WINTER - 18 EXAMINATIONS

Subject Code: 17553 / N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{array}{\|l\|} \hline \mathbf{Q} . \\ \text { NO. } \end{array}$	MODEL ANSWER	$\begin{aligned} & \text { MARK } \\ & \text { S } \end{aligned}$	TOTAL MARK S
1	Attempt any FIVE of the following:		5X4=20
a	Following are the general considerations in designing a machine component: 1. Type of load and stresses caused by the load 2. Motion of the parts or kinematics of the machine. 3. Selection of materials 4. Form and size of the parts 5. Frictional resistance and lubrication. 6. Convenient and economical features 7. Use of standard parts 8. Safety of operation 9. Workshop facilities 10. Number of machines to be manufactured 11. Cost of construction. 12. Assembling.		4
b	Keyway is a slot machined either on the shaft or in the hub to accommodate the key. - It is cut by vertical or horizontal milling cutter. Effect:- - The keyway cut into the shaft reduces the load carrying capacity of shaft. - This is due to stress concentration near the comers of the keyway and reduction in the crosssectionalarea of shaft. - In other words, the torsional strength of shaft is reduced. - The following relation of reduction factor is used to analyze the weakening effect of keyway is given by H. F. Moore. $\mathrm{e}=1-0.2(\mathrm{w} / \mathrm{d})-1.1(\mathrm{~h} / \mathrm{d})$ Where, $\mathrm{e}=$ shaft strength factor $=$ Strength of shaft with keyway/Strength Of shaft WIithout keyway $\mathrm{w}=$ Width of keyway, $\mathrm{d}=$ Diameter of shaft $\mathrm{h}=$ Depth of keyway $=112 \times$ thickness of key $=1 / 2 \times \mathrm{t}$ - It is usually assumed that strength of keyed shaft is 75% of solid shaft. - Thus, after finding out dimensions of key, the reduction factor 'e' is calculated and for safe design, its value should be less than 0.75 .	01 mark 3 mark effect	$\begin{gathered} 04 \\ \text { marks } \end{gathered}$
c	Advantages:- 1. The welded structures are usually lighter than riveted structures. This is due to the reason that in welding, gussets or other connecting components are not used. 2. The welded joints provide maximum efficiency (may be 100\%) which is not possible in case of riveted joints. 3. Alterations and additions can be easily made in the existing structures 4. As the welded structure is smooth in appearance, therefore it looks	$\begin{gathered} 2 \mathrm{~m} \\ \text { Any } 2 \end{gathered}$	4m

	pleasing. 5. In welded connections, the tension members are not weakened as in the case of riveted joints. 6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself. 7. Sometimes, the members are of such a shape (i.e. circular steel pipe) that they afford difficulty for riveting. But they can be easily welded. 8. The welding provides very rigid joints. This is in line with the modern trend of providing rigid frames. 9. It is possible to weld any part of a structure at any point. But riveting requires enough clearance. 10. The process of welding takes less time than the riveting	
	Disadvantages:- l.Since there is an uneven heating and cooling during fabrication, therefore the member may get distorted or additional stresses may develop. 2. It requires a highly skilled labour and supervision. 3. Since no provision is kept for expansion and contraction in the frame, therefore there is a possibility of cracks developing in it. 4. The inspection of welding work is more difficult than riveting work.	Any 2

| | shank will absorb a large portion of the energy, thus relieving the
 material at the sections near the thread. The bolt, in this way, becomes
 stronger and lighter and it increase shock absorbing capacity of the bolt
 because be increased by increasing its length.of an increased modulus of
 resilience. This gives us bolts of uniform strength. The resilience of a
 bolt may also | |
| :--- | :--- | :--- | :--- |

