

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Sub. Code: 17604

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	(A)	Attempt any THREE of the following:		(12)
	(a) Ans.	Define limit state and state types of various limit states. Limit State: It may be defined as the acceptable limit for the safety and serviceability of the structure before failure occurs.	2	
		Types of various limit states: (1) Limit state of collapse (a) Flexure (b) Shear (c) Torsion (2) Limit state of serviceability (a) Deflection (b) Cracking	1	4
	(b) Ans.	State the functions of reinforcement. Functions of reinforcement are as follows: 1.In case of slab, beams and wall of water tanks, reinforcement is mainly provided to carry direct or bending tensile stresses. 2.In case of columns the steel is provided to resist the direct compressive stress as well as bending stresses if any. 3.In case of beams stirrups are provided to resist the diagonal tension due to shear and hold the main steel in position. 4.The box type mesh of reinforcement is provided to resist torsion. 5.The steel is provided in the form of rectangular, circular, lateral ties or spirals to prevent bucking of main bars in column. 6.The distribution steel is provided to distribute the concentrated loads and to reduce the effects of temperature and shrinkage and to hold main bars in position.	1 each (any four)	4

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	(c) Ans.	State the reasons for providing shear reinforcement in the form of stirrups. Reasons for providing shear reinforcement in the form of stirrups are as follows: 1. To prevent sudden failure. 2. To prevent premature failure if the bond between main steel and concrete is lost. 3. To act as tie for holding the beam reinforcement. 4. To confine the concrete.	1 each	4
	(d) Ans.	Define magnitude of earthquake and intensity of earthquake. Magnitude of earthquake: It is a measure of the amount of energy released. It is quantitative measure of the actual size or strength of the earthquake and it is much more precise measure than intensity.		
		Intensity of earthquake: It is an evaluation of the severity of the ground motion at a location and it is represented by a numerical value.	2	4
	(e) Ans.	Explain the prestressed concrete. Also state the difference between externally and internally prestressed concrete members. Prestressed Concrete: It is that concrete in which the compressive stresses are induced in the concrete section before the member is loaded by external loads.	2	
		Difference between externally and internally prestressed concrete members: Externally prestressed member	1 each (any two)	4

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

0	C1-			T-4-1
Que.	Sub.	Model Answer	Marks	Total Marks
No. Q. 1	Que. (B)	Attempt any ONE :		(6)
Q. 1	(D)	Attempt any ONE.		(0)
	(a)	Find limiting moment of resistance and steel required for a beam		
	. ,	300 X 600 mm (effective), if concrete M25 and Fe 415 steel are		
		used.		
	Ans.	Given: To find:		
		$b = 300 \text{ mm}$ $M_u = ?$		
		$d = 600 \text{ mm} \qquad A_{st} = ?$		
		$f_{ck} = 25 \text{ N/mm}^2$		
		$f_v = 415 \text{ N/mm}^2$		
		y		
		Solution:	1	
		$Xu_{max} = 0.48 \times d = 0.48 \times 600 = 288 \text{mm}$		
			1	
		$Mu_{lim} = (0.138) \times fck \times b \times d^2 = (0.138) \times 25 \times 300 \times 600^2$	1	
		$Mu_{lim} = 372.6 \times 10^6 \text{ Nmm}$ OR	1	
		$Mu_{lim} = 372.6 \text{ kNm}$		
		0.07.0.4.		
		$Xu_{\text{max}} = \frac{0.87 \times \text{fy} \times \text{Ast}}{0.36 \times \text{fck} \times \text{b}}$	1	
			1	
		Ast $=\frac{0.36 \times fck \times b \times Xu_{max}}{0.37 \times 10^{-3}} = \frac{0.36 \times 25 \times 300 \times 288}{0.37 \times 10^{-3}}$	1	
		$0.87 \times \text{fy} \qquad \qquad 0.87 \times 415$	1	6
		$Ast = 2153.718 \text{mm}^2$		
		OD		
		<u>OR</u>		
		For Fe 415, $\%$ pt = 0.048×fck=0.048×25=1.2%	1	
		$pt_{lim} = \frac{Ast}{b \times d} \times 100$		
		b×d b×d		
		Ast $=\frac{pt_{lim} \times b \times d}{100} = \frac{1.2 \times 300 \times 600}{100}$		
		$\frac{100}{100} - \frac{100}{100}$	1	
		$Ast = 2160 \mathrm{mm}^2$		
		Calculate A required for D.C.C. section 200 V 450 effective to		
	(b)	Calculate A _{st} required for R.C.C. section 200 X 450 effective to resist an ultimate bending moment of 150 kNm. Assume M30		
		concrete and Fe 415 steel.		
		1	<u> </u>	<u> </u>

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que.	Sub.	Model Answer	Marks	Total
No. Q. 1	Que. Ans.	Given: To find:		Marks
V. 1	111150	$b = 200 \text{ mm}$ $M_u = ?$		
		$d = 450 \text{ mm} \qquad A_{\text{st}} = ?$		
		$Md = 150 \text{ kNm} = 150 \text{ x } 10^6 \text{ Nmm}$		
		$f_{ck} = 30 \text{ N/mm}^2$		
		$f_y = 415 \text{ N/mm}^2$		
		Solution:	1	
		$Mu_{lim} = (0.138) \times fck \times b \times d^2 = (0.138) \times 30 \times 200 \times 450^2$	1	
		$Mu_{lim} = 167.67 \times 10^6 \text{ Nmm}$ OR	1	
		$Mu_{lim} = 167.67 kNm$		
			1	
		Since, $Md = 150 \text{ kNm} < Mu_{lim} = 167.67 \text{ kNm},$		
		Section is under - reinforced.	1	
		Ast $=\frac{0.5 \times fck}{fy} \times \left[1 - \sqrt{1 - \frac{4.6 \times Md \times 10^6}{fck \times b \times d^2}}\right] \times b \times d$		
		fy $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}$	1	
		$= \frac{0.5 \times 30}{415} \times \left[1 - \sqrt{1 - \frac{4.6 \times 150 \times 10^6}{30 \times 200 \times 450^2}} \right] \times 200 \times 450$		
		$\frac{1}{415} \times \frac{1}{100} \times \frac{1}{30} \times \frac{1}{30$	1	
		$Ast = 1114.669 \text{mm}^2$	1	6
		Tit 1.005 IIIII		
Q. 2		Att TINYO COL CIL		(16)
Q. 2		Attempt any TWO of the following:		(10)
	(a)	Design a cantilever slab of 2 m span carrying super imposed load of 3 kN/m² including floor finish. Adopt M20 and Fe 415 steel. Sketch the c/s of slab showing all details. (No check required). Take end bearing as 230 mm.		
		(NOTE: Answer may vary according to assumptions made by students)		
		Given: To find:		
	Ans.	L = 2 m = 2000 mm $D = ?$		
		$LL + FF = 3 \text{ kN/m}^2$ Ast in both direction = ?		
		End bearing = 230 mm		
		$f_{ck} = 20 \text{ N/mm}^2$		
		$f_y = 415 \text{ N/mm}^2$		
		Assumptions:		
		C = 15 mm, ϕ_x = 10 mm, ϕ_y = 8mm		
			1	

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(a)	Step 1)		
		Slab thickness		
		$d = \frac{Span}{7 \times M.F.}$		
		Assume, M. F. = 1.6, Cover =15 mm and ϕ_x =10 mm		
		$d = \frac{2000}{7 \times 1.6} = 178.571 \text{mm}$	1	
		$D = d + c + \frac{\phi_x}{2} = 178.571 + 15 + \frac{10}{2} = 198.571 \text{mm}$		
		Provide, D=200mm,		
		$d=200-15-\frac{10}{2}=180 \text{mm}$		
		D=200 mm, d=180 mm		
		Step (2)		
		Effective span	1	
		$l_e = 2000 + \frac{180}{2} = 2090 \text{mm} = 2.09 \text{m}$		
		Step 3)		
		Load cal. and BM		
		i) D.L. of slab = $0.200 \times 1 \times 1 \times 25 = 5.0 \text{ kN/m}$	1	
		ii) L.L.+ F.F. of slab = $3 \times 1 \times 1$ = 3.0 kN/m		
		Total land (w) = 8.0 kN/m		
		Factored load $w_d = 1.5 \times 8.0 = 12.0 \text{ kN/m}$		
		$BM = M_u = \frac{(wd)l_e^2}{2} = \frac{12 \times 2.09^2}{2} = 26.209 \text{ kN-m}$	1	
		Step 4)		
		Check for depth,		
		$Mu_{max} = M_u$		
		$0.138 \times f_{ck} \times b \times (d_{reqd})^2 = 26.209 \times 10^6$		
		$0.138 \times 20 \times 1000 \times (d_{reqd})^2 = 26.209 \times 10^6$	1	
		$(d_{reqd}) = 97.447 \text{ mm} < d = 180 \text{ mm}$ Ok		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

