

MODEL ANSWER

WINTER-18 EXAMINATION

Subject Title: Control System

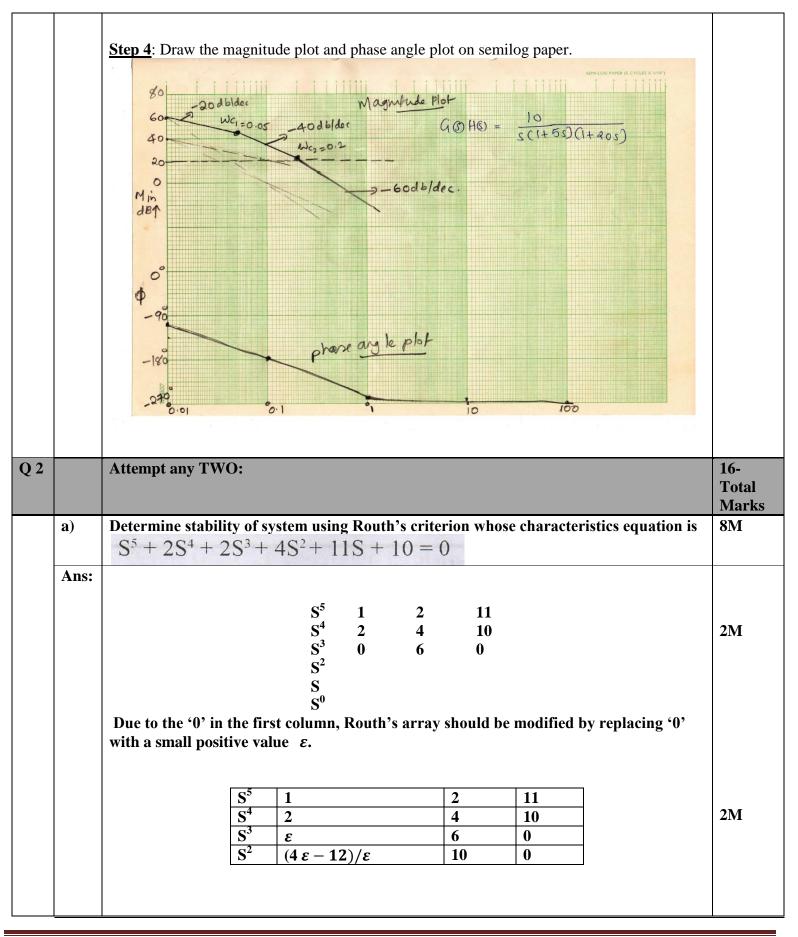
Subject Code: 17538

Important Instructions to examiners:

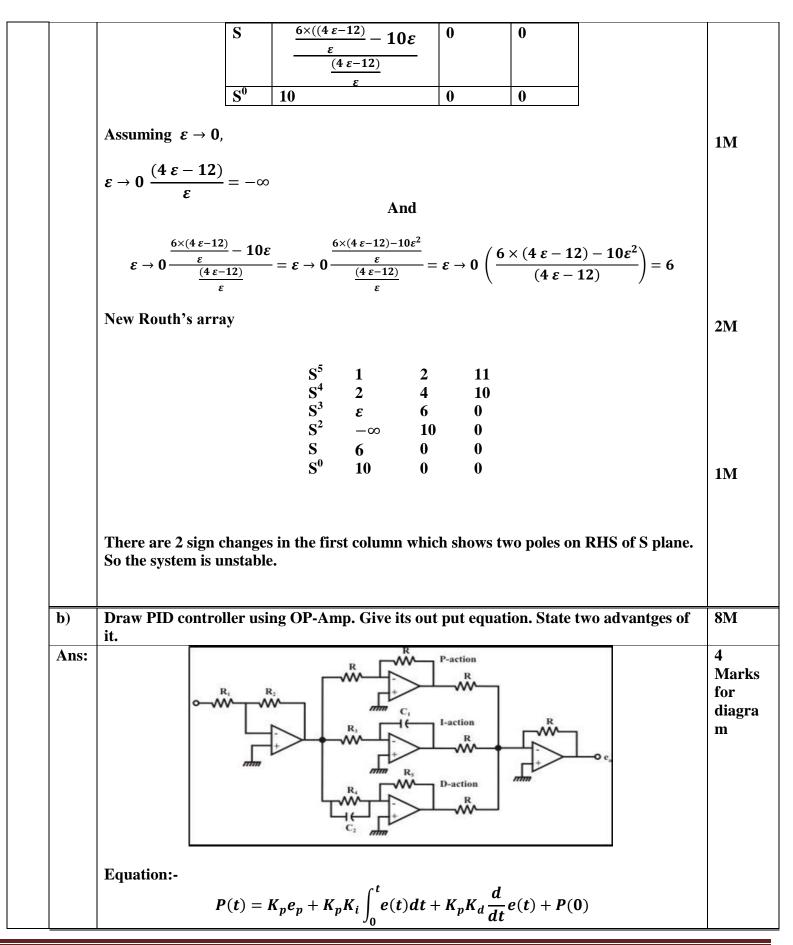
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Markin
No.	Q.N.		g Scheme
Q.1		Attempt any THREE :	12- Total Marks
	a)	Define Linear time variant and Linear tin invariant control system with examples	4 M
	Ans:	Linear time variant system: A linear time variant system is defined as a control system in which parameters of the system are varying with time that means as time passes parameters varies. OR A system is said to be Time variant if its input output characteristics change with time. Ex: rocket launching system, space shuttle/vehicle. Linear time in-variant system A linear time in-variant system is defined as a control system in which parameters of the system does not vary with time. OR A system is said to be Time Invariant if its input output characteristics do not change with time. Ex: RC ,RLC networks, different electrical network.	2M each