| c) i) | marks |
| :--- | :--- | :--- | :--- |

C	Given $\begin{aligned} & \eta=50 \mathrm{~mm}, R=25 \mathrm{~mm}, \quad p=7 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{t}=20 \mathrm{~N} / \mathrm{mm}^{2}, \quad 6 t \mathrm{~b}=60 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Using Lame'v equation $\begin{aligned} & t=R\left[\sqrt{\frac{6 t+P}{6 t-P}}-1\right]=25\left[\sqrt{\frac{20+7}{20 \sim 7}}-1\right] \\ & t=11.03 \approx 12 \mathrm{~mm} \end{aligned}$ Assuming width of packing $=10 \mathrm{~mm}$ $\begin{aligned} \therefore D_{1} & =D+2 \times \text { (width if Packing) } \\ & =50+2 \times 10 \\ D_{1} & =70 \mathrm{~mm} \end{aligned}$ Force Trying to seperate the flange $\begin{aligned} & F=\frac{\pi}{4}\left(D_{1}\right)^{2} \cdot p=\frac{\pi}{4}(70)^{2} \cdot 7 \\ & F=26943 \mathrm{~N} \end{aligned}$ Load on each bell. $\begin{aligned} & F_{b}=\frac{F}{2}=13471.5 \mathrm{~N} \\ & \therefore F_{b}=\frac{\pi}{4}(d c)^{2} \times 6+b=\frac{\pi}{4}\left(d_{c}\right)^{2} \times 60 \\ & \therefore d_{c}=16.9 \mathrm{~mm} \\ & \quad d c \approx 17 \mathrm{~mm}) \end{aligned}$ \& Nominal diameter $d=\frac{d c}{0.84}=\frac{17}{0.85}$ $d=20.2=22 \mathrm{~mm}$	1m given 2 m 1 m 1 m 2m 1 m	8M
4.	Attempt any TWO of the following:		2X8=16

(ISO/IEC-27001-2005 Certified)

a)	Procedure:- 1. Find the angles between the members at required points. 2. In case of simply supported frame find support reactions by using COE. 3. Isolate the joint from its parent truss in such a way that it should not carry more than two unknown members. 4. Draw the Free body diagram of that joint showing nature of member forces as pull type. 5. Assume that if the entiret russ is in equilibrium then that isolated joint must be in equilibrium. 6. Apply COE to that joint and find the nature and magnitude of forces. 7. Repeat the same process for all the joints. 8. Tabulate the result.	```1m for each step (student s may club the points.. kindly give marks accordi ngly)```	8m
b i)	Factor of Safety It is defined, in general, as the ratio of the maximum stress to the working stress. Mathematically, Factor of safety $=$ Maximum stress $/$ Working or design stress In case of ductile materials e.g. mild steel, where the yield point is clearly defined, the factor of safety is based upon the yield point stress. In such cases, Factor of safety = Yield point stress / Working or design stress Factors affecting selection of FOS:- 1.The reliability of the properties of the material and change of these properties during service; 2. The reliability of test results and accuracy of application of these results to actual machine parts; 3. The reliability of applied load; 4. The certainty as to exact mode of failure ; 5. The extent of simplifying assumptions; 6. The extent of localised stresses; 7. The extent of initial stresses set up during manufacture; 8. The extent of loss of life if failure occurs; and 9. The extent of loss of property if failure occurs.	$2 \mathrm{~m}$ $2 \mathrm{~m}$ Any 2	4m
b ii)	Stress Concentration. Whenever a machine component changes the shape of its cross-section, the simple stress distribution no longer holds good and the neighbourhood of the discontinuity is different. This irregularity in the stress distribution caused by abrupt changes of form is called stress concentration. It occurs for all kinds of stresses in the presence of fillets, notches, holes, keyways, splines, surface roughness etc. Causes:- It may occurs due to- 1) Change in cross section such as stepped axle, grooves, keyways, threaded holes etc. 2) Concentrated load applied at minimum areas of machine parts such as contact between gear teeth. 3) Variation in mechanical properties of materials from point to point due to cavities, cracks etc. 4) Surface irregularities or poor surface finish.	$2 \mathrm{~m}$ 2 m any 2	4m

3) To Find Bending Moment

1 m for bending momen
here $M=W \times 800=5670 \times 800$

$$
M=1.70 \times 10^{6} \mathrm{Nmm}
$$

4) Equivalent Twisting load.

$$
T_{e}=\sqrt{k m \cdot m^{2}+k_{t} \cdot T^{2}}
$$

$$
=\sqrt{1.5 \cdot\left(1.9 \times 10^{\circ}\right)^{2}+2\left(79.57700^{\circ}\right)^{2}}
$$

$$
\begin{aligned}
& =\sqrt{4.33 \times 10^{12}} \\
& =2.08 \times 10^{6}
\end{aligned}
$$