One	Sub			Total
		Model Answer	Marks	Marks
Que. No. Q. 2	Sub. Que. (a)	$ \begin{array}{c} \text{Model Answer} \\ \text{Step (5)} \\ \text{Main steel and its spacing} \\ A_{st} = \frac{0.5 f_{sk}}{f_y} \Bigg[1 - \sqrt{1 - \frac{4.6 \times Mu \times 10^6}{f_{sk} \text{bd}^2}} \Bigg] \text{bd} \\ A_{st} = \frac{0.5 \times 20}{415} \Bigg[1 - \sqrt{1 - \frac{4.6 \times 26.209 \times 10^6}{20 \times 1000 \times (180)^2}} \Bigg] \times 1000 \times 180 \\ A_{st} = 424.232 \text{ mm}^2 \\ A_{st min} = \frac{0.12}{100} \times 1000 \times 200 = 240 \text{ mm}^2 \\ A_{st} = 424.232 \text{ mm}^2 < A_{st min} = 240 \text{ mm}^2 \\ \text{Hence, } A_{st} = 424.232 \text{ mm}^2 \\ \text{Spacing of bar Min. of} \\ a) \qquad S_x = \frac{1000 \times A \phi_x}{A_{st}} = \frac{1000 \times \frac{\pi}{4} (10)^2}{424.232} = 185.134 \text{ mm} \\ \text{b)} \qquad S_x = 3d = 3 \times 180 = 540 \text{ mm} \\ \text{c)} \qquad S_x = 300 \text{ mm} \\ S_x = 180 \text{ mm c/c} \\ \hline \text{Provide 10 mm } \phi \text{bars } \textcircled{@} 180 \text{ mm c/c} \\ \hline \text{Step 6)} \\ Ast_y = Ast_{min} = \frac{0.12}{100} \times 1000 \times 200 = 240 \text{ mm}^2 \\ Assuming, 8 \text{ mm } \phi \text{ bars.} \\ \text{Spacing of bar = Min. of} \\ a) \qquad S_y = \frac{1000 \times A \phi_y}{A_{sty}} = \frac{1000 \times \frac{\pi}{4} (8)^2}{240} = 209.439 \text{ mm} \\ \text{b)} \qquad S_y = 5d = 5 \times 180 = 900 \text{ mm} \\ \text{c)} \qquad S_y = 450 \text{ mm} \\ S_y = 200 \text{ mm c/c} \\ \hline \text{Provide 8 mm } \phi \text{bars } \textcircled{@} 200 \text{ mm c/c} \\ \hline \text{Provide 8 mm } \phi \text{bars } \textcircled{@} 200 \text{ mm c/c} \\ \hline \text{Provide 8 mm } \phi \text{bars } \textcircled{@} 200 \text{ mm c/c} \\ \hline \text{Provide 8 mm } \phi \text{bars } \textcircled{@} 200 \text{ mm c/c} \\ \hline \end{array}$	1 1	Total Marks 8

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.		Model	Answer		Marks	Total Marks
Q. 2	(a)	D = 200 mm	Main ste 10 mm d	el ia 180 mm c/c	Distribution steel 8 mm dia 200 mm c/c	1	
		C,		00 mm		1	
	(b)	m. The slab is simply thick and corners are M20 concrete and Fe	supported not held d 415 steel.	l on four sid lown. The liv Take M.F. o	timensions as 3.0 X 4.5 es of walls of 230 mm ve load is 2 kN/m ² . Use of 1.4. Sketch the cross all details. (No check		
		ly/lx = a	1.4		1.5		
		αχ	0.099		0.104		
		αy	0.051		0.046		
	Ans.	(NOTE : Answer mostudents)	ay vary ac	cording to a	assumptions made by		
		Given:		To find:			
		$l_x = 3 \text{ m} = 3000 \text{ mr}$	n	D = ?			
		$l_y = 4.5 \text{ m} = 4500 \text{ m}$	ım	Ast in both	direction = ?		
		Wall thk. $= 230 \text{ mm}$					
		$LL = 2 \text{ kN/m}^2$					
		MF = 1.4					
		$\begin{array}{cc} f_{ck} &= 20 \text{ N/mm}^2 \\ f_y &= 415 \text{ N/mm}^2 \end{array}$					
		Assumptions :					
		$FF = 1 \text{ kN/m}^2$					
		$\phi_{\rm x} = 10 \text{ mm}$					
		C = 20 mm					
		Solution:					