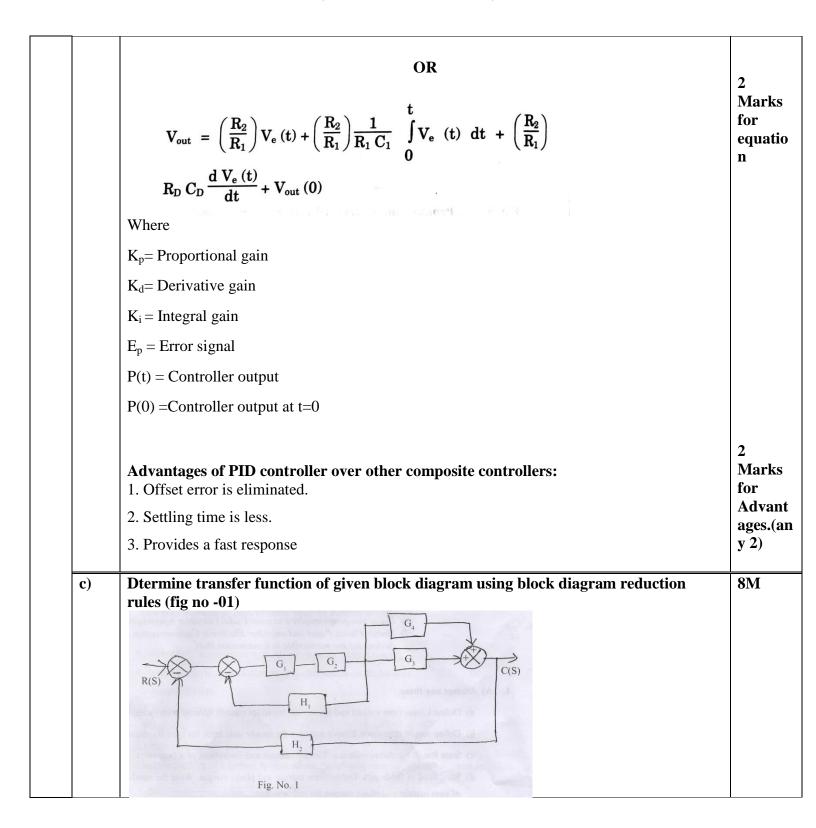
b)	Define steady state error. Derive equation for steady state error for type - 0 system.	4M
Ans:	Steady state error is defined as the error in the steady state of the system after the transient die out as time $t\rightarrow 0$.	1M
	Equation for steady state error for type' 0' system:	
	Steady state error $e_{ss} = \lim_{s \to 0} \frac{SR(S)}{1 + G(S)H(S)}$	3M
	For type '0' system, $G(S)H(S) = \frac{K}{(1+T_P S)}$	
	For unit step input, $R(S) = \frac{1}{S}$, $e_{SS} = \lim_{S \to 0} \frac{S \times \frac{1}{S}}{1 + G(S)H(S)} = \frac{1}{1 + K_P} = K$	
	For unit ramp input, $R(S) = \frac{1}{S^2}$, $e_{ss} = \lim_{s \to 0} \frac{S \times \frac{1}{S^2}}{1 + G(S)H(S)} = \infty$	
	For unit parabolic input, $R(S) = \frac{1}{S^3}$, $e_{SS} = \lim_{S \to 0} \frac{S \times \frac{1}{S^3}}{1 + G(S)H(S)} = \infty$	
c)	State Routh's stability criterion. List advantages and limitation of it. (any two)	4M
Ans:	Routh's stability criterion: If there is no sign change in the first column of Routh's array which is made from the coefficients of characteristic equation, the system is stable. The number of sign changes indicates the number of right side poles in the 'S' plane which makes the system unstable.	2M
	Advantages of Routh array:- i) Simple criterion that enables to determine the number of closed loop poles which lie in right half of S-plane without factorizing the characteristic equation. ii) Without actually solving characteristic equation, it tells whether or not there are positive poles in a polynomial equation iii) By seeing the sign changes in the first column, it can be analyzed whether system is stable or not.	1M(an) two)
	iv) It tells the number of poles present on imaginary axis i.e. it tells about critical stability.	1M(ang two)
	Disadvantages of Routh's array: - i) Cannot find out the value of poles. ii) It is not a sufficient condition for stability.	
d)	iii) Lengthy procedure State need of Bode plot. Define Gain margin and phase margin. Write he condition of gain margin and phase margin for stable system	4 M
Ans:	gain margin and phase margin for stable system.Need of Bode plot:it is a logarithmic plot which represents the sinusoidal transferfunction; it consists of magnitude plot and phase angle plot. It is used to determine stability.	1M
	Gain Margin : -It refers to the amount of gain, which can be increased or decreased without making	1M

