

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 18 EXAMINATIONS

Subject Code: 17553 <u>Model Answer</u> Page No:

____/ N

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Q. **MARK TOTAL** NO. **MARK** S S 5X4=201 **Attempt any FIVE of the following:** Following are the general considerations in designing a machine component: 4m 1. Type of load and stresses caused by the load Any 4 2. Motion of the parts or kinematics of the machine. 1m each 3. Selection of materials 4. Form and size of the parts 5. Frictional resistance and lubrication. 6. Convenient and economical features 7. Use of standard parts 8. Safety of operation 9. Workshop facilities 10. Number of machines to be manufactured 11. Cost of construction. 12. Assembling. 01 h 04 Keyway is a slot machined either on the shaft or in the hub to mark marks accommodate the key. • It is cut by vertical or horizontal milling cutter. **Effect:-**3 mark • The keyway cut into the shaft reduces the load carrying capacity of shaft. effect • This is due to stress concentration near the comers of the keyway and reduction in the crosssectional area of shaft. • In other words, the torsional strength of shaft is reduced. • The following relation of reduction factor is used to analyze the weakening effect of keyway is given by H. F. Moore. e = 1 - 0.2 (w/d) - 1.1(h/d)Where, e = shaft strength factor = Strength of shaft with keyway/Strength Of shaft Wlithout keyway w = Width of keyway, d = Diameter of shaft h = Depth of keyway = 112 x thickness of key = 1/2 x t• It is usually assumed that strength of keyed shaft is 75% of solid shaft. • Thus, after finding out dimensions of key, the reduction factor 'e' is calculated and for safe design, its value should be less than 0.75. 2m4m cAdvantages:-Any 2 1. The welded structures are usually lighter than riveted structures. This is due to the reason that in welding, gussets or other connecting components are not used. 2. The welded joints provide maximum efficiency (may be 100%) which is not possible in case of riveted joints. 3. Alterations and additions can be easily made in the existing structures 4. As the welded structure is smooth in appearance, therefore it looks

			1
	pleasing. 5. In welded connections, the tension members are not weakened as in the case of riveted joints. 6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself. 7. Sometimes, the members are of such a shape (i.e. circular steel pipe) that they afford difficulty for riveting. But they can be easily welded. 8. The welding provides very rigid joints. This is in line with the modern trend of providing rigid frames. 9. It is possible to weld any part of a structure at any point. But riveting requires enough clearance. 10. The process of welding takes less time than the riveting		
	Disadvantages:- 1. Since there is an uneven heating and cooling during fabrication, therefore the member may get distorted or additional stresses may develop. 2. It requires a highly skilled labour and supervision. 3. Since no provision is kept for expansion and contraction in the frame, therefore there is a possibility of cracks developing in it. 4. The inspection of welding work is more difficult than riveting work.	2m Any 2	
d	Caulking:- In order to make the joints leak proof or fluid tight in pressure vessels like steam boilers, air receivers and tanks etc. a process known as caulking is employed. In this process, a narrow bunt tool called caulking tool about 5 mm thick and 38 mm in breadth is used.	1.5m	4m
	Fullering:- A more satisfactory way of making the joints staunch is known as fullering which has largely superseded caulking. In this case, a fullering tool with a thickness at the end equal to that of the plate is used in such a way that the greatest pressure due to the blows occur near the joint, giving a clean finish, with less risk of damaging the plate.	1.5m	
	Materials:- The material of the rivets must be tough and ductile. They are usually made of steel (low carbon steel or nickel steel), brass, aluminum, or copper, but when strength and a fluid tight joint is the main concern then the steel rivets are used.	1m	
e	Bolts of Uniform strength:- If the shank of the bolt is turned down to a diameter equal or even slightly less than the core diameter of the thread (D) as shown in Fig. (b), then shank of the bolt will undergo higher stress. This means that a	2m expaina tion	4M