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

	C1-			T-4-1
Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(b)	Step (1)		
		Slab thickness,		
		as $l_x = 3 \text{ m} < 3.5 \text{ m}$ and $LL = 2 \text{ kN/m}^2 < 3 \text{ kN/m}^2$ and Fe 415 is used.		
		$D = \frac{1_x \text{ in mm}}{28} = \frac{3000}{28} = 107.143 \text{ mm}$	1	
		Provide, D=110 mm		
		$d = D - c - \frac{\phi_x}{2} = 110 - 20 - \frac{10}{2} = 85 \text{ mm}$		
		Step (2)		
		Effective span		
		$l_x = l_{xe} = l_x + d = 3000 + 85 = 3085 \text{ mm} = 3.085 \text{ m}$	1	
		$l_y = l_{ye} = l_y + d = 4500 + 85 = 4585 \text{ mm} = 4.585 \text{ m}$		
		Step (3) Load & B M calculation		
		i) D.L. of slab = $0.11 \times 1 \times 1 \times 25 = 2.75 \text{ kN/m}$		
		ii) L.L. of slab = $2 \times 1 \times 1$ = 2.50 kN/m		
		iii) F.F. of slab = $1 \times 1 \times 1$ = 1.00 kN/m		
		Total load = 6.25 kN/m		
		Factored load (w _d)=1.5×w	1	
		=1.5×6.25		
		= 9.375 kN/m		
		BM calculations,		
		$a = \frac{ly_e}{lx_e} = \frac{4.585}{3.085} = 1.486$		
		$a \alpha_{_{\mathrm{x}}} \alpha_{_{\mathrm{y}}}$		
		1.4 0.099 0.051		
		1.5 0.104 0.046		
		By interpolation, we get - $\alpha_x = 0.103$ and $\alpha_y = 0.047$		
		$Mu_x = \alpha_x \cdot w_d \cdot (1_{xe})^2 = (0.103 \times 9.375 \times (3.085)^2)$		
		$Mu_x = 9.190 kN - m$	1	
		$Mu_y = \alpha_y.w_d.(l_{xe})^2 = (0.047 \times 9.375 \times (3.085)^2)$		
		$Mu_y = 4.193 \text{kN-m}$		
		Step (4)		
		Check for depth		
		$Mu_{max} = M_{ux}$		
		$0.138 \times 20 \times 1000 \times \left(d_{\text{reqd}}\right)^2 = 9.190 \times 10^6$	1	
		$(d_{reqd}) = 57.704 \text{mm} < d = 85 \text{mm}$ Ok		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(b)	Step (5)		Marks
		Main steel and its spacing		
		In X direction		
		$A_{stx} = \frac{0.5f_{ck}}{f_{y}} \left[1 - \sqrt{1 - \frac{4.6 \times Mux \times 10^{6}}{f_{ck}bd^{2}}} \right] bd$		
		$A_{st} = \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 9.190 \times 10^6}{20 \times 1000 \times (85)^2}} \right] \times 1000 \times 85$	1	
		$A_{st} = 325.461 \text{ mm}^2$		
		Spacing of bar Min. of		
		a) $S_x = \frac{1000 \times A \phi_x}{A_{st}} = \frac{1000 \times \frac{\pi}{4} (10)^2}{325.461} = 241.318 \text{mm}$		
		b) $S_x = 3d = 3 \times 85 = 255 \text{mm}$		
		c) $S_x = 300 \text{mm}$		
		$S_x = 240 \text{mm c/c}$		
		Provide 10 mm ϕ bars @ 240 mm c/c		
		In Y direction		
		$d' = d - \phi_x = 85 - 10 = 75 \text{ mm}$		
		$A_{sty} = \frac{0.5f_{ck}}{f_{y}} \left[1 - \sqrt{1 - \frac{4.6 \times Muy \times 10^{6}}{f_{ck}bd'^{2}}} \right] bd'$		
		$A_{\text{sty}} = \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 4.193 \times 10^6}{20 \times 1000 \times (75)^2}} \right] \times 1000 \times 75$	1	
		$A_{sty} = 162.200 \text{mm}^2$		
		$A_{\text{stmin}} = \frac{0.12}{100} \times 1000 \times 85 = 102 \text{mm}^2$		
		$A_{sty} = 162.200 \text{mm}^2 > A_{stmin} = 102 \text{mm}^2$		
		Using 10 mm dia. bar		
		Spacing of bar Min. of		
		a) $S_y = \frac{1000 \times A \phi_y}{A_{sty}} = \frac{1000 \times \frac{\pi}{4} (10)^2}{162.200} = 484.215 \text{ mm}$		
		b) $S_y = 3d' = 3 \times 75 = 225 \text{ mm}$		
		c) $S_y = 300 \text{mm}$		
		$S_y = 220 \mathrm{mm} \mathrm{c/c}$		
		Provide 10 mm ϕ bars @ 220 mm c/c		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(b)	Main steel along longer span 10 mm dia - 220 mm c/c Main steel along shorter span 10 mm dia - 240 mm c/c D = 110 mm lx + Support Thk. c/s of S ab (Reinforcement Defails)	1	8
	(c)	The passage 3 m wide is supported on 230 mm thick side walls. It carries super imposed loads of 4 kN/sq. m including floor finish. Design a one way slab using M 20 concrete and Fe 415 steel. Take M.F. = 1.4. Sketch c/s of slab along shorter span showing reinforcement details. Check not required.		
	Ans.	(NOTE: Answer may vary according to assumptions made by students)		
		Given: To find: $1 = 3 \text{ m} = 3000 \text{ mm}$ $D = ?$ $Ast in both direction = ?$ $LL + FF = 4 \text{ kN/m}^2$ $MF = 1.4$ $f_{ck} = 20 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ $Assupption:$ $\phi_x = 10 \text{ mm}$ $\phi_y = 8 \text{ mm}$ $C = 20 \text{ mm}$		
		Step (1) $d = \frac{\text{Span}}{20 \times \text{MF}} = \frac{3000}{20 \times 1.4} = 107.143 \text{ mm}$ $D = d + c + \frac{\phi_x}{2} = 107.143 + 20 + \frac{10}{2} = 132.143 \text{ mm}$		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que.	Sub.	26.114	24 1	Total
No.	Que.	Model Answer	Marks	Marks
Q. 2	(c)	Provide, D =140 mm	1	
			1	
		$d = 140 - 20 - \frac{10}{2} = 115 \text{ mm}$		
		Step (2)		
		Effective span		
		Min. of (a) & (b)		
		a) $l_e = l + d = 3000 + 115 = 3115 \text{ mm} = 3.115 \text{ m}$	1	
		b) $l_e = l + t_s = 3000 + 230 = 3230 \text{ mm} = 3.230 \text{m}$		
		$l_e = 3.115 \mathrm{m}$		
		Step (3)		
		Load & B M calculation		
		i) D.L. of slab = $0.140 \times 1 \times 1 \times 25 = 3.5$ kN/m		
		ii) L.L. + FF of slab = $4 \times 1 \times 1$ = 4.0 kN/m	1	
		$\frac{\text{Total load} = 7.5 \text{ kN/m}}{\text{Total load}}$		
		Factored load $(w_d)=1.5\times w$		
		$=1.5\times7.5$		
		= 11.25 kN/m		
		$w_{1}(1)^{2}$ 11.25×(3.115) ²	1	
		$BM = Mu = \frac{W_d (l_e)^2}{8} = \frac{11.25 \times (3.115)^2}{8}$	•	
		BM = Mu = 13.645 kN-m		
		Step (4)		
		Check for depth		
		$Mu_{max} = M_u$		
		$0.138f_{ck}b(d_{reqd})^2 = 13.645 \times 10^6$		
		$0.138 \times 20 \times 1000 \times (d_{reqd})^2 = 13.645 \times 10^6$		
		$(d_{reqd}) = 70.312 \text{ mm} < d=115 \text{ mm}$ Ok		
		Step (5)		
		Minimum area of reinforcement		
		$Ast_{min} = \frac{0.12}{100} bD = \frac{0.12}{100} \times 1000 \times 140 = 168 \text{ mm}^2$	1	

Sub. Code: 17604

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Subject: Design of K.C.C. Structure		Sub. Code. 17004		004	
Que.	Sub. Que.	Model Answer		Marks	Total Marks
Q. 2	(c)	Step (6) Main steel and its spacing $A_{st} = \frac{0.5f_{ck}}{f_y} \left[1 - \sqrt{1 - \frac{4.6 \times Mu \times 10^6}{f_{ck} bd^2}} \right] bd$ $A_{st} = \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 13.645 \times 10^6}{20 \times 1000 \times (115)^2}} \right] \times 1000 \times 115$ $A_{st} = 351.028 \text{ mm}^2$ Spacing of bar Min. of		1	
		a) $S_x = \frac{1000 \times A \phi_x}{A_{st}} = \frac{1000 \times \frac{\pi}{4} (10)^2}{351.028} = 223.742 \text{ mm}$ b) $S_x = 3d = 3 \times 115 = 345 \text{ mm}$ c) $S_x = 300 \text{mm}$ $S_x = 220 \text{ mm c/c}$ Provide $10 \text{ mm } \phi \text{ bars } @ 220 \text{ mm c/c} \text{ along the shorter span}$ Step (7) Distribution steel and its spacing $Ast_{min} = \frac{0.12}{100} \text{ bD} = \frac{0.12}{100} \times 1000 \times 140 = 168 \text{ mm}^2$ Spacing of bars is equal to min. of a) $S_y = \frac{1000 \times A \phi_y}{A \text{st}_d} = \frac{1000 \times \frac{\pi}{4} (8)^2}{168} = 299.199 \text{ mm}$ b) $S_y = 5d = 5 \times 115 = 575 \text{ mm}$ c) $S_y = 450 \text{ mm}$		1	
		Provide 8 mm ϕ bars @ 290 mm c/c along the longer span Distribution steel 8 mm dia 290 mm c/c Main steel 10 mm dia 220 mm c/c $t_{115 \text{ mm}}$:	1	8