Equating

$$
T_{e}=\frac{\pi}{16} T d^{8}
$$

$$
2.08 \times 10^{0}=\frac{\pi}{16} \times 35 . d^{3}
$$

$$
d=67.14 \mathrm{~mm}
$$

$$
d \approx 88 \mathrm{~mm}
$$

5.	Attempt any TWO of the following:		$2 \mathrm{X} 8=1$ 6
a	Given $\begin{aligned} & p=15 \times 10^{3} \mathrm{~W}, \quad N=960 \mathrm{rpm}, \quad d=40 \mathrm{~mm} \\ & d=75 \mathrm{~mm}, \quad \tau=56 \mathrm{~N} / \mathrm{mm}^{2} \quad \quad \quad \mathrm{ck}=112 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Torque Transmitted $\begin{aligned} & P=\frac{2 \pi N T}{80} \therefore T=\frac{60 P}{2 \pi N} \\ & T=\frac{60 \times 15 \times 10^{8}}{2 . \pi \times 960}=140 \mathrm{~N} \cdot \mathrm{~m} \\ & I=140 \times 10^{3} \mathrm{~N} . \mathrm{mm} \end{aligned}$ Width and thiconess of key As $\quad b C k=2 \tau$ the key must be square For square key $\begin{aligned} & \omega=\frac{d}{4}=\frac{40}{4}=10 \mathrm{~mm} \\ & t=\frac{d}{4}=\frac{40}{4}=10 \mathrm{~mm} \end{aligned}$ Accordding to H.F Moore $\begin{aligned} & e=1-0.2\left(\frac{w}{d}\right)-1.1\left(\frac{h}{8}\right) \\ & e=1-0.2\left(\frac{10}{40}\right)-1.1\left(\frac{10}{40}\right) \\ & e=0.8125 \end{aligned}$ shear strength of key. $\begin{aligned} & =d \times \omega \times \tau \times \frac{d}{2}=75 \times 10 \times 56 \times \frac{40}{2} \\ & =840000 \mathrm{~N} \end{aligned}$ Normal striength of shaft. $\begin{aligned} & \text { nal shrength of shaft. } \\ & =\frac{\pi}{16} \tau d^{3} \cdot e=\frac{\pi}{16} \times 56 \times(40)^{3} \times 0.8125 \\ & =5 \pi 1844 \end{aligned}$	1 m 1 m 1 m	8m

	$\frac{\text { Shear strength of key }}{\text { Normal strength of shaft }}=\frac{840000}{571844}=1.47$	1 m	
b	$5 \cdot 6$		8M
	Given width $=75 \mathrm{~mm}, t=5=12.5 \mathrm{~mm}, \quad 6 t=70 \mathrm{~N} / \mathrm{mm}^{2}$ $\tau=56 \mathrm{~N} / \mathrm{mm}^{2} .$ Total load Carried by plate $\begin{aligned} W & =\text { Area } \times \text { Max shess } \\ & =(75 \times 12.5) \cdot 70 \\ W & =65.62 \times 10^{3} \mathrm{~N} \end{aligned}$ For Stahe loading - Case No. $1=$ os here $l_{1}=$ widte -12.5 $\begin{aligned} & d_{1}=75.12 .5 \\ & d_{1}=62.5 \mathrm{~mm} \end{aligned}$ Tensile strength of plate $\begin{aligned} W_{\sigma t} & =0.707 \times \delta \times d_{1} \times 6 t \\ & =0.707 \times 12.5 \times 62.5 \times 70 \\ W_{1 t} & =38.86 \times 10^{3} \mathrm{~N} . \end{aligned}$ Shear strengt of Plate $\begin{aligned} W_{S} & =2 \times 0.707 \times s \times d_{2} \times 7 \\ & =2 \times 0.707 \times 12.5 \times \mathrm{d}_{2} \times 56 \\ & =989.8 \mathrm{~d}_{2} \end{aligned}$ We know Total load. $\begin{aligned} W=W_{i t} & +W_{\tau} \\ 65.62 \times 10^{3} & =38.60 \times 10^{3}+989.8 d_{2} \\ \therefore d_{2} & =\frac{65.62 \times 10^{3}-38.60 \times 10^{3}}{989.8} \\ d_{2} & =27.20 \mathrm{~mm} \end{aligned}$ Adding 12.5 mm for starthng 4 stapping weld rum $\therefore l_{2}=27.20+12.5=39.73 \mathrm{~mm}$	1 m 1m 1m 1m	