	shank will absorb a large portion of the energy, thus relieving the material at the sections near the thread. The bolt, in this way, becomes stronger and lighter and it increase shock absorbing capacity of the bolt because be increased by increasing its length of an increased modulus of resilience. This gives us bolts of uniform strength. The resilience of a bolt may also	2m diagra m	
f	Stresses in Pipes:The stresses in pipes due to the internal fluid pressure are determined by Lame's equation. Following are the stresses 1) According to Lame's equation, tangential stress at any radius x $Stresses = \frac{1}{2} \left[\frac{r(r)^2}{r(r)^2} - \frac{r(r)^2}{r^2} \right] + \frac{1}{2} \left[\frac{r(r)^2}{r^2} - \frac{r(r)^2}{r^2} \right] $	2m	4m
g	ri = Inner radius of the pipe, and ro = Outer radius of the pipe Assumptions in the analysis of truss:- 1)The frame is a perfect one ie the relation n=2j-3 must be satisfied. 2) All the members are hinged or pin jointed at the ends. 3) The loads are acting only at the joints. 4) The self weight of the member is neglected	4 marks 1M EACH POINT	4m

Attempt any TWO of the following:		8X2=16
) Given W=15KN=15X103N		8m
d=80mm, Y=140mm, x=120mm		
Bending Moment at the centre of the	1m for bending	
Crankukatt bearing	momen	
M= Wxx=15x103x120=1.8x106Nmm		
Torque transmitted	1m for torque	
T = W x y = 15 x 100 x 140 = 2.1 x 10 (N. mm)		
Bending Stream induced.		
	1m for bending	
$68 = \frac{m}{2} = \frac{1.8 \times 10^6}{\frac{T}{32}} d^3$	stress	
= 32 × 1.8 × 10 6		
Tr (80)3		
66 = 35.8, 10/mm =		
Shear streur	1 m for shear	
$T = \frac{T}{\frac{11}{16}d^3} = \frac{16 \times 24 \times 10^6}{77(80)3}$	stress	
T = 20.0 N/mm2		
Maximum Principal Offero		
6+ max = 6+ + 1 [\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2m	
$= \frac{35.8}{2} + \frac{1}{2} \left[\sqrt{(35.8)^2 + 4(20.3)^2} \right]$		
6+maz = 45.4 N/mm2		

	Maximum shear spear $T_{\text{max}} = \frac{1}{2} \left[\int 6t^2 + 4T^2 \right]$ $= \frac{1}{2} \left[\int (35.8)^2 + 4(20.9)^2 \right]$ $T_{\text{max}} = 27.5 \text{ N/mm}^2$	2m	
b)	d: diameter of Shatt J = diameter of hub = 2 d di = Nominal dia of bott Ji = diameter of bott circle = 3 d n = no of bott To no of bott To thicknew of Hange = 0.5 d To, file - Allowesse Shear Streve for Shaft well of key. To = Allowesse Shear Streve for Hange material lock file = Nilowesse crushing streve for bolt of laey. 1) Design of hub T = IT To J3 (1-K5) Where t = 2 there 3 = 2 d of L = 1.5 d. From equation (1) the diameter of hub Can be checked 2 d To To Timen design is wate 2) Design for Hange T = 11 x Jx tx x to x 2 here t = 0.5 d. To above equation if to < Taken design wate 4) Design of bott Load on each bott = IT x (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb Total load on botts = nx II (d1)2 x Tb	Design of hub 2m Design of key 2m Design of flange 2m	08M
	It les < lesgiven design in safe	2m	

C.G.	1m dia	04 marks
Let l_a = Length of weld at the top, l_b = Length of weld at the bottom, l = Total length of weld = l a + l b P = Axial load, a = Distance of top weld from gravity axis, b = Distance of bottom weld from gravity axis, and f = Resistance offered by the weld per unit length Moment of the top weld about gravity axis = l_a x f x a and moment of the bottom weld about gravity axis = l_b x f x b Since the sum of the moments of the weld about the gravity axis must be zero, therefore, l_a x f x a = l_b x f x b or l_a X a = l_b x f x b or l_a X a = l_b x b(i) We know that l_b = l_b = l_b (ii) From equations (i) and (ii), we have l_a = l_b l_b (iii) From equations (i) and (ii), we have	3m derivati on	

F *				
Given		-T 1 box	- 2	
atl	= 200 mm	T=75N/m	11)	
W = 1	2 = 200 X100N	t= 0 = 10 m	al d	
For s	ingle Transv	erve Fillet we	E1 0.	
	W = 0.7071	X S X U X I		1m
20	0.707 = 0.707 00 ×109 = 0.707	1×10×1×75		
2	: J = 37	8 2000		
. (a + db = d = 0			
7. C	o 1 Po sidom	of centraidal and	I.	
10 111	a journ die	2gram 6 = 55.37	מיוניו	
As ye	. a = 200	- 553		1m
	a = 140			
weld 1	ength at the	e top Section		
	x= dxb			
0.0	a+6			
	- 378 x s	5. 3		
	200			1m
	= 104.51			
	a ≈ 105mm	m) h		
. 1,101	I lensus at	the bottom sec	hou	
	b= d-la			
J.	= 378-10	5		
	Un = 273 m		8	
	~b. ~75.			1m