Model Answer: Winter 2018

Subje	Subject: Design of R.C.C. Structure Sub. C		Code: 17604		
Que.	Sub. Que.	Model Answer		Marks	Total Marks
Q. 3	Que	Attempt any FOUR of the following:			(16)
	(a)	Calculate safe load carrying capacity of short R.C.C. colu X 300 mm consisting of 4 bars of 16 mm ϕ and 2 bars of 12 Use M 20 concrete and Fe 250 steel. Step 1			
	Ans.	Gross area, $A_g = 300 \times 300$			
		$= 90000 \text{mm}^2$			
		Step 2		1	
		Area of steel (A _{se}) = $\left[4 \times \left(\frac{\pi}{4}\right) \times \left(16\right)^2\right] + \left[2 \times \left(\frac{\pi}{4}\right) \times \left(12\right)^2\right]$ = 1030.442 mm ²			
		Step 3 $Area of concrete (A) = Ag A$			
		Area of concrete (A_c) = Ag - A_{sc} = 90000 - 1030.442		1	
		$= 88969.557 \text{ mm}^2$			
		= 88969.55 / mm Step 4			
		Ultimate load carrying capacity (P _u)			
		$P_{u} = (0.4 \times fck \times A_{c}) + (0.67 \times fy \times A_{sc})$			
		$= (0.4 \times 20 \times 88969.557) + (0.67 \times 250 \times 103)$	30.442)	1	
		$= 884.355 \times 10^3 \text{ N}$,		
		= 884.355 kN			
		Safe load carrying capacity (P)			
		$P = \frac{Pu}{\gamma_f} = \frac{884.355}{1.5}$		1	4
		$\gamma_{\rm f} = 1.5$			
		$P = 589.570 \mathrm{kN}$			
	(b)	Write entire procedure step by step for providing reinforcement in an R.C.C. beam according to limit state n	•		
	Ans.	(1) Calculate factored shear force. (Vu)			
		(2) Calculate nominal shear stress.			
		$\zeta_{v} = \frac{V_{u} \ln N}{b \times d} < \zeta_{cmax}$			
		(3) Find % pt of steel.			
		$\% \text{ pt} = \frac{\text{Ast}}{\text{b} \times \text{d}} \times 100$			
		b×d (4) From % pt, calculate ζc.			
		(4) From 76 pt, calculate ζc . (5) If $\zeta v > \zeta c$, shear reinforcement is required.			
		If $\zeta v < \zeta c$, shear reinforcement is not required. In such case, nominal shear reinforcement.	provide		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

One	Cub			Total
Que. No.	Sub. Que.	Model Answer	Marks	Marks
Q. 3	(b)	6) Shear force for which shear reinforcement is required. $V_{us} = V_{u} - (\varsigma_{c} \times b \times d)$ (7) Assuming bent-up bars are not provided. Shear force to be resisted by stirrups. $V_{usv} = V_{us}$ (8) Spacing of stirrups = Min of following $(a) S_{v} = \frac{0.87 \times fy \times A_{sv}}{0.4 \times b}$ $(b) S_{v} = \frac{0.87 \times fy \times A_{sv} \times d}{V_{usv}}$ $(c) S_{v} = 0.75 \times d$ $(d) S_{v} = 300 \text{ mm}$	¹ / ₂ each step	4
	(c)	Determine the development length of 16 mm diameter Fe 415 in compression, if design bond stress is 1.4 MPa for plain bar in tension.		
	Ans.	Given data: $\varphi = 16$ mm, fy = 415 N/mm ² , $\tau_{bd} = 1.4$ N/mm ² , bar is in compression $L_d = \frac{0.87 \times fy \times \phi}{4 \times \tau_{bd}'}$ $= \frac{0.87 \times 415 \times 16}{4 \times 1.6 \times 1.25 \times 1.4}$ $\left(\begin{array}{c} \tau_{bd}' = 1.6 \times 1.25 \times \tau_{bd} & \text{ for deformed bar the value of } \tau_{bd} & \text{increased by 60\% and for bar in compression } \tau_{bd} & \text{shall be increased by 25 \%.} \end{array}\right)$	2	
	(d)		1	4
	Ans.	meaning of each term. Provision of flange width of T beam as per I. S.:- $b_f = \frac{l_0}{6} + b_w + 6D_f$ where, $b_f = \text{Effective width of flange}$	2	
		l_o = Distance between points of zero moment in the beam b_w = Breath of web D_f = Thickness of flange b = Actual width of flange.	2	4

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(e)	Find moment of resistance (Mu) of a T beam with following data – $b_f = 1500$ mm, $b_w = 300$ mm, $d = 700$ mm, $D_f = 100$ mm, $A_{st} = 2500$ mm ² . Concrete M20 and Fe 415 steel.		
	Ans.	Given: bf = 1500mm Df = 100mm bw = 300mm d = 700mm $Ast = 2500 mm^2$ To find M_u		
		Step 1) To find Xu=? (Assume Xu <df) <math="">X_u = \frac{0.87 \times \text{fy} \times \text{Ast}}{036 \times \text{fck} \times \text{bf}} $= \frac{0.87 \times 415 \times 2500}{0.36 \times 20 \times 1500}$ $X_u = 83.576 \text{mm} < D_f = 100 \text{mm} \text{OK}$ Step 2) To find X_{umax} $X_{umax} = 0.48 \text{X} 700$ $X_{umax} = 336 \text{mm}$ As, $X_u < X_{umax}$, So, beam is under reinforced. Step 3) To find Mu=? Mu = Tu x Zu $= 0.87 \text{x} \text{fy} \text{x} \text{Ast} (\text{d} - 0.42 \text{Xu})$ $= 0.87 \text{x} 415 \text{x} 2500 (700 - 0.42 \text{x} 83.576)$ $= 600.153 \text{x} 10^6 \text{N-mm}$ Mu = 600.153 KN-m</df)>	1 1 1	4

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure Sub. (Code: 17604			
Que. No.	Sub. Que.	Model Answer		Marks	Total Marks
Q. 4	(A)	Attempt any THREE of the following:			(12)
	(a)	Describe process of prestressing and draw stress distribution diagram for it across a section.	ribution		
	Ans.	(NOTE: Procedure of prestressing for any one method she considered)	ould be		
		There are two methods of prestressing – (1) Pre-tensioning Method (2) Post-tensioning method			
		 Process in Pre-tensioning method: For prestressing by this method, the reinforcements or are placed on the casting bed in the design position. The required tension is applied in them and are anchor the anchor posts provided at each end of the casting bed. The formwork is re-erected around the tensioned Concrete is then poured in the prepared formwork compacted and cured. As soon as the concrete hardened and developed the desired strength, the combetween the tendons and the anchor posts are cut-off. Due to bond between steel and concrete, the tensioned as they try to shorten, transfer the induced forces concrete. This compresses the hardened concrete member are prestressed. Sometimes special anchorage is provide end of the member, when bond between concrete and to not sufficient to retain the applied tension. 	red with d. tendons. and is as fully nections tendons, a to the nd it is d at the	2	
		<u>OR</u>			
		 For prestressing by this method, the prestressing force is to the tendons after the concrete has completely set attained the desired strength. The tendons are not be concrete before tensioning. The tendons are stretched through ducts left for then precast concrete member. The stretching of the cables with the help of jacks acting against the end of the member. The tendons is placed in a flexible metal tube and ancho are attached to the end of the cable. The complete assembly is placed in already prepared for of the member to be concreted and kept in position by of special spacers. Concrete is poured and allowed to harden till it attarequired strength. 	and has onded to n in the is done precast or fitting ormwork y means	2	

Model Answer: Winter 2018

Sub. Code: 17604

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(a)	 The tendon can freely move inside the hardened concrete as it is not in contact with concrete. The prestressing force is created by tensioning the cable using hydraulic jack. The anchorage at the ends of the tendons are adjusted to keep the stretched tendons firmly in position Now, cement grout is forced under pressure to fill the space around the tendons completely. Finally the anchorages are covered with a protective coat of grout. Stress distribution diagram for prestressing Stress distribution stress Stress distribution diagram for prestressing Resultant stress Stress distribution diagram for prestressing	2	4
	(b) Ans.	Justify over reinforced sections are disallowed in L.S.M. 1) In over-reinforced section, percentage of steel is more than critical percentage.		
		2) Due to this, the concrete crushes reaching its ultimate strain before steel reaching its yield point.		
		3) In this case, the beam will fail initially due to overstress in the concrete, suddenly without giving any warning.	4	4
		4) Therefore, design codes restrict the percentage of steel in RC sections to that of balanced section thus disallowing over- reinforced section.	_	-