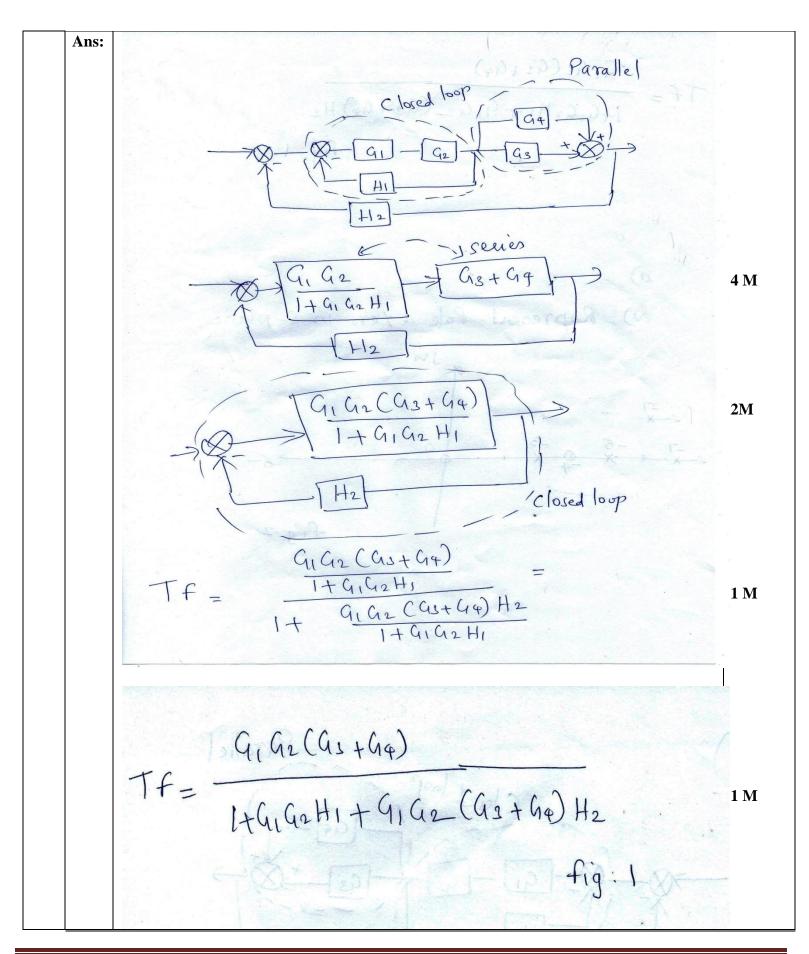


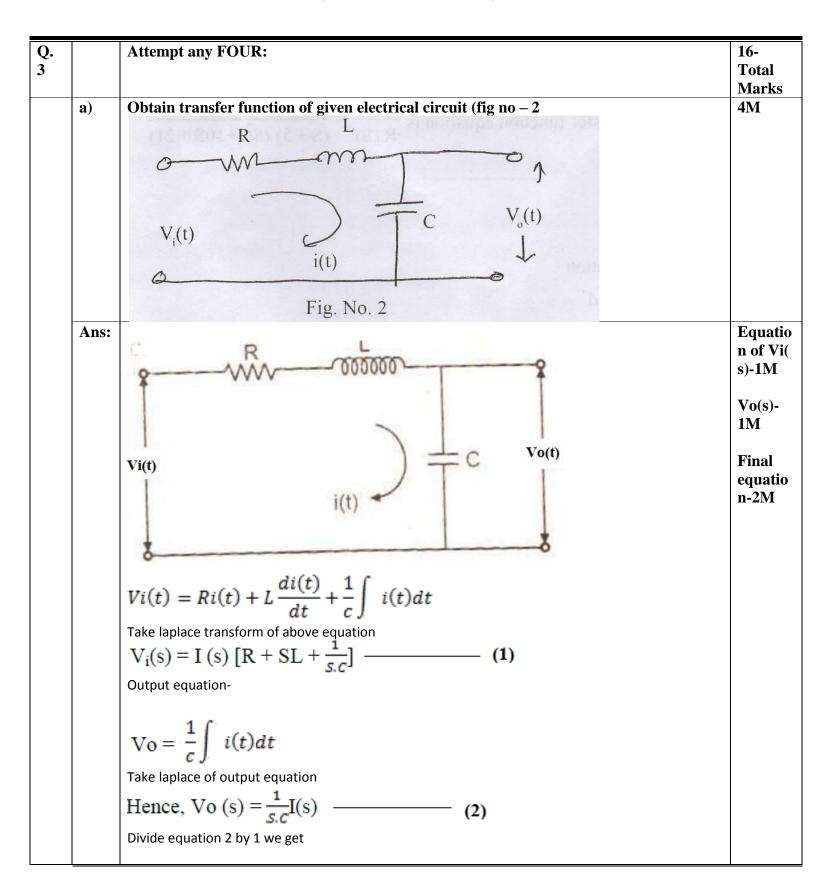
	th Pl It sy It va ar	 arying the gain up to a certain threshold, the system becomes marginally stable & en further variation of gain leads to instability) hase margin: - refers to the phase angle which can be increased or decreased without making the ystem unstable. is the phase that can be varied before the system becomes just stable(i.e, after arying the phase up to a certain threshold, the system becomes marginally stable and then further variation of phase leads to instability). 	1M
	Fo	ondition of gain margin and phase margin for stable system. or Stable System Both the margins should be positive.	1M
B)	Attempt	any ONE :	6
a)	For syste Find valu i) ii) iii) iv) v)	em whose transfer function equation is ue of Poles Zero's Characteristics equation Order of system Represent pole and zeros in S-plane	6M
Ans:	i) ii) iii) iv) v)	Poles = -5, -3, -7 Zeros = 0, -4 Characteristics equation, $(S+5)(S^2+10S+21) = 0$ Order of system = 3 Represent pole and zeros in S-plane Fig 2 J^{W} J^{W} J^{W} J^{W} J^{W} J^{W} f_{ig} -2	1M 1M 1M 2M