At	ttempt any TWO of the following:		2X8=16
) Thickness of boiler shell t = PD +1 mm	1m	08m
	2) Diameter of Rivet d= 6 JE.	1m	
	3) Number of Rivet Shearing Resistance of rivet		
	Po = mx Tx d2 x T 0 Total shearing load. Ws = II x D2 x P 0	2m	
	no of rivety can be found. 4) Pitch of Rivet Mc = p, -d P. 5) Number of Rowy	1m	
	= Total na al Rivetu No of Rivetu in one row	1m	
	6) Marzin m = 1-5d.	1m	
	7) Strap Thickness: 0.625 t	1m	

b Given		8m
$U = 500 \text{ mm}, d_1 = 50 \text{ mm} d_2 = 400 \text{ mm}$ $W = 30 \times 10^3 \text{ N} 6t = 70 \text{ N/mm}^2 n = 4.$ 1) Direct shear 100d. $W_S = \frac{W}{N} = \frac{30 \times 10^3}{50 \times 10^3} = 75 \times 10^3 \text{ N}.$	02 m for direct shear load	
2) Maximum temsile load $ \frac{W_1}{2[J_1^2 + J_2^2]} = \frac{30 \times 10^3 \times 500 \times 400}{2[J_0^2 + J_0^2]} = \frac{6 \times 10^3}{325 \times 10} $ $ W_1 = \frac{18.46 \times 10^5 \text{N}}{2[J_0^2 + J_0^2]} = \frac{6 \times 10^3}{325 \times 10^5} $	2 m for tensile load	
3) Equivalant load Whe = 1/2 [Wt + J(Wt)2+4(Ws)2] = 1/2 [18.46×103+ J(18.46×103)2+4(75×103)2-	2m equival ent load	
$= \frac{1}{2} \left[18.46 \times 10^{3} + 151.13 \times 10^{3} \right]$ Whe = 84.79 × 10 ³ N 4) Core diameter of Nominal diameter of bolt. $64 = \frac{\text{Whe}}{\frac{11}{4} \text{ dc}^{2}} . \text{ Whe} = 64. \frac{17}{4} \text{ dc}^{2}$	2m for size of bolt	
$\Rightarrow 84.78 \times 10^{8} = 70 \times \frac{11}{4} \cdot dc^{2}$ $dc = 39.27 \approx 40 \text{ mm}.$ $dc = 0.89 do$ $do = \frac{dc}{0.81} \approx \frac{40}{0.81}$ $do = 47.61 \approx 48 \text{ mm}$		

Given	1m given	8M
3=50mm, R=25mm, P=7N/mm2		
6t = 20 N/mm2, 6tb = 60 N/mm2		
Using Lame's equation		
$t = R \left[\sqrt{\frac{6+P}{6+P}} - 1 \right] = 25 \left[\sqrt{\frac{20+7}{20-7}} - 1 \right]$	2m	
t = 11.03 2 12 mm		
Assuming width of Packing = 10 mm		
: Dr = D+ 2 x (width of Packing)		
D, = 70 mm	1m	
Force Trying to Seperate the flange		
F = T (D1)2. p = T (70)2. 7	1m	
[F = 26 343N]		
Load on each boll.		
Fb = F = 13471.5N		
F6 = I (de)2x6tb = I (de)2x60		
- de = 16.0mm	2m	
de ~ 17 mm)		
4 Nominal diameter d= dc = 17 0.85 0.85		
d = 20 2 = 22 mm)	1m	
4. Attempt any TWO of the following:		2X8=1