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(c)	Draw stress and strain diagram for doubly reinforced section in		17141143
	Ans.	L.S.M. State meaning of each term. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	3	
	(d)	Where, b = Width of beam d = Effective depth d' = cover to compression reinforcement $A_{\rm st}$ = Area of steel in tension $A_{\rm sc}$ = Area of steel in compression $X_{\rm u}$ = Depth of neutral axis. Design a circular column to carry an axial load of 1500 kN. Using MS lateral ties. Use M25 concrete and Fe 415 steel. The unsupported length of column is 3.75 m.	1	4
	Ans.	(NOTE : According to assumption of % steel, answer may vary)	1	
		$\begin{array}{ll} P_{u} &= (0.4 \times fck \times A_{c}) + (0.67 \times fy \times A_{sc}) \\ 2250 \times 10^{3} &= (0.4 \times 25 \times (A_{g} - A_{sc})) + (0.67 \times 415 \times (0.008 \times A_{g})) \\ 2250 \times 10^{3} &= (0.4 \times 25 \times (A_{g} - 0.008 \times A_{g})) + (0.67 \times 415 \times (0.008 \times A_{g})) \\ A_{g} &= 185270 \text{mm}^{2} \\ Dia. of circular column \\ D &= \sqrt{\frac{4 \times A_{g}}{\pi}} = \sqrt{\frac{4 \times 185270}{\pi}} = 485.7 \text{mm} \\ say, D &= 500 \text{mm} \end{array}$	1	