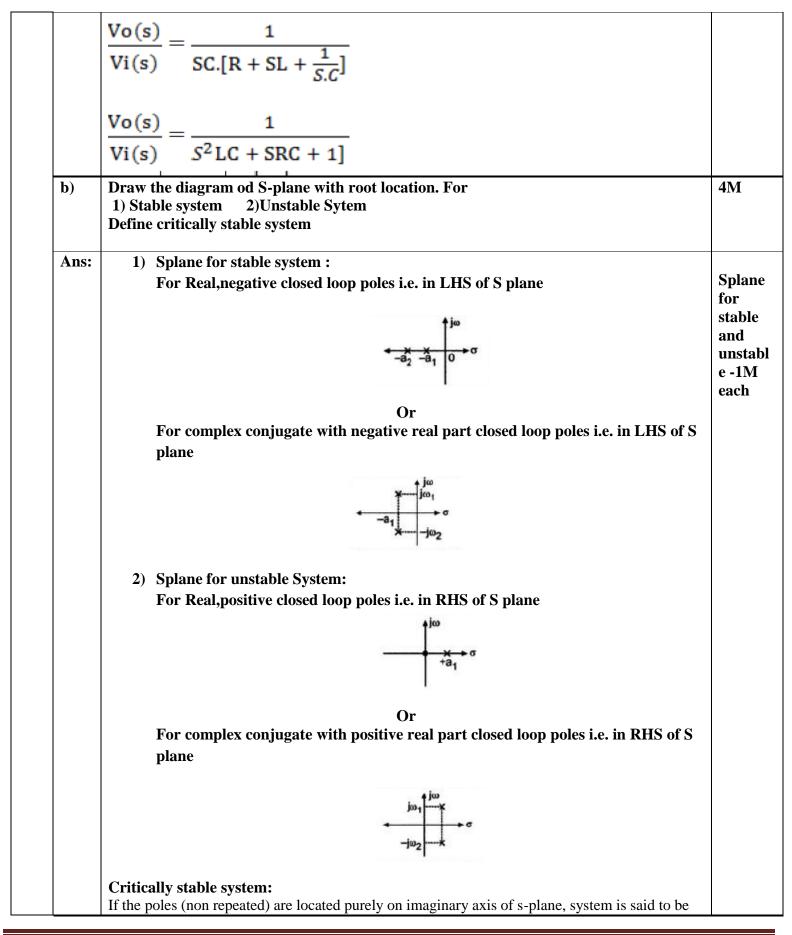


			em whose op 10^{-10} 5S) (1 + 20	Den loop transfer	function is,		6M
Ans:	Step 1: Conv Given equation	-			time constant form	:	
	 Pole at orig For ω=1, M For ω= 0.0 First order corner freq (1/S) and First order corner freq 	gain K=10, gin (1/S) whi Aagnitude in 1, Magnitud pole (1+ 20S uency the m from the corr pole (1+ 5S) uency the m First order po	Magnitude i ich has a mag dB for (1/S) e in dB for (S). The corner agnitude plo ner frequency). The corner agnitude plo	$f = -20 \log 1 = 0 dB$ $1/S) = -20 \log 0.01$ er frequency is ω_{c1} t's slope will be -2 y ω_{c1} it changes to frequency is $\omega_{c2} =$ t's slope will be -4	lope of -20dB/decade = 40 dB = $1/20= 0.05$ rad/sec 20 dB/decade due to	2. Till this Pole at origin Il this Pole at origin	2М
	-60 dB /decade. <u>Step 3:</u> Phase angle plot						
	Step 3: Phase	e angle plot					
	Step 3: Phase Frequency ω (rad/sec)	Factor 1; K=10, θ ₁	Factor 2; 1/S, θ_2	Factor 3; 1/(1+5S), $\theta_3 = -\tan^{-1} 5 \alpha$	Factor 4; 1/(1+20S), θ_4 = -tan ⁻¹ 20(4)	Total $\theta = \theta_1 + \theta_2 + \theta_3 + \theta_4$	2M
	Frequency	Factor 1; K=10,	1/S,	1/(1+5S), θ_3 $= -\tan^{-1} 5\omega$	1/(1+20S),	$ \begin{array}{c} \boldsymbol{\theta} = \boldsymbol{\theta}_1 + \\ \boldsymbol{\theta}_2 + \boldsymbol{\theta}_3 + \end{array} $	2M
	Frequency ω (rad/sec)	Factor 1; K=10, θ ₁	$\frac{1/S}{\theta_2}$	$1/(1+5S), \theta_3$	$ \begin{array}{r} 1/(1+20S), \\ \theta_4 \\ = -\tan^{-1} 20\omega \end{array} $	$\theta = \theta_1 + \\ \theta_2 + \theta_3 + \\ \theta_4$	2M
	Frequency ω (rad/sec) 0.01	Factor 1; $K=10, \theta_1$ 0^0 0^0 0^0	1/S, θ_2 -90^0 -90^0 -90^0	1/(1+5S), θ_3 $= -tan^{-1} 5\omega$ -2.86^0	$ \begin{array}{r} 1/(1+20S), \\ \theta_4 \\ = -\tan^{-1} 20\omega \\ -11 \end{array} $	$\theta = \theta_1 + \theta_2 + \theta_3 + \theta_4$ -103.86	2M
	Frequency ω (rad/sec) 0.01 0.1	Factor 1; $K=10, \theta_1$ 0^0 0^0	$1/S, \theta_2$ -90° -90°	1/(1+5S), θ_3 $= -\tan^{-1} 5\omega$ -2.86^0 -26.56^0	$ \begin{array}{r} 1/(1+20S), \\ \theta_4 \\ = -\tan^{-1} 20\omega \\ -11 \\ -63 \end{array} $	$\theta = \theta_1 + \theta_2 + \theta_3 + \theta_4$ -103.86 -179	2M





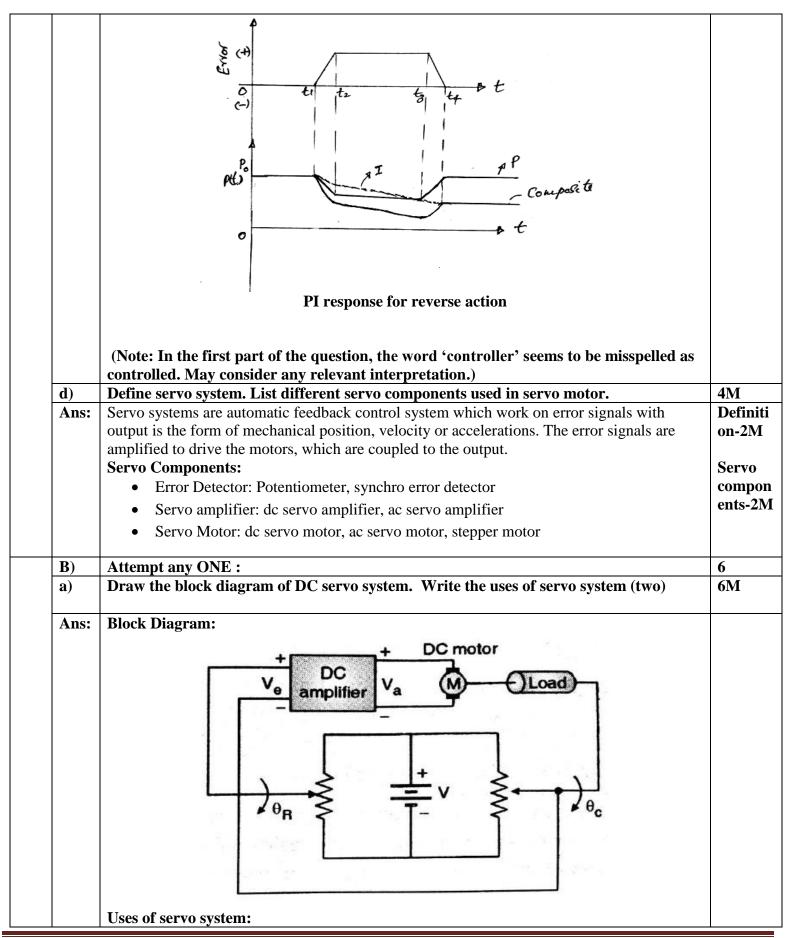




	critically stable. Or A linear time invariant system is said to be critically or marginally stable if for a bounded input its output oscillates with constant frequency and amplitude	Definiti on-2M
c)	Draw block diagram of Process Control system. Explain each block in details.	4 M
Ans:	p Control element	Block diagra m-2M
	e = r - b r Controller Summing point c	Explain ation- 2M
	 The block diagram of process control system consists of the following blocks:- 1) Measuring element: It measures or senses the actual value of controlled variable 'c' and converts it into proportional feedback variable b. 2) Error detector : It receives two inputs: set point 'r' and controlled variable 'p'. The output of the error detector is given by e= r-b. 'e' is applied to the controller. 3) Controller: It generates the correct signal which is then applied to the final control element. Controller output is denoted by 'p'. 4) Final control element: It accepts the input from the controller which is then transformed into some proportional action performed by the process. Output of control element is denoted by 'u'. 5) Process: Output of control element is given to the process which changes the process variable. Output of this block is denoted by 'u'. 	
d)	For unity feedback system whose open loop transfer function is $G(S) \cdot H(S) = \frac{K(S+2)}{S(S^2 + 7S + 12)}$ Determine i) Type of system ii) Kp, Kv, Ka.	4M
Ans:	For unity feedback system H(s)=1 $G(s).H(S) = \frac{K(S+2)}{S(S+4)(S+3)}$ Time constant form of above equation is- $G(s).H(s) = \frac{K*2(1+0.5S)}{S*4*3(1+0.25S)(1+0.33S)}$	Type of the system- 1m Kp,Kv, Ka-1M each
	$\mathbf{G(s).H(s)} = \frac{K*0.167(1+0.5S)}{S(1+0.25S)(1+0.33S)}$	