a)	Procedure:-	1m for	8m
ŕ	1. Find the angles between the members at required points.	each	
	2. In case of simply supported frame find support reactions by	step	
	using COE.	(student	
	3. Isolate the joint from its parent truss in such a way that it should	s may	
	not carry more than two unknown members.	club the	
	4. Draw the Free body diagram of that joint showing nature of	points	
	member forces as pull type.	kindly	
	5. Assume that if the entiret russ is in equilibrium then that isolated	give	
	joint must be in equilibrium.	marks	
	_	accordi	
	6. Apply COE to that joint and find the nature and magnitude of forces.		
		ngly)	
	7. Repeat the same process for all the joints.		
	8. Tabulate the result.		
b i)	Factor of Safety	2m	4m
	It is defined, in general, as the ratio of the maximum stress to the working		
	stress. Mathematically,		
	Foster of cofety - Maximum strace / Working on decion strace		
	Factor of safety = Maximum stress / Working or design stress In case of ductile materials e.g. mild steel, where the yield point is clearly		
	defined, the factor of safety is based upon the yield point stress. In such cases,		
	Factor of safety = Yield point stress / Working or design stress		
	Factors affecting selection of FOS:-		
	1. The reliability of the properties of the material and change of these		
	properties during service;		
	2. The reliability of test results and accuracy of application of these results to	2m	
	actual machine parts;	Any 2	
	3. The reliability of applied load;	,	
	4. The certainty as to exact mode of failure;		
	5. The extent of simplifying assumptions;		
	6. The extent of localised stresses;		
	7. The extent of initial stresses set up during manufacture;		
	8. The extent of loss of life if failure occurs; and		
	9. The extent of loss of property if failure occurs.		
b ii)	Stress Concentration.	2m	4m
	Whenever a machine component changes the shape of its cross-section, the		
	simple stress distribution no longer holds good and the neighbourhood of the		
	discontinuity is different. This irregularity in the stress distribution caused by		
	abrupt changes of form is called stress concentration. It occurs for all kinds of		
	stresses in the presence of fillets, notches, holes, keyways, splines, surface		
	roughness etc.		
	Causes:- It may occurs due to-	2m	
	1) Change in cross section such as stepped axle, grooves, keyways,	any 2	
	threaded holes etc.	any 2	
	2) Concentrated load applied at minimum areas of machine parts		
	such as contact between gear teeth.		
1	3) Variation in mechanical properties of materials from point to		
	point due to cavities, cracks etc. 4) Surface irregularities or poor surface finish.		

	40	8m
Given		
Wp = 200N Dp = 200mm Rp = (00mm P = 1×10	w.	
7 = 35 N/mm2 N = 120xpm 0=1800 = 1Rad.		
Ul= 0.5 km = 1.5 kt = 2	7	
N-7		
- 300 mm - Wp+ 7,+Tz = W.	1m for	
1) To Find Twisting moment	torque	
$T = \frac{2\Pi N T}{60} : T = \frac{60P}{2\Pi N}$		
2 11 N		
T = 60 x /x 100 = 73.57 N.m = 73.57 x 100 p	-mm	
$= 2 \times 1 \times 120$	2m for	
2) To Find Ti + Tz	$T_1 \& T_2$	
We know		
Ti = e wo : Ti = e c.3.1		
Ti day T day		
T1 = 1.34 T1 = 1.34 T2		
We also know Torque Transmitted by pulley		
7 = (T1-T2) - Rp		
- 79.57×103 = (1.39 T2 - T2).100		
T2 = 2.34 × 103 N		
T1 = 1.34 x 2.34 × 109 = 3.13 × 158 N		
· Total lag - atting	1m for total	
Total load atting on pulley w.	load	
W= Wp+ Ti+Ti	48774	
= 200 + 2.04 × 100 + 3.13 × 100		
W. = 5670N.		

here M = Wx 800 = 5670 x 800 M = 1.70 x 106 N.mm	1m for bending momen t
4) Equivalent Twisting load. Te = J km. m² + kt. T² = J1.5. (1.70×10°)² + 2 (79.57×10°)² = J1.5. (1.70×10°)² + 2 (79.57×10°)²	2m
$T_{e} = \frac{2.08 \times 10^{6}}{16}$ Equality $T_{e} = \frac{11}{16} + \frac{1.26 \times 10^{10}}{16}$	
$2.38 \times 10^6 = \frac{TT}{16} \times 35. d^3$ $d = 67.14 mm$ $d \approx 88mm.$	1m