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

No. Que. Slenderness Ratio = $\frac{L}{D} = \frac{3750}{500} = 7.5 < 12$ Hence, column is short. $A_{xx} = 0.008 \times A_{x} = A_{xx} = 0.008 \times \frac{\pi}{4} \times 500^{2} = 1571 \mathrm{mm}^{2}$ Provide, $8 - 16 \mathrm{mm} \phi$ bars. A_{xx} provided= $8 \times \frac{\pi}{4} \times 16^{2} = 1608 \mathrm{mm}^{2}$ Diameter of links = $\frac{1}{4} \times \phi_{i}$, or 6 mm whichever is greater = $\frac{1}{4} \times 16 \mathrm{or} 6$ mm whichever is greater = $6 \mathrm{mm}$ Spacing of links = Min. of following (a)S=D=500 mm (b)S= $16 \times \phi_{i} = 16 \times 16 = 256 \mathrm{mm}$ (c)S=300 mm Hence, provide 6 mm ϕ links at 250 mm c/c (B) Attempt any ONE of the following: Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with $4-20 \mathrm{mm} \mathrm{diameter} \mathrm{bars} \mathrm{in} \mathrm{tension} \mathrm{zone} \mathrm{and} 2-12 \mathrm{mm} \mathrm{diameter} \mathrm{bars} \mathrm{in} \mathrm{censpression} \mathrm{zone} \mathrm{and} 2-12 \mathrm{mm} \mathrm{diameter} \mathrm{bars} \mathrm{in} \mathrm{cension} \mathrm{zone} \mathrm{and} 2-12 \mathrm{mm} \mathrm{diameter} \mathrm{bars} \mathrm{diameter} \mathrm{diameter} \mathrm{bars} \mathrm{diameter} dia$		6.1			TD 4 1
Slenderness Ratio = $\frac{L}{D} = \frac{3750}{500} = 7.5 < 12$ Hence, column is short. $A_{sc} = 0.008 \times A_g = A_{sc} = 0.008 \times \frac{\pi}{4} \times 500^2 = 1571 \text{mm}^2$ Provide, $8 - 16 \text{mm} \phi \text{bars}$. $A_{sc} = 0.008 \times A_g = A_{sc} = 0.008 \times \frac{\pi}{4} \times 500^2 = 1571 \text{mm}^2$ Diameter of links = $\frac{1}{4} \times \phi_L$ or 6 mm whichever is greater = $\frac{1}{4} \times 16 \text{or} 6 \text{mm}$ whichever is greater = 6 mm Spacing of links = Min. of following (a) $S = D = 500 \text{mm}$ (b) $S = 16 \times \phi_L = 16 \times 16 = 256 \text{mm}$ (c) $S = 300 \text{mm}$ Hence, provide 6 mm ϕ links at 250 mm c/c (B) Attempt any ONE of the following: Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with $4 - 20 \text{mm}$ diameter bars in tension zone and $2 - 12 \text{mm}$ diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm D = 500 mm C = 40 mm d = D - C = 460 mm Ast = $4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{mm}^2$ Asc = $2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{mm}^2$	_	Sub. Oue	Model Answer	Marks	Total Marks
Hence, column is short. $A_{sc}=0.008\times A_g=A_{sc}=0.008\times \frac{\pi}{4}\times 500^2=1571 \text{mm}^2$ $\text{Provide, } 8\text{-}16 \text{ mm }\phi \text{ bars.}$ $A_{sc} \text{ provided} = 8\times \frac{\pi}{4}\times 16^2=1608 \text{ mm}^2$ $\text{Diameter of links} = \frac{1}{4}\times \phi_t \text{ or }6 \text{ mm whichever is greater}$ $= \frac{1}{4}\times 16 \text{ or }6 \text{ mm whichever is greater}$ $= \frac{1}{4}\times 16 \text{ or }6 \text{ mm whichever is greater}$ $= 6 \text{ mm}$ $\text{Spacing of links} = \text{Min. of following}$ $(a) S = D = 500 \text{ mm}$ $(b) S = 16\times \phi_t = 16\times 16 = 256 \text{ mm}$ $(c) S = 300 \text{ mm}$ $\text{Hence, provide }6 \text{ mm }\phi \text{ links at }250 \text{ mm }c/c$ $\text{Attempt any ONE of the following:}$ $\text{Find the moment of resistance of the beam }250 \text{ X }500 \text{ mm deep if it is reinforced with }4 - 20 \text{ mm diameter bars in tension zone and }2 - 12 \text{ mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel.}$ $\text{Ans.} \text{(NOTE: Answer may vary according to assumption made by students)}$ $\text{Given:} \qquad \text{To find:}$ $\text{b} = 250 \text{ mm}$ $\text{D} = 500 \text{ mm}$ $\text{C} = 40 \text{ mm}$ $\text{d} = \text{D} - \text{C} = 460 \text{ mm}$ $\text{Ast} = 4\times \frac{\pi}{4}\times 20^2 = 1256.64 \text{ mm}^2$ $\text{Asc} = 2\times \frac{\pi}{4}\times 12^2 = 226.19 \text{ mm}^2$		Que.	Slenderness Ratio = $\frac{L}{R} = \frac{3750}{500} = 7.5 < 12$		IVIAIRS
Provide, 8-16 mm ϕ bars. $A_{sc} \text{ provided} = 8 \times \frac{\pi}{4} \times 16^2 = 1608 \text{mm}^2$ Diameter of links = $\frac{1}{4} \times \phi_L$ or 6 mm whichever is greater $= \frac{1}{4} \times 16 \text{ or 6 mm whichever is greater}$ $= 6 \text{mm}$ Spacing of links = Min. of following $(a) S = D = 500 \text{mm}$ $(b) S = 16 \times \phi_L = 16 \times 16 = 256 \text{mm}$ $(c) S = 300 \text{mm}$ Hence, provide 6 mm ϕ links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 - 20 mm diameter bars in tension zone and 2 - 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: $b = 250 \text{mm}$ $D = 500 \text{mm}$ $C = 40 \text{mm}$ $d = D - C = 460 \text{mm}$ $d = D - C = 460 \text{mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{mm}^2$					
Provide, 8-16 mm ϕ bars. $A_{sc} \text{ provided} = 8 \times \frac{\pi}{4} \times 16^2 = 1608 \text{mm}^2$ Diameter of links = $\frac{1}{4} \times \phi_L$ or 6 mm whichever is greater $= \frac{1}{4} \times 16 \text{ or 6 mm whichever is greater}$ $= 6 \text{mm}$ Spacing of links = Min. of following $(a) S = D = 500 \text{mm}$ $(b) S = 16 \times \phi_L = 16 \times 16 = 256 \text{mm}$ $(c) S = 300 \text{mm}$ Hence, provide 6 mm ϕ links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 - 20 mm diameter bars in tension zone and 2 - 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: $b = 250 \text{mm}$ $D = 500 \text{mm}$ $C = 40 \text{mm}$ $d = D - C = 460 \text{mm}$ $d = D - C = 460 \text{mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{mm}^2$			$A_{sc} = 0.008 \times A_g = A_{sc} = 0.008 \times \frac{\pi}{4} \times 500^2 = 1571 \text{mm}^2$	1	
Diameter of links = $\frac{1}{4} \times \phi_L$ or 6 mm whichever is greater = $\frac{1}{4} \times 16$ or 6 mm whichever is greater = 6 mm Spacing of links = Min. of following (a) S = D = 500 mm (b) S = $16 \times \phi_L = 16 \times 16 = 256$ mm (c) S = 300 mm Hence, provide 6 mm ϕ links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 – 20 mm diameter bars in tension zone and 2 – 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm C = 40 mm d = D - C = 460 mm Ast = $4 \times \frac{\pi}{4} \times 20^2 = 1256.64$ mm ² Asc = $2 \times \frac{\pi}{4} \times 12^2 = 226.19$ mm ²			·		
$=\frac{1}{4}\times 16 \text{ or } 6 \text{ mm whichever is greater}$ $=6 \text{ mm}$ Spacing of links = Min. of following $(a) S = D = 500 \text{ mm}$ $(b) S = 16\times\phi_L = 16\times 16 = 256 \text{ mm}$ $(c) S = 300 \text{ mm}$ Hence, provide $6 \text{ mm } \phi \text{ links at } 250 \text{ mm c/c}$ (B) Attempt any ONE of the following: Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with $4 - 20 \text{ mm diameter bars in tension zone and } 2 - 12 \text{ mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel.}$ Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: $b = 250 \text{ mm}$ $D = 500 \text{ mm}$ $C = 40 \text{ mm}$ $d = D - C = 460 \text{ mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{ mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$			$A_{se} \text{ provided} = 8 \times \frac{\pi}{4} \times 16^2 = 1608 \text{ mm}^2$		
= 6 mm Spacing of links = Min. of following (a) S = D = 500 mm (b) S = 16 × φ _L = 16 × 16 = 256 mm (c) S = 300 mm Hence, provide 6 mm φ links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 – 20 mm diameter bars in tension zone and 2 – 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm D = 500 mm C = 40 mm d = D - C = 460 mm Ast = 4 × π/4 × 20² = 1256.64 mm² Asc = 2 × π/4 × 12² = 226.19 mm²			Diameter of links = $\frac{1}{4} \times \phi_L$ or 6 mm whichever is greater		
Spacing of links = Min. of following (a) S = D = 500 mm (b) S = 16 × \(\phi_L = 16 \times 16 = 256 \) mm (c) S = 300 mm Hence, provide 6 mm \(\phi \) links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 - 20 mm diameter bars in tension zone and 2 - 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm D = 500 mm C = 40 mm d = D - C = 460 mm Ast = 4 × \(\frac{\pi}{4} \times 20^2 = 1256.64 \) mm ² Asc = 2 × \(\frac{\pi}{4} \times 12^2 = 226.19 \) mm ²			= $\frac{1}{4}$ ×16 or 6 mm whichever is greater	1	4
(a) S = D = 500 mm (b) S = 16×\$\phi_L\$ = 16×16=256 mm (c) S = 300 mm Hence, provide 6 mm \$\phi\$ links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 - 20 mm diameter bars in tension zone and 2 - 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm D = 500 mm C = 40 mm d = D - C = 460 mm Ast = 4×\frac{\pi}{4} \times 20^2 = 1256.64 mm^2 Asc = 2×\frac{\pi}{4} \times 12^2 = 226.19 mm^2			$=6 \mathrm{mm}$		
 (b) S=16×φ_L =16×16=256 mm (c) S=300 mm Hence, provide 6 mm φ links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 – 20 mm diameter bars in tension zone and 2 – 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm D = 500 mm C = 40 mm d = D - C = 460 mm Ast = 4×π/4×20²=1256.64 mm² Asc = 2×π/4×12²=226.19 mm² 			Spacing of links = Min. of following		
(c) S=300 mm Hence, provide 6 mm φ links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 – 20 mm diameter bars in tension zone and 2 – 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm D = 500 mm C = 40 mm d = D - C = 460 mm Ast = 4×π/4×20²=1256.64 mm² Asc = 2×π/4×12²=226.19 mm²					
(c) S=300 mm Hence, provide 6 mm φ links at 250 mm c/c (B) Attempt any ONE of the following: (a) Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 – 20 mm diameter bars in tension zone and 2 – 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm D = 500 mm C = 40 mm d = D - C = 460 mm Ast = 4×π/4×20²=1256.64 mm² Asc = 2×π/4×12²=226.19 mm²			(b) $S=16 \times \phi_1 = 16 \times 16 = 256 \text{mm}$		
Hence, provide 6 mm φ links at 250 mm c/c (B) Attempt any ONE of the following: Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 − 20 mm diameter bars in tension zone and 2 − 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: b = 250 mm D = 500 mm C = 40 mm d = D − C = 460 mm Ast = 4× π/4 × 20² = 1256.64 mm² Asc = 2× π/4 × 12² = 226.19 mm²					
Find the moment of resistance of the beam 250 X 500 mm deep if it is reinforced with 4 – 20 mm diameter bars in tension zone and 2 – 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: $b = 250 \text{ mm}$ $D = 500 \text{ mm}$ $C = 40 \text{ mm}$ $d = D - C = 460 \text{ mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{ mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$					40
it is reinforced with 4 – 20 mm diameter bars in tension zone and 2 – 12 mm diameter bars in compression zone, each at an effective cover of 40 mm. Assume M15 concrete and Fe 415 steel. Ans. (NOTE: Answer may vary according to assumption made by students) Given: To find: $b = 250 \text{ mm}$ $D = 500 \text{ mm}$ $C = 40 \text{ mm}$ $d = D - C = 460 \text{ mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{ mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$		(B)	Attempt any ONE of the following:		(6)
Students) Given: $b = 250 \text{ mm}$ $D = 500 \text{ mm}$ $C = 40 \text{ mm}$ $d = D - C = 460 \text{ mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{ mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$		(a)	it is reinforced with $4-20$ mm diameter bars in tension zone and $2-12$ mm diameter bars in compression zone, each at an effective		
Given: To find: $b = 250 \text{ mm} \qquad M_u = ?$ $D = 500 \text{ mm}$ $C = 40 \text{ mm}$ $d = D - C = 460 \text{ mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{ mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$		Ans.			
$b = 250 \text{ mm}$ $D = 500 \text{ mm}$ $C = 40 \text{ mm}$ $d = D - C = 460 \text{ mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{ mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$			T. C. 1		
D = 500 mm C = 40 mm d = D - C = 460 mm Ast = $4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{ mm}^2$ Asc = $2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$					
$d = D - C = 460 \text{ mm}$ $Ast = 4 \times \frac{\pi}{4} \times 20^{2} = 1256.64 \text{ mm}^{2}$ $Asc = 2 \times \frac{\pi}{4} \times 12^{2} = 226.19 \text{ mm}^{2}$					
Ast = $4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{ mm}^2$ Asc = $2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$					
Asc = $2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{mm}^2$			d = D - C = 460 mm		
			$Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \text{mm}^2$		
			$Asc = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{mm}^2$		
$I_{ck} = I_{J} N/mm$			$f_{ck} = 15 \text{ N/mm}^2$		
$f_y = 415 \text{ N/mm}^2$					
Assuming: $f_{sc} = 353 \text{ N/mm}^2$			Assuming: $f_{sc} = 353 \text{ N/mm}^2$		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Oue.	Model Answer	Marks	Total Marks
No. Q. 4	Que. (a)	Step 1 :Find X_{umax} =0.48d for Fe 415 =0.48×460 X_{umax} =220.8 mm Step 2 : Find Ast ₂ f_{cc} =0.45× f_{ck} =0.45×15=6.75 N/mm ² $Ast_2 = \frac{(f_{sc}-f_{cc}) \times A_{sc}}{0.87 \times f_y} = \frac{(353-6.75) \times 226.19}{0.87 \times 415}$ $Ast_1 = Ast - Ast_2 = 1256.64 - 226.918 = 1029.722 \text{ mm}^2$ Step 3 : Find Xu_1 $Xu_1 = \frac{0.87 \times f_y \times Ast_1}{0.36 \times f_{ck} \times b} = \frac{0.87 \times 415 \times 1029.722}{0.36 \times 15 \times 250} = 275.393 \text{ mm}$ Step 4 : Find type of section $As \ Xu_1 = 275.393 \text{ mm} > X_{umax} = 220.8 \text{ mm}$ Section is over-reinforced. Step 5 : Find Moment of Resistance M_u $M_u = (0.138 \times fck \times b \times d^2) + \left[(f_{sc}-f_{cc}) \times A_{sc} (d-d') \right]$ $M_u = (0.138 \times 15 \times 250 \times 500^2) + \left[(353-6.75) \times 226.19 \times (460-40) \right]$ $M_u = 162.268 \times 10^6 \text{ N-mm}$	1 1 1 1 1	Marks 6
	(b)	$\begin{array}{c} \boxed{M_u = 162.268 kN - m} \\ \\ \hline A \ beam \ is \ required \ to \ resist \ a \ total \ B.M. \ of \ 120 \ kNm. \ The \ size \ of \ beam \ is \ limited \ to \ 300 \ mm \ X \ 610 \ mm \ overall. \ Clear \ cover \ on \ both \ sides \ is \ 30 \ mm. \ Calculate \ reinforcement \ in \ form \ of \ 20 \ mm \ diameter \ on \ both \ sides. \ Use \ (M15 \ and \ Fe \ 415). \end{array}$		
	Ans.	Given: To find: $b = 300 \text{ mm} \qquad Ast = ?$ $D = 610 \text{ mm} \qquad Asc = ?$ $C = d' = 30 \text{ mm}$ $d = D - C = 580 \text{ mm} \qquad Assumtion:$ $M = 120 \text{ kNm} \qquad f_{sc} = 353 \text{ N/mm}^2$ $f_{y} = 415 \text{ N/mm}^2$		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
Q. 4	(b)	Step 1) $M_d = M_u = 1.5 \times M = 1.5 \times 120 = 180 \text{ kNm}$	1	
		Step 2) To find M _{u₁}		
		$M_{u_1} = M_{ulim} = 0.138 f_{ck} b d^2$	1	
		$=0.138\times15\times300\times580^{2}$		
		$=208.904\times10^{6} \text{N-mm} > M_{u} = 180 \text{kNm}$	1	
		Hence, beam is singly reinforced beam.	1	
		Step 3) To find A _{st₁}	1	
		Pt _{lim} =0.048fck=0.048×15=0.72% for M20 Concrete	1	
		$A_{st_1} = \frac{Pt_{lim} \times bd}{100} = \frac{0.72 \times 300 \times 580}{100}$		
			1	
		$A_{st_1} = 1252.8 \mathrm{mm}^2$		
		Using, 20 mm dia. bar.		
		No. of bar = $\frac{A_{st_1}}{\left(\frac{\pi}{4}\right) \times d^2} = \frac{1252.8}{\left(\frac{\pi}{4}\right) \times 20^2} = 3.98 = 4$ Provide 4-20 mm dia. bar on tension side only.	1	6
		1 Tovide 4-20 minuta. Oar on tension side only.		
Q. 5		Attempt any TWO:		(16)
	(a)	Design a rectangular beam for an effective span of 5.85 m. The super imposed load is 70 kN/m and size of beam is limited to 300 X 700 mm overall. Use M20 and Fe415. Assume a cover of 40 mm		
	Ans.	(NOTE: Answer may vary according to assumption made by student)		
		Given: To find:		
		$b = 300 \text{ mm} \qquad Ast = ?$		
		$D = 700 \text{ mm} \qquad Asc = ?$		
		C = 40 mm		
		d = D - C = 660 mm		
		w = 70 kN/m 1 = 5.85 m = 5850 mm		
		$f_{ck} = 3.85 \text{ m} = 3850 \text{ mm}$ $f_{ck} = 20 \text{ N/mm}^2$		
		$f_y = 415 \text{ N/mm}^2$		
		Assumption : $f_{sc} = 353 \text{ N/mm}^2$		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