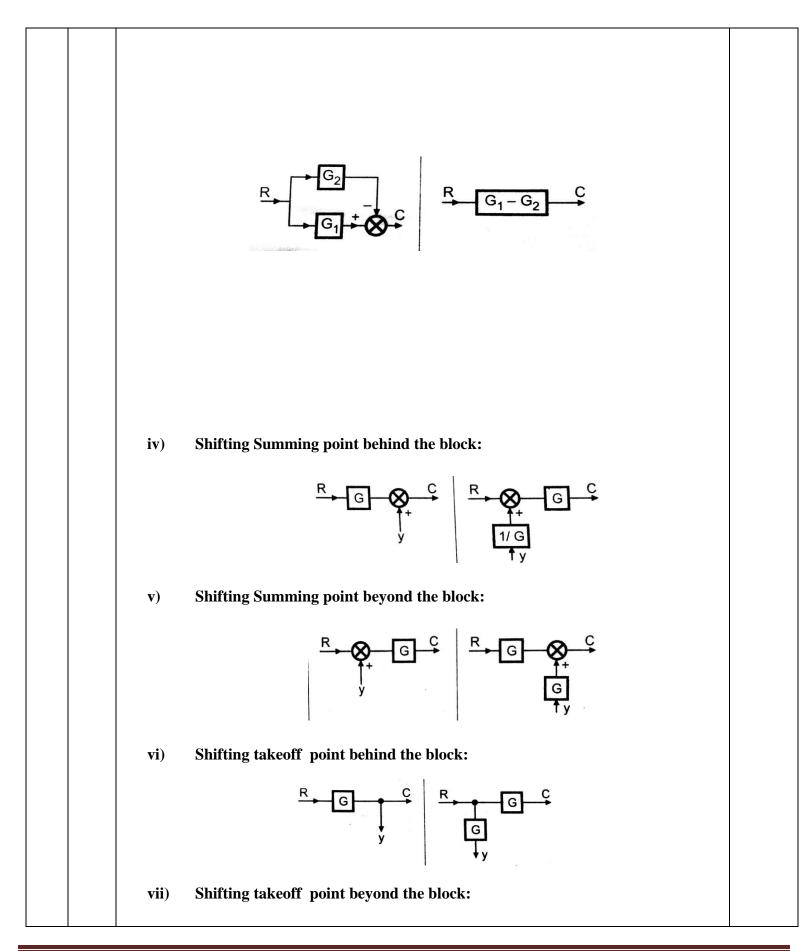
By compairing with stand equation i.e.	
$G(s).H(s) = \frac{K(1+a1S)(1+a2S)(1+anS)}{S^{J}(1+b1S)(1+b2S)(1+bnS)}$ J is type of the system	
Where J=1 Therefor the type=1	
Error coefficients	
$Kp=\lim_{s\to 0} G(S)H(S)$	
$Kp = \lim_{s \to 0} \frac{K * 0.167(1 + 0.5S)}{S(1 + 0.25S)(1 + 0.33S)}$	
$\mathbf{Kp} = \frac{K * 0.167}{0}$	
Kp=∞	
$Kv=\lim_{s\to 0} SG(S)H(S)$	
$Kv = \lim_{s \to 0} S \frac{K * 0.167(1 + 0.5S)}{S(1 + 0.25S)(1 + 0.33S)}$	
Kv=0.167K	
$Ka=\lim_{s\to 0} S^2 G(S) H(S)$	
$Ka = \lim_{s \to 0} S^2 \frac{K * 0.167(1 + 0.5S)}{S(1 + 0.25S)(1 + 0.33S)}$	
Ka=0	

e) Ans:		w AC servo motor differ fro	om a normal 2 – phase induction motor.	4M At least four
	Sr.N	AC servo motor	2 phase induction motor	point- 1M
	1	Low inertia	High inertia	each
	2	Linear Torque-speed	Nonlinear Torque-speed	
		characteristic	characteristic	
	3	Less susceptible to low frequency noise	Susceptible to low frequency noise	
	4	Low power applications	Low and high power applications	
	5	Diameter of rotor is small	Diameter of rotor is large	
	6	X/R ratio is less	X/R ratio is more	
				Total
Ans	1) $\overline{S^2}$ 2) $\overline{S^2}$ 3) $\overline{S^2}$	e under damped, over damped 9 $2^{2} + 9$ 9 $2^{2} + 6S + 9$ 9 $2^{2} + 6S + 9$ 9 $2^{2} + 3S + 9$ rd T.F. of second order system		Marks 4M