5.	Attempt any TWO of the following:		2X8=1
a		1m	6 8m
а	Given	given	OIII
	P=15X103W, N= 360 rpm, d=40mm	_	
	d=75 mm, 7=56 N/mm bck=112 N/mm2		
	Porque Transmitted	1m	
	$P = \frac{277NT}{60} \cdot 7 = \frac{60P}{277N}$	torue	
	$T = \frac{60 \times 16 \times 10^{9}}{2.71 \times 360} = 140 \text{ N.m}$		
	T = 148 × 103 N.mm		
	Width and thickness of bey		
	As lon = 2T the key must be square	2m	
	For Equan key		
	$\omega = \frac{d}{4} = \frac{40}{9} = 10 \text{ mm}$		
	$t = \frac{d}{4} = \frac{40}{4} = lornm$		
	Accordding to 14 f Moore		
	e=1-0.2 (2)-11(1)	1m	
	$e = 1 - 0.2 \left(\frac{10}{40} \right) - 1.1 \left(\frac{10}{40} \right)$		
	e = 0.8/25		
	Shear Sprength of ker.	1m	
	= 1xwx tx = 75x10x56x 40		
	= 840000 N		
	Normal Strength of Shaft.	4	
	= IT T d3. e = IT x 56x (40)3 x 0.8/25	1m	
	5 7/844		

		1m	
Normal Strength of key = 840000 = 1.47			
Normal Strength of shaft 57/049			
5.6	-		8M
Given			
Width = 75mm, t= 5=12.5mm, 6t = 70 p/mm2			
T = 56 N/mm2.			
Total load Carried by plate		1m	
W = Area x Max Strevo			
= (75x12.5).70			
W. = 65.62×103N.]			
For State Loading - Case No. 1			
here die widte - 12.5			
d= 75-12.5			
A STATE OF THE STA			
I = EX. 5 mm			
Tensile Strength of plate		1m	
Wet = 0.707 x Sx 2, x 6t			
= 0.707 × 12.5 × 62.5 × 70			
Wit = 38-60 × 103 N.			
Shear strength of plate	l.		
Ws= 2x0.707 x Sxd2x7		1m	
= 2 x0.707 x 12.5x d2x56 = 980.8 d2			
We know Total load.			
W= W(++ W)-			
65.62×103= 38.66×103+ 383.8 de			
:. d2 = 65.62×103 = 38.66×103			
384.8			
de = 27.23 mm		1m	
Adding 12.5 mm for Starting & stipping weld run			
: le = 27.23+12.5 = 39.73 mm			

	,
For Dynamic Loading - Case II Actual working ofrevoer. Of actual = Of given = 70 = 46.66 N/mm² S.C.F = 1.5	1m
Tartual = $\frac{T_{\text{given}}}{8.\text{ c. f}} = \frac{56}{2.7} = 20.74 \text{ N/mm}^2$ Tearing strength $W_{\text{ot}} = 0.707 \times 8 \times d_1 \times 6 \text{ tartual}$ = 0.707 x 12.8 x 62.5 x 46.66	1m
Shearing Strength WT = 2x0.707x 8x dex Tactual = 2x0.707x 12.5x dex 20.79	1m
$W_{T} = 366.57 dz$ $Total Strength$ $W = W_{64} + W_{T}$ $65.62 \times 10^{3} = 25.77 \times 10^{3} + 366.57 dz$ $dz = 65.62 \times 10^{3} - 25.77 \times 10^{3}$	1m
de = 121.21mm	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

8M 1m for height To Findh Consider a Right angle DAGE : h = tan 60. (2) 1m for h = 3.46m. **FBD** Taking a section line which Pass through members AB, BD & CD. Draw FBD of truor on R.H.s. of section FBD COSEO SINGO
D. FCD. Taking & MFD=0 2m- (FAB x 3.46) - (5x 3.46) + (10x4) =0 FAB = 6.55KN Temsile Taking EMFB=0 2mt (10x2) + (Fc) x 3.46) = 0