	C 1			T 4 1
Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(a)	Solution:		1/141115
		$w_d = w \times \gamma_f = 70 \times 1.5 = 105 \text{ kN/m}$	1	
		$M_d = \frac{W_d \times l^2}{8} = \frac{105 \times 5.85^2}{8} = 449.170 \text{ kNm}$	1	
		$M_{d_1} = 0.138 \times fck \times b \times d^2 = 0.138 \times 20 \times 300 \times 660^2$		
		$=360.676\times10^6 \text{ Nmm}$	1	
		=360.676 kNm		
		$As M_d = 449.170 kNm > M_{d_1} = 360.676 kNm,$	1	
		Section is doubly reinforced.	1	
		$\% \text{ pt}_{\text{lim}} = 0.048 \times \text{fck} = 0.048 \times 20 = 0.96\%$		
		$A_{st1} = \frac{pt_{lim} \times b \times d}{100} = \frac{0.96 \times 300 \times 660}{100} = 1900.8 \text{ mm}^2$	1	
		$M_{d_2} = M_d - M_{d_1} = 449.170 - 360.676 = 88.494 \text{ kNm}$		
		$f_{cc} = 0.45 \times fck = 0.45 \times 20 = 9 \text{ N/mm}^2$	1	
		$f_{sc} = 353 \text{ N/mm}^2$ Assumed	1	
		$A_{sc} = \frac{M_{d_2} \text{ in Nmm}}{(f_{sc} - f_{cc}) \times (d - d')} = \frac{88.494 \times 10^6}{(353 - 9) \times (660 - 40)}$	1	
		$(f_{sc}-f_{cc})\times(d-d')$ (353-9)×(660-40)	1	
		$=414.919 \mathrm{mm}^2$		
		Equating, $Cu_2 = Tu_2$	1	
		$(f_{sc}-f_{cc})\times A_{sc} = A_{st2}\times 0.87\times fy$	_	
		$A_{st2} = \frac{(f_{sc} - f_{cc}) \times A_{sc}}{0.87 \times fy} = \frac{(353 - 9) \times 414.919}{0.87 \times 415} = 395.325 \text{mm}^2$		
			1	8
		$A_{st} = A_{st1} + A_{st2} = 1900.8 + 395.325$		
		$= 2296.125 \mathrm{mm}^2$		
	(b)	Design a shear reinforcement for a beam of 6 m span having 25 kN/m udl . Beam size 300 mm X 600 mm overall, 30 mm cover. The reinforcement consist of 6 bars of 25 mm diameter. Concrete is M20 grade and steel of 415 grade.		
		Pt (%) 1.0 1.25 1.5 1.75 2.0		
		ζc 0.6 0.64 0.68 0.71 0.71		

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
_		Given: To find: Spacing of stirrups = ? $b = 300 \text{ mm}$ Spacing of stirrups = ? $D = 600 \text{ mm}$ $C = 30 \text{ mm}$ $d = D - C = 570 \text{ mm}$ $1 = 6 \text{ m} = 6000 \text{ mm}$ $w = 25 \text{ kN/m}$ $Ast = 6 \times \frac{\pi}{4} \times (25)^2 = 2945.243 \text{ mm}^2$ $f_{ck} = 20 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ Step 1) Factored Shear Force $w_d = 1.5 \times w = 1.5 \times 25 = 37.5 \text{ kN/m}$ $V_u = \frac{w_d \times 1}{b \times d} = \frac{37.5 \times 6}{2} = 112.5 \text{ kN}$ Step 2) Nominal shear stress $c_v = \frac{V_u}{b \times d} = \frac{112.5 \times 10^3}{300 \times 570} = 0.658 \text{ N/mm}^2 < c_{c_{max}} = 2.8 \text{ N/mm}^2$ Step 3) Shear strength of concrete (c_v) $w_0 \text{ pt} = \frac{A_{st}}{b \times d} \times 100 = \frac{2945.243}{300 \times 570} \times 100 = 1.72\%$ Pt (w_0) 1.5 1.75 c_c 0.68 0.71 By interpolation $c_v = 0.7064 \text{ N/mm}^2$ As $c_v = 0.658 \text{ N/mm}^2 < c_v = 0.7064 \text{ N/mm}^2$ Shear reinforcement is not required. However nominal shear reinforcement should be provided. Provide stirrups of 2 legged 8 mm dia. Step 4) Spacing of stirrups Asv= $2 \times \frac{\pi}{4} \times 8^2 = 100.53 \text{ mm}^2$	Marks 1 1 1 1	
		Spacing of stirrups = Min. of following - a) $Sv = \frac{0.87 \times f_y \times Asv}{0.4 \times b} = \frac{0.87 \times 415 \times 100.53}{0.4 \times 300} = 302.469 \text{ mm}$ b) $Sv = 0.75 \times d = 0.75 \times 660 = 495 \text{mm}$	1	

