is free from calcium & magnesium salts.	1
		Regeneration reactions:	
		When the permutit is exhausted i.e. completely converted into CaP and MgP, it is regenerated by treating with 10% brine (NaCl) solution for a few minutes, sodium permutit (Na $_2$ P) is formed and can again be used for softening of more hard water. OR	2
		$CaP + 2NaCl \rightarrow Na_2P + CaCl_2$	
		$MgP + 2NaCl \rightarrow Na_2P + MgCl_2$	
	(d)	Name the types of impurities present in water. Explain the process of sterilization of water using bleaching powder.	4
		Impurities:	
		i) Suspended impurities.	
		ii) Dissolved impurities.	2
		iii) Colloidal impurities.iv) Biological impurities.	
		Sterilization of water using bleaching powder:	
		About 1 Kg. of bleaching powder per 1000 litres of water is mixed and resulting solution is allowed to stand for several hours. Following reactions takes place.	
		1) $CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$ [Bleaching powder]	2
		2) $Cl_2 + H_2O \rightarrow HOCI + HCI$	
		3) HOCl → HCl + [O] [Hypochlorous acid] [Nascent oxygen]	
		4)Germs + [O] → Germs are killed	
		Thus bleaching powder helps to kill microorganisms.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(150/1EC - 27001 - 2005 Certifica)

WINTER-2018 EXAMINATION

Model Answer

	Ι	<u> </u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
3	(e)	Describe a bad effect of using hard water in following industries:	4
		i) Paper industry ii) Textile industry	
		Paper industry: (Note: Consider any two points)	
		 If hard water used in textile industry then large quantity of soap is wasted. If hard water is used in paper manufacturing, then Ca²⁺ and Mg²⁺ ions react with the paper material to form unwanted precipitates. Hence, paper will not have desired smoothness and glossiness. Iron & manganese impurities in hard water affect whiteness of colors. 	2
		Textile industry: (Note: Consider any two points)	
		 If hard water is used in textile industry, then large quantity of soap is wasted while washing the yarn. At the same time, undesirable precipitate is formed which adheres to the fabrics and the exact shades of color are not obtained. Fe and Mn salts may cause spots on fabrics. 	2
	(f)	Define concrete. State any three properties of concrete.	4
		Concrete: A building material made from a mixture of broken stone/gravel, sand, cement, and water, which can be spread/poured into moulds and form stone like mass on hardening is called concrete.	1
		Properties:	
		1) Fineness: The size of the particles of the cement is its fineness.	
		2) Soundness: It refers to the ability of cement to not shrink upon hardening.	
		3) Consistency: The ability of cement paste to flow is consistency.	
		4) Strength: Three types of strength of cement are measured – compressive, tensile and flexural.	1 mark each
		5) Setting time: Cement sets and harden when water is added. This setting time can vary depending on multiple factors such as fineness of cement, cement-water ratio, chemical content and admixture.	
		6) Heat of hydration: When water is added to cement, the reaction that takes place is called hydration.	
		7) Loss of ignition: Heating a cement sample at 900-1000°c causes weight loss. This loss weight upon is calculated as loss of ignition.	
		8) Specific gravity: it is generally used in mixture proportioning calculations. Portland cement has specific gravity of 3.15, but others may have 2.90.	
		(Note: Consider any two relevant property)	