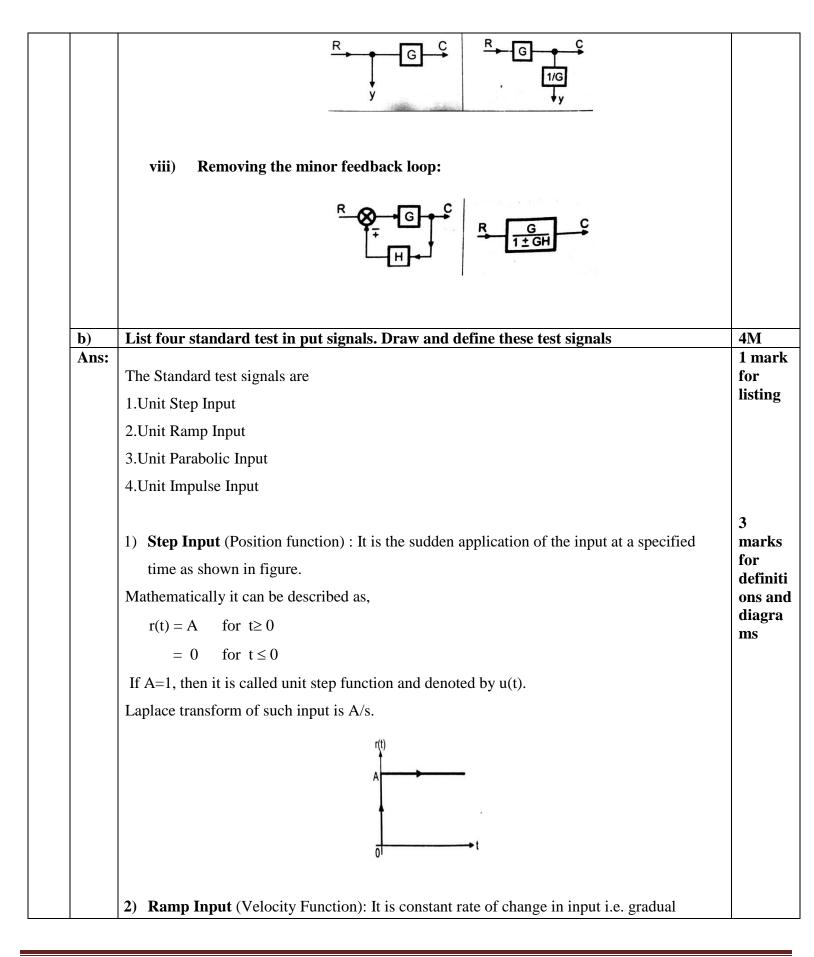


	$\zeta = 6/(2* \omega_n)$ $\zeta = 1$ As $\zeta = 1$, the system is critically damped 3) $2\zeta \omega_n = 3$ $\zeta = 3/(2* \omega_n)$ $\zeta = 0.5$ As $\zeta = 0.5$, i.e. $0 < \zeta < 1$, the system is under damped	
b)	Write two advantages and disadvantages of frequency domain analysis.	4M
Ans:	Advantages:1)It is easy to get a frequency response in laboratory with good accuracy2)It is useful to determine the transfer function of complicated system, which cannot be	Any two advanta ges-2M
	determined by analytical technique.	8
	3)The signal generators and precise measuring instruments for generation of sinusoidal	
	signals of various ranges of frequency and amplitude are readily available.	
	4)The absolute stability and relative stability of closed loop control system can be estimated	
	from the knowledge of open loop frequency response.	
	5)The design and parameter adjustment of the open loop transfer function of a system for a	
	specified closed loop performance can be carried out easily.	
	6)The effect of noise disturbance and parameter variations can be easily visualized and	
	assessed.	
	7)The transient response of a system can be obtained from its frequency response.	
	8)It can be extended to certain non-linear systems.	
	9)There is no need to evaluate the roots of the characteristics equation.	
	10)It can give more quickly the design and analysis specification of the control system	
	having multiple loops and poles.	
	Disadvantages :	Any
	1)It cannot be used for linear systems having large time constant.	two Disadva
	2)It cannot be used for non-interruptible systems.	ntages- 2M
	3)It gives only indirect indication of the nature of the time response of the system which is	21VI
	always the final aim of studying system behavior.	
	4)It can give approximate results only, as it is graphical method.	

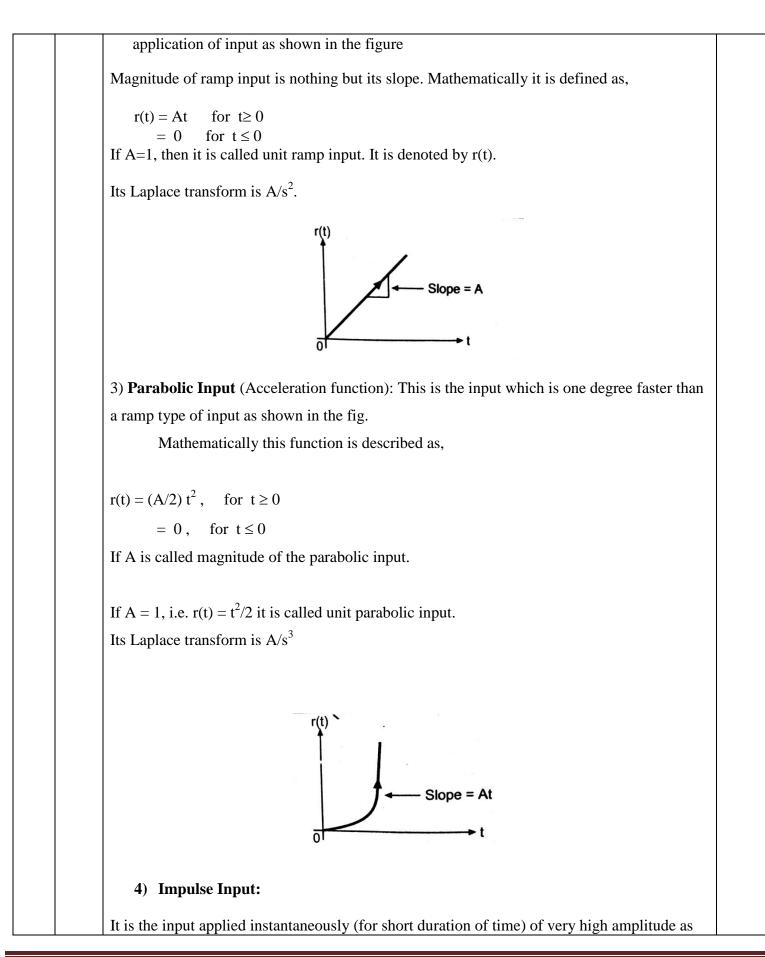
	5)With the increased use of digital computers and available software's, it is not used for analysis .	
c)	Why controlled is required in control system? Draw PI controller response to e(t) t	4M
Ans:	 Use of controller in control system: Controllers improve steady state accuracy by decreasing the steady state errors. As the steady state accuracy improves, the stability also improves. They also help in reducing the offsets produced in the system. Maximum overshoot of the system can be controlled using these controllers. They also help in reducing the noise signals produced in the system. Slow response of the over damped system can be made faster with the help of controllers. 	2M
	P(t) P(t)	2M fc any o respo e graj
	PI response for direct action	