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub.	Model Answer	Marks	Total Marks
Q. 5	Que. (b)	c)Sv=300 mm		MINIKS
	(~)	Hence, Sv=300 mm		
		Provide 8 mm dia. 2 legged vertical stirrups at 300 mm c/c	1	o
		1 Tovide o mini dia. 2 legged vertical stillups at 300 mini e/e	1	8
	(c)	A square column size 400 X 400 mm carries axial load of 1000 kN. Determine size of square footing for column. If the SBC of soil is 200 kN/m², calculate depth of footing for B.M. criteria. Use M25 and Fe 415 steel.		
	Ans.	Given: To find:		
		b = 400 mm Size of footing = ?		
		P = 1000 kN Main steel = ?		
		$SBC = 200 \text{ kN/m}^2$		
		$f_{ck} = 25 \text{ N/mm}^2$		
		$f_y = 415 \text{ N/mm}^2$		
		Solution:		
		Step 1		
		Ultimate S.B.C $(q_u)=2\times200$	1	
		$= 400 \text{ kN/m}^2$		
		Step 2		
		Size of footing		
		Assuming 5% as self wt.of footing		
		Area of footing $(A_f) = \frac{(1.05 \times P_u)}{q_u} = \frac{(1.05 \times (1.5 \times 1000))}{400}$		
		$= 3.938 \text{ m}^2$		
		$L = \sqrt{A_f}$		
		$=\sqrt{3.938}$	1	
		= 1.984 m		
		= 2.0 m (say)		
		Adopt size 2.0 m×2.0 m		
		Auopt Size 2.0 III^2.0 III		
]		l .	

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure			Sub. Code: 17604		
Que.	Sub. Que.	Model Answer		Marks	Total Mark
Q. 5	(c)	Z.0 m X O.4 m X O.4 m Y O.4 m Y Y	1	1	TVIAIT N
		Step 3 Upword soil pressure (p) $p = \frac{P_u}{(L \times B)} = \frac{1.5 \times 1000}{(2.0 \times 2.0)} = 375 \text{ kN/m}^2$ $M_x = M_y = 1 \times x \times p \times \frac{x}{2} = 1 \times 0.8 \times 375 \times \frac{0.8}{2}$ $= 120 \text{ kN-m}$		1	
		$d_{req} = \sqrt{\frac{M_x}{(0.138 \times f_{ck} \times b)}} = \sqrt{\frac{120 \times 10^6}{(0.138 \times 25 \times 1000)}}$ $= 186.5 \text{ mm}$ $= 190 \text{ mm (say)}$ adopt cover of 50 mm $D = d + 50 = 190 + 50 = 240 \text{ mm}$ Provide, D = 240 mm and d = 190 mm		1	
		Step 5 $Ast_{x} = Ast_{y} = \frac{0.5 \times fck}{fy} \times \left[1 - \sqrt{1 - \left(\frac{4.6 \times M_{ux}}{(fck \times bd^{2})} \right)} \right] \times bd$ $= \frac{0.5 \times 25}{415} \times \left[1 - \sqrt{1 - \left(\frac{4.6 \times 120 \times 10^{6}}{(25 \times 1000 \times 190^{2})} \right)} \right] \times 1000 \times 190$ $= 2156.443 \text{ mm}^{2}$		1	

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure Subject: Design of R.C.C. Structure		Sub.	b. Code: 17604		
Que. No.	Sub. Que.	Model Answer		Marks	Total Marks
Q. 5	(c)	using 16mm diameter			
		$S_{x} = S_{y} = \frac{(1000 \times A\phi)}{Ast} = \frac{1000 \times \frac{\pi}{4} \times 16^{2}}{2156.443}$ $= 93.237 \text{ mm}$ $= 90 \text{ mm c/c}$		1	8
		Provide $16 \mathrm{mm} \phi $ @ $90 \mathrm{mm} \mathrm{c/c}$ both way			
Q.6		Attempt any FOUR of the following:			(16)
	(a) Ans.	Write four IS specifications for the longitudinal reinforcer columns. IS specifications for longitudinal reinforcement of an loaded short column: i) Minimum diameter of bar in column = 12 mm ii) Minimum number of bars in circular column = 6 Nos iii) Cover of the column = 40 mm		1 each	4
	(b) Ans.	 iv) Minimum and maximum steel in column Max % of steel = 6 % of gross cross sectional area of col Min % of steel = 0.8 % of gross cross sectional area of col State the meaning of nominal cover. State purposes of precover to reinforcement. Nominal cover: It is defined as the distance measured freconcrete surface to the nearest surface of the reinforcing bar. 	olumn oviding	2	
		Purposes of providing cover to reinforcement: 1) To prevent corrosion of steel. 2) To give necessary embedment to the reinforcing bar.		1 each	4
	(c)	Calculate effective flange width for a T beam having spa The c/c distance between beams is 2.5 mm, width of web			
	Ans.	mm and flange depth as 120 mm. Supports are simple. (NOTE: c/c distance between beam should be 2.5 m instead mm)	d of 2.5		
		1 _o =8000+230=8230 mm		1	
		$b_f = \left(\frac{l_o}{6} + b_w + (6 \times D_f)\right) \text{ or c/c distance between supports whichever}$	ıs lesser	1	
		$= \left(\frac{8230}{6} + 230 + (6 \times 120)\right) \text{ or } 2500 \text{ mm}$		1	4
		$= 2321.667 \text{mm or } 2500 \text{mm}$ $b_f = 2321.667 \text{mm}$		1	

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(d) Ans.	Sketch the critical sections used in the design of pad footings for bending and shears. Critical section used in the design of pad footings for bending:	2	
		Critical section used in the design of pad footings for shears: One-way Shear Failure of Column Footing	1	
		Two-way Action	1	4

Model Answer: Winter 2018

Subject: Design of R.C.C. Structure

Que.	Sub.	Model Answer	Marks	Total
No.	Que.		IVIALKS	Marks
Q. 6	(e) Ans.	Calculate ultimate moment of resistance of the T beam having flange width 800 mm, slab thickness 120 mm, web thickness 300 mm and effective depth 500 mm to the centre of 4 – 20 mm Fe 415 bars using M25 concrete. (singly reinforced section is sufficient) bf = 800 mm Df = 120 mm		
		bw = 300 mm d = 500 mm		
		Ast = $4 \times \frac{\pi}{4} \times 20^2 = 1256.637 \text{mm}^2$		
		$f_{ck} = 25 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$		
		To find: M _u =?		
		Step 1		
		Find \mathbf{x}_{u}		
		$0.36 \times \text{fck} \times \text{b}_{\text{f}} \times \text{x}_{\text{u}} = 0.87 \times \text{fy} \times \text{Ast}$	1	
		$0.36 \times 25 \times 800 \times x_u = 0.87 \times 415 \times 1256.637$		
		$x_u = 63.015 \text{mm} < D_f = 120 \text{mm}$		
		Step 2		
		Find x_{umax} $x_{umax} = 0.48 \times d \text{for Fe 415}$	1	
		$ = 0.48 \times 500 $		
		$= 240 \mathrm{mm}$		
		$\therefore \text{ As } x_u < x_{umax} \text{ section is under reinforced}$	1	
		Step 3		
		Find M _u		
		$M_u = T_u \times a$		
		$= 0.87 \times \text{ fy} \times \text{Ast} \times (\text{d} - 0.42 \times x_{\text{u}})$		
		$=0.87 \times 415 \times 1256.637 \times (500 - 0.42 \times 63.015)$	1	4
		$=214.846\times10^{6}$ N-mm		
		Mu = 214.846 kN-m		
		-		