MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer: Winter- 2018

Subject: Hydraulics

Sub. Code: 17421

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. Sub. Total Model Answers Marks Marks No. Que. Q. 1 Attempt any SIX of the following: 12 A) State the difference in behavior of liquid with solids (any two (a) points). Ans. Sr. No. Liquids **Solids** The distance space between molecules is Molecules are very closely 1 large as compared to spread spaced to each other. 1 2 solids. Mark each Intermolecular cohesive Intermolecular cohesive 2 (any force is less force is lrge two) Liquids cannot resist Solids can resist tensile 3 tensile force compressive force Liquids take the shape of the container in 4 Solids have definite shape which it stored. e.g. Water, Petrol, 5 e.g. Metal, Timber, concrete Kerosene **(b)** State the Newton's law of viscosity. Ans. It states that "The shear stress between adjacent fluid layers is proportional to velocity gradient between the two layers.on a layer of a fluid is directly proportional to the rate of shear strain". 2 2 The shear stress on a layer of a fluid is directly proportional to the Velocity gradient. $\zeta \quad \alpha (v/y) = \mu x (v/y)$

Model Answer: Winter- 2018

Sub. Code: 17421 **Subject: Hydraulics**

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		1.201110	Marks
Q.1	(c)	Convert: i) 10 N/cm ² in meters of water		
		ii) 03 m of mercury in N/m ²		
	Ans.	$P = 10N / cm^2 = 10 \times 10^4 N / m^2$		
	i)		1	
	1)	$S_{\text{Water}} = 1$	1	
		$P = \gamma_{\text{Water}} \times h_{\text{Water}}$		
		$P = S_{\text{Water}} \times \gamma_{\text{Water}} \times h_{\text{Water}}$		2
		$1.0 \times 9810 \times h_{\text{Water}} = 10 \times 10^4 N / m^2$		
		$h_{\text{Water}} = 10.19 \text{m}$		
	ii)	$h_{mercury} = 03m, S_{mercury} = 13.6$	_	
		$P = \gamma_{mercury} \times h_{mercury}$	1	
		$P = S_{mercury} \times \gamma_{Water} \times h_{mercury}$		
		$P = 13.6 \times 9810 \times 03$		
		$P = 400248 \text{N/m}^2$		
	(d)	State any two advantages of simple U tube manometer over a		
		piezometer.	1	
	Ans.	1. It is suitable for measurement of high pressure	Mark each	
		2. It is suitable for measurement of negative pressure	(any	2
		3. It requires a short U tube containing mercury in it.	two)	
	(e)	Write expression for minor losses in i) Sudden Enlargement ii) Exit		
	Ans.	-,	1	
	All3.	Minor Loss of head due to sudden enlargement	1	
		$\left(V_1 - V_2\right)^2$		2
		$H_{L} = \frac{\left(V_{1} - V_{2}\right)^{2}}{2g}$		_
		2. Minor Loss of head due to Exit	1	
		V^2		
		$H_{L} = \frac{V^{2}}{2g}$		
	(f)	Define i) Hydraulic Gradient Line ii) Energy Gradient Line	1	
	Ans.	Hydraulic Gradient Line (HGL) is defined as the line which gives		
		the sum of pressure head and datum head of a flowing fluid in a pipe with respect to some reference line.		2
		Total Energy Gradient Line is defined as the line which gives the	1	2
		sum of pressure head, datum head and velocity head of a flowing fluid	•	
		in a pipe with respect to some reference line.		

Model Answer: Winter- 2018

Que.	Sub.		3.5.1	Total
No.	Que.	Model Answers	Marks	Marks
Q.1	g) Ans.	 Define: Coefficient of contraction (C_c) Coefficient of velocity (C_v) Coefficient of contraction (C_c) The ratio of the cross-sectional area of the jet at vena contracta to the cross-sectional area of the orifice is called coefficient of contraction. Coefficient of velocity (C_v) The ratio of actual velocity of the jet at vena contracta to the theoretical velocity of the jet is called coefficient of velocity. 	1	2
	h) Ans.	List any two velocity of flow measuring devices. 1)Current meter 2)Single float or surface float 3)Double float or subsurface float 4)Rod float or velocity float 5) Pitot tube	1 Mark each (any	2
	B) a)	Attempt any TWO of the following: If the density of liquid is 800 kg/m ³ and its kinematic viscosity as 1.73 cm ² /sec. find its	two)	(8)
	Ans.	i) Specific weight ii) Dynamic velocity iii) Specific volume iv) Specific gravity Mass Density=ρ=800Kg/m³ Kinematic Viscosity=J=1.73cm²/sec=1.73×10 ⁻⁴ m²/sec Specific Weight=γ=Mass Density×g γ=800×9.81 γ=7848N/m³	1	
		Specific Volume= $\frac{1}{\rho} = \frac{1}{800}$ Specific Volume= $1.25 \times 10^{-3} \text{m}^3/\text{kg}$ Specific Gravity= $\frac{\rho_1}{\rho_w}$ $\rho_w = 1000 \text{Kg/m}^3$ $\rho_1 = 800 \text{Kg/m}^3$	1	4
		Specific Gravity= $\frac{800}{1000}$ =0.8 Kinematic Viscosity= $\nu = \frac{\mu}{\rho_1}$ Dynamic Viscosity= $\mu = \nu \times \rho_1 = \mu = 1.73 \times 10^4 \times 800$ Dynamic Viscosity= $\mu = 0.1384$ N-S/m ²	1	