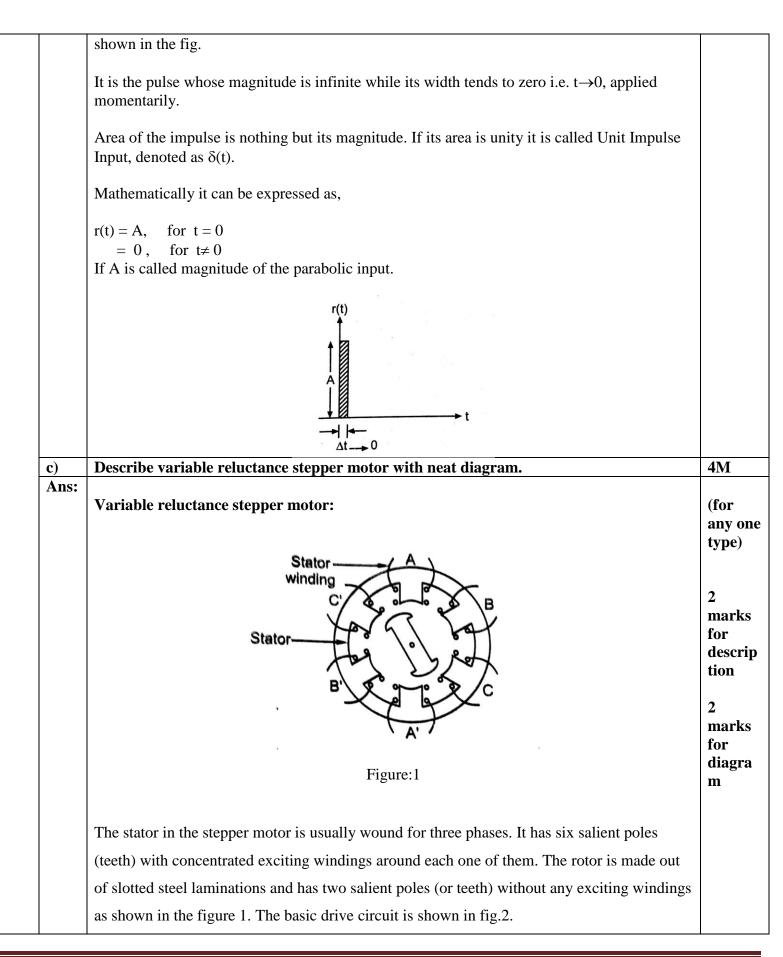


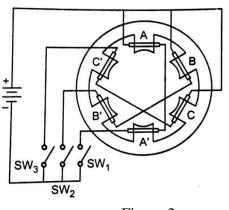
	• In Solar Tracking System:	
	Antenna Positioning:	
	Ship stabilization system	
	Missile launching system	
	In automation system	
	• In robotic system	
b)	Transfer function of system is given by Calculate: $\frac{C(S)}{R(S)} = \frac{100}{S^2 + 5S + 100}$	6M
	 i) Damped frequency of oscillation ii) Peaked time (tp) iii) Peaked over shoot (% MP) iv) Settling time (ts) 	
Ans:	Standard T.F. of second order system	Dampin frequer
	$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	of oscillati n-1M
	$\omega_n^2 = 100$	Peak time-1N
	$ω_n=10 \text{ rad/sec}$ 2ζ $ω_n=5$	Peak oversho -2M
	ζ= 0.25	Settling time-2N
	i)Damped frequency of oscillation: $\omega_d = \omega_n \sqrt{1-\zeta^2}$	
	$=10\sqrt{(1-0.25^2)}$ =9.68 rad/sec	
	ii) Peak time- Tp= $\frac{\pi}{\omega d}$	
	$Tp = \frac{\pi}{9.68}$ =0.3245sec	
	iii) Peak Overshoot(Mp)	

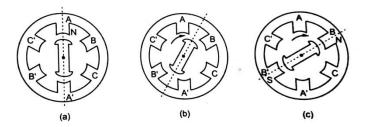


		$\% Mp = e^{(-\pi . \frac{\zeta}{\sqrt{1-\zeta^2}})} .100\%$ $\% Mp = e^{(-\pi . 0.25/\sqrt{(1-0.25^2)})} .100\%$ % Mp = 44.43 % iv)Settling time(ts) $ts = \frac{4}{\zeta . \omega n} sec$ $ts = \frac{4}{\zeta . \omega n} sec$ ts=1.6 sec	
Q.5		Attempt any FOUR :	16- Total
	a)	State any four block diagram reduction rules.	Marks 4M
	Ans:	State any four block diagram reduction rules.	4
		i) Associative law: The two are more summing points directly connected can be interchanged. $\begin{array}{c c} \hline R & & & & \\ \hline R & & & & \\ \hline & $	marks for any four rules
		ii) Blocks in Series: Transfer function of such blocks get multiplied $\begin{array}{c c} R \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow C \\ \hline P \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow C \\ \hline P \rightarrow G_1 - G_2 - G_3 \rightarrow C \\ \hline P \rightarrow G_2 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_2 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_2 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_3 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_3 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_3 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_3 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_3 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_3 - G_3 - G_3 - G_3 \rightarrow C \\ \hline P \rightarrow G_3 - G_$	
		iii) Blocks in Parallel : Transfer function of such blocks get added algebraically	









Explanation : The coils wound around diametrically opposite poles are connected in series and the three phases are energized from a DC source with the help of switches.

- When the phase A-A' is excited with switch SW1 closed with A forming N Pole and A' as S Pole, the rotor tries to adjust itself in a minimum reluctance position between stator and rotor as shown in the fig.a.
- ii) When the phase B-B' is also excited with switch SW2 closed, keeping A-A' energized the magnetic axis of stator moves 30^0 in clockwise direction and hence rotor also rotates through 30^0 step in clockwise direction to attain new minimum reluctance position as shown in fig.b.
- iii) After that the excitation of AA' is disconnected and only BB' is kept energized.
 Rotor further moves through 30° step to adjust itself in new minimum reluctance position as shown in fig.c.

By successively exciting three phases in the specific sequence, the motor takes twelve steps to make one complete revolution.

OR

Multistack variable reluctance stepper motor:

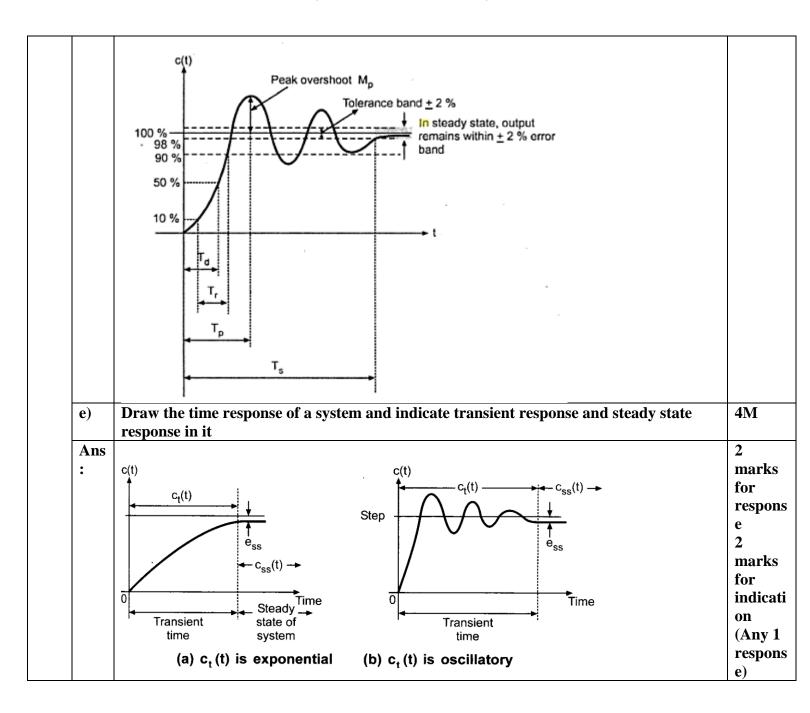
In this type, the windings are arranged in different stacks. The figure represents a three