6.	Attempt any FOUR of the following:		4X4=16
a	i) $30 \mathrm{Ni} 4 \mathrm{Cr} 1:-$ It is a high carbon steel which contains 0.3% carbon, 4% Nickel, and 1% chromium. ii) SG 400/12:- It is a spheroidal graphite cast iron which has a minimum tensile strengrth of $400 \mathrm{~N} / \mathrm{mm}^{2}$ and 12 percent elongation.	$2 m$ $2 m$	4m
b	Single Transverse Fillet weld Double Transverse Fillet weld. a) For single Transverse Fillet weld. Tensile strengith of plafe $w=0.707 \times S \times d \times 6 t$ b) For Double Transwerse Fillet weld. Tensile strength of plate $w=2 \times 0.707 \times 5 \times d \times 6 t$	1m	4 m

	Shearing Resistance $P_{S}=49364 \mathrm{~N} .$ Coushing Resistance $\begin{aligned} P_{c} & =n \cdot d \cdot t 6 \mathrm{ck} \\ & =2 \times 23 \times 13 \times 120 \\ P_{c} & =71760 \mathrm{~N} . \end{aligned}$ Strength of Unrivetid plate $\begin{aligned} p & =p \cdot t \cdot 6 t \\ & =76 \times 13 \times 80 \\ p & =79040 \mathrm{~N} \end{aligned}$ Efficiency $\begin{aligned} & \eta=\frac{p_{s}}{p}=\frac{49864}{79040} \\ & \eta=63 \% \end{aligned}$	$1 \mathrm{~m}$	
f	following stresses are induced in a bolt, screw or stud when it is screwed up tightly 1. Tensile stress due to stretching bolt Since none of the above mentioned stresses are accurately determined, therefore bolts are designed on the basis of direct tensile stress with a large Factor of safety in order to account for the indeterminate stresses. The initial tension in a bolt, based on experiments, may be found by the relation $\mathrm{Pi}=2840 \mathrm{dN}$ $\mathrm{Pi}=$ Initial tension in a bolt, and	1 m for each stress any 4 stresses	4m

```
d = Nominal diameter of bolt, in mm.
2.Torsional shear stress caused by the frictional resistance of the
threads during its tightening
The torsional shear stress caused by frictional resistance of the threads
during its tightening may be obtained by using the torsion equation.
We know that
T/J =Ts/r
Ts=T/J x r ={T/(\pi/32) x dc4 } x {dc /2 }=16 T/ }\pi(\textrm{dc})
Where Ts = Torsional shear stress,
    T = Torque applied, and
    dc= Minor or core diameter of thread
```

3.Shear stress across the threads. The average thread shearing stress
for the screw(Ts) is obtained by using the relation:
$\mathrm{Ts}=\mathrm{p} /(\pi \mathrm{dc} \times \mathrm{bxn})$
Where $\mathrm{b}=$ Width of the thread section at the root.
The average thread shearing stress for the nut is
$\mathrm{Tn}=\mathrm{p} /(\pi \mathrm{d} \times \mathrm{bxn})$
Where $\mathrm{d}=$ Major diameter.
4. Compression or crushing Stress on threads. The compression or
crushing stress between the threads (бc) may be obtained by using the
relation :
$\sigma c=\mathrm{p} / \pi[\mathrm{d} 2-(\mathrm{dc}) 2] \mathrm{n}$
Where $\mathrm{d}=$ Major diameter,
dc $=$ Minor diameter, and
$\mathrm{n}=$ Number of threads in engagement.
5. Bending stress if the surfaces under the head or nut are not perfectly parallel to the bolt axis.When the outside surfaces of the parts to be connected are not parallel to each other, then the bolt will be subjected to bending action. The bending stress (σb) induced in the shank of the bolt is given by
бb $=x . E / 21$
where
where $\mathrm{x}=$ Difference in height between the extreme corners of the nut or head,
I = Length of the shank of the bolt, and
$\mathrm{E}=$ Young's modulus for the material of the bolt.