FeD = -5.78 kN. Compressive

Taking & FY = 0

-10 - FBD SM60 = 0 2mFBD = - 11.54KN Compressive

ó.	Attempt any FOUR of the following:		4X4=16
l	i) 30 Ni4 Cr1:- It is a high carbon steel which contains 0.3 % carbon, 4 % Nickel, and 1% chromium. ii) SG 400/12:-	2m	4m
	It is a spheroidal graphite cast iron which has a minimum tensile strength of 400 N/mm ² and 12 percent elongation.	2m	
•	Strengtur of 400 TV min and 12 percent clonigation.	1m	4m
	Single Transverse Fillet weld	1m	
	W		
	Double Transverse Fillet Weld.	1m	
	a) For Single Transverse Fillet weld. Tensil, strength of plate W = 0.707 x 8x dx 6t		
	5) For Double Transverse Fillet weld. Tensile Strength of plate W= 2x0.707x 8xdx 64.	1m	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Perfect frame: 2m4m A pin-jointed frame which has got just sufficient number of members to resist the loads without undergoing appreciable deformation in shape is called rigid or perfect frame. The perfect frame obeys the following condition viz. n = 2i - 32mFor where, n = no. of links and j = no. of joints Methods of Analysis:method 1) Method of joints name 2) Method of sections Couplings are used to transmit power when there it is required. d 4m 4m Couplings tend to produce unbalanced forces due to misalignments of shafts which cause vibrations in rotating machinery. How much ever the bearing is closer to coupling, the lesser overhang Leading to lower amplitude of vibrations. 1m 4m t=13mm, 61 = 80 N/mm2 7 = 60 N/mm2 given 6CK = 120 N/mm2 Diameter of Rivet d = 6 JT = 6 JT3 1m d = 21.6mm = 23.mm Pitch of Rivets P+ = (p-d) . t. 6+ = (p-23). 13.80 = (P-23). 1040 --- (T) $f_{S} = m \times \frac{\pi}{4} \times d^{2} \times \tau$ $= 2 \times \frac{\pi}{4} \times (23)^{2} \times 60$ = 43884 N. . . . @ (p-23). 1040 = 43864 p = 71mm] 1m Maximum pitch progres C. + + 91.22 Pmax = 2.62 × 13 + 41.28 Pmax = 75.28 mm · Pitch p = 76 mm Tearing Resistance (Pt) Pt = (P-7) · t · 6+ = (76-23), 13.80 Pt = 55/20 N.

Market Control of the		
Shearing Resistance		
Ps= 49864N.		
Coushing Resistance		
Pc = n.d.t. 6ck		
= 2 x 23 x 13 x 120		
Pc = 71760N.		
Strength of Unriveted Pl	afe	
P = p.t.6t	100	
= 76×13×80		
P. = 79040 N.		
Efficiency	100	
	1m	
[n = 63°1,]		
f following stresses are induced in a bolt, screw or stud screwed up tightly 1. Tensile stress due to stretching bolt Since none of the above mentioned stresses are	each stress accurately any 4	
determined, therefore bolts are designed on the basis of d stress with a large		
Factor of safety in order to account for the indeterminate s initial tension in a bolt, based on experiments, may be formulation Big 2040 IN		
relation Pi = 2840dN Pi = Initial tension in a bolt, and		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(150/12C - 27001 - 2005 Certified)

d = Nominal diameter of bolt, in mm.

2.Torsional shear stress caused by the frictional resistance of the threads during its tightening

The torsional shear stress caused by frictional resistance of the threads during its tightening may be obtained by using the torsion equation. We know that

T/J = Ts/r

 $Ts = T/J \times r = \{ T/(\pi/32) \times dc4 \} \times \{ dc/2 \} = 16 T/\pi(dc)3$

Where Ts = Torsional shear stress,

T = Torque applied, and

dc= Minor or core diameter of thread

3. Shear stress across the threads. The average thread shearing stress for the screw (Ts) is obtained by using the relation:

 $Ts = p/(\pi dc x b x n)$

Where b = Width of the thread section at the root.

The average thread shearing stress for the nut is

 $Tn = p/(\pi d x b x n)$

Where d = Major diameter.

4. Compression or crushing Stress on threads. The compression or crushing stress between the threads (δc) may be obtained by using the relation:

 $6c = p/\pi[d2 - (dc)2]n$

Where d = Major diameter,

dc = Minor diameter, and

n = Number of threads in engagement.

5. Bending stress if the surfaces under the head or nut are not perfectly parallel to the bolt axis. When the outside surfaces of the parts to be connected are not parallel to each other, then the bolt will be subjected to bending action. The bending stress (6b) induced in the shank of the bolt is

given by

6b = x.E/21

where

where x = Difference in height between the extreme corners of the nut or

head.

I = Length of the shank of the bolt, and

E = Young's modulus for the material of the bolt.

Page 22 of 22