	Thus if the error rises above a certain critical value, the output changes from 0% to 100%.	ZUIK
	Where, P is the controller output and epis the error signal.	for Neu zone
	$ \begin{array}{ccc} P = 0\% & e_p < 0 \\ = 100\% & e_p > 0 \end{array} $	2 mar
	ON-OFF controller : Itis a two position discontinuous controlling mode. It has to control two positions of control element, either on or off. This control mode has two possible outputs states namely 0% or 100%. The mathematical equation of ON-OFF controller is	2 mar for defin on
Ans:	Denne Orv-OFF controller. Explain Acuttal Zone in Orv-OFF controller.	TATA
d)	Rotor Rotor Rotor Common frame Grad Grad Grad Grad Common frame Of stator Grad Grad Define ON – OFF controller. Explain "Neutral Zone" in "ON-OFF" controller. Controller.	4M
	A B C Shaft	
	$\alpha = 360^{0}/(q T)$ where q = number of stacks, T = number of teeth .	
	a progressive angular displacement of :	
	stator and rotor teeth are aligned. The stator teeth of various stacks are arranged to have	
	excited, the rotor gets pulled to the nearest minimum reluctance position where the	
	have a common shaft. The stator stacks and rotors have toothed structure with same teeth size. The stators are pulse excited and rotors are unexcited. When the stator is	

e) Ans:	Neutral Zone: In all the practical implementation of the ON-OFF controller, there is an overlap, as the error increases through zero or decreases through zero. Such an overlap creates a span of error in which there is no change in the controller output. This span is called neutral zone , dead zone or dead band . Fig shows p verses ep for ON-OFF Controller. When the error changes by Δ ep there is no change in the controller output. Similarly while decreasing also the error must decrease beyond Δ ep below 0 to change the controller output. Determine the range of K for stable system with characteristic equation as follow: S ⁴ + 4S ³ + 13S ² + 36S + K = 0	4M	
	5°) $S^{4} + 4S^{3} + 13S^{2} + 36S + K = 0$ S^{4} 1 13 K S^{3} 4 36 0 S^{2} 4 K 0 S^{1} $\frac{144 - 4K}{4}$ 0 S^{0} K For System to be Stable there Should be No sign changes in First column of Routh's array. $\Rightarrow \frac{144 - 4K}{4} > 0$ $\Rightarrow 144 - 4K > 0$ $\therefore 144 > 4K$ $\therefore \frac{144}{4} > K$ $\therefore \frac{144}{4} > K$ Hence to make the System Stable songe of K is $0 < K < 36$ $\therefore From S^{0} row, we get K > 0.$		
f)	Draw potentiometer as error detector. State its working principle.	4 M	

	Ans:					
	Ans:	$\begin{array}{c} \hline & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$				
Q.6		Attempt any FOUR:				
	a) Compare DC servo motor with AC servo motor (any 04 points)				Marks 4M	
	Ans :				4 marks	
		Sr.No	DC servo motor	AC servo motor	for any	
		1	Deliver High power output	Low power output 1/2W to 100W	four points	
		2	High efficiency	Efficiency is less about 5 to20%		
		3	Brushes and commutator are present	Brushes and commutator are present		
		4	Frequent maintenance required due to commutator.	Due to absence of commutator maintenance is less.		

			re problems of stability.	Less problems of stability.	
		frec	shes produce radio uency noise.	No radio frequency noise.	
		7 Noi	sy operation.	Relatively stable and smooth operation.	
		8 Am	plifiers used have a drift.	A.C. Amplifiers used have no drift.	
			ear response	Non- Linear response	
			slip rings. Hence slip es are zero	Slip rings produce slip losses.	
b)	i) ii) iii) iii) iv)	re proportion Nature of Response Equation Application	to error	action on the basis of	4M
Ans :					1 mar for
		Parameter	Proportional control action	Derivative control action	each point
		Nature of input	Any sort of error input	Rate of change of error	(Any
		mput		input	one
		Response to error	For constant error outpu	-	applic tion)
			also a constant.	zero.	
		Equation	$p(t) = K_p e(t) + p(0)$	$p(t) = K_d \frac{d}{dt} e(t) + p(0)$	
		Applicatio	n Proportional controller c	can This controller cannot be	
		S	be suitable where	used alone. It is used as a	
			1. Manual reset of the	composite controller along	
			operating point is possib	ble. with P-controller for	
			2. Load changes are sma	all. applications like:	
			3. The dead time exists i	in 1. Used in Motion control	
			the system is small.	2. Temperature control	
				3.Critical Processes that	
				require fast control action	
				4.Processes prone to	
				frequent external	
				disturbances like Level	



	contro	l loop and Flow	
	contro	l loop.	
c)	Find the stability of a control system whose closed loop tr $T(S) = \frac{10}{S^5 + 7S^4 + 6S^3 + 42S^2 + 8S + 56}$	ansfer function is given as	4M
Ans			
:	$\begin{array}{ccc} 6c) & T(s) = & 10 \\ \underline{sol} & & \overline{s^{5} + 7s^{4} + 6s^{3} + 42s^{2} + 8s + 56} \end{array}$		
	$T(5) = \frac{C(5)}{R(5)} = \frac{G(5)}{1 + H(5)G(5)}$		
	F(s) = 1 + G(s) + (s) = 0 $S'_{1} = S^{5} + 7S^{4} + 6S^{3} + 42S^{2} + 8s + 56 = 0$		
	5^{5} 6 8 5^{4} 7 42 56		
	5^{4} 7 42 36 5^{3} 0 0 0		4mar
	5 ³ 0 0 0 5 ¹ 5 ⁰		
	s° Row of zero's means the system is either unstable or marginaly stable $A(s) = 7s^{4} + 42s^{2} + 56 = 0$		
	unstable or marginaly stable		
	$A(s) = 7s^4 + 42s^2 + 36^{-10}$		
	$\frac{d}{ds} A(s) = 283^{5} + 843$		
	5^{5} 6 8		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	52 21 56 0		
	5' 9.33 0		
	5° 56		

	As there is no sign change, so system may be	
	Stable. But as there is row of zeros, system	
	Will be marginally stable of Unstable	
	To examine this solve A(s) = 0	
	$73^{4} + 425^{2} + 56 = 0$	
	let s ² =t	
	$7t^2 + 42t + 56 = 0$	
	$E = -42 \pm \sqrt{1764 - 1568}$	
	$= -\frac{42 \pm 14}{14} = -3 \pm 1$	
	$3^{2} = -2$ and $3^{2} = -4$ $s = \pm i\sqrt{2}$ $s = \pm i^{2}$ $s = \pm i\sqrt{2}$ mimaginary axis	
	$3 = -2$ $s = \pm j^2$	
	S= ± j/2	
	: Non repeated roots in the Stable. Hence system is marginally stable.	
d)	Draw the time response of 1 st order and 2 nd order system.	4 M
Ans	Time response of 1 st order system	
:	v _o (t)	2
	▲ () () () () () () () () () (marks
		for 1 st
		order
	$1 - e^{-t/RC}$	
	→ (
	Time response of 2 nd order system	
	• •	2
		marks
		for 2 nd
		order