Model Answer: Winter- 2018

Sub. Code: 17421 **Subject: Hydraulics**

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	b)	Define the following and state their SI units:		
		i) Dynamic Viscosity ii) Weight Density		
	Ans.	i) Dynamic Viscosity: It is defined as shear stress (τ) required to	1	
		produce unit rate of shear strain (du/dy). It is denoted by (μ) .		
		$Unit = N.sec/m^2$	1	
		ii) Weight Density: It is defined as the weight per unit volume at		
		standard temperature and pressure	1	4
		OR		
		It is defined as ratio of weight to volume.		
			1	
		S.I. Unit: N/m ³		
	c)	Explain the concept of pressure diagram and state its use.		
	Ans.	Pressure diagram is defined as "It is the graphical representation of		
		variation of pressure on the surface with depth". The total pressure per	1	
		unit length is the area of pressure diagram. The position of center of		
		the pressure is the position of center of gravity of the pressure		
		diagram.		
		diagram.		
		2 1		
		2gH	1	4
		H		
		P		
		LYLH		
		(a) (b)		
		Uses:		
		1) To Calculate pressure exerted by liquid on the one side of	4	
		surface.	1 Ml-	
		2) To Calculate pressure due to liquid on both the side of surface	Mark	
		1	each	
		3) To Calculate pressure on vertical and inclined faces of dam.	(any	
		4) To Calculate pressure on sluice gate, side and bottom of water	two)	
		tank.		
		5) To find position of centre of pressure.		
	i		i	Ĭ.

Model Answer: Winter- 2018

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		TVICINS	Marks
Q.2	a)	Attempt any FOUR of the following: A rectangular plane surface is 2 m wide and 3 m deep. It lies in		(16)
		vertical plane in water. Determine the total pressure and position		
		of centre of pressure on the plane surface when its upper edge is		
		horizontal and 2.5 m below the free water surface.		
	Ans.			
		FREE WATER SURFACE		
		4 -		
		2·5 m	1	
			•	
		T *		
		2m .1		4
		*		
		$P = \gamma \times A \times y$		
		$A = b \times d = 2 \times 3 = 6m^2$		
		$\bar{y} = 2.5 + \frac{3}{2} = 4m$		
		$P = 9810 \times 6 \times 4 = 235440N = 235.44kN$	1	
		$\bar{h} = \frac{I_G \times \sin^2 \theta}{1 + y}$		
		$A\overline{y}$		
		$I_G = \frac{bd^3}{12} = \frac{2 \times 3^3}{12} = 4.5m^4$	1	
			1	
		$\theta = 90^{\circ}$		
		$\bar{h} = \frac{4.5 \times 1}{6 \times 4} + 4 = 4.18m$	1	
		_	1	
		h = 4.18m		

Model Answer: Winter- 2018

Sub. Code: 17421 **Subject: Hydraulics**

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	b) Ans.	A square tank 2 m side and 2 m depth contain water to a depth of 1m and light liquid of specific gravity 0.80 on the water to a depth of 0.60 m. find the magnitude and location of pressure force on one of the vertical side and bottom of the tank.		IVIGIAS
		for Water,	1/2	
		$P = \text{Pressure intensity at bottom}$ $P = \gamma_w \times h$ $P_1 = 9.81 \times 1$ $P_1 = 9.81 kN / m^2$	1/2	
		$P_{1} = 9810 \ N / m^{2}$ for Oil, $P_{2} = \text{Pressure intensity at bottom}$ $P_{2} = \gamma_{oil} \times h$ $P_{2} = S_{oil} \times \gamma_{water} \times 0.6$ $P_{2} = 0.8 \times 9810 \times 0.6$	1/2	
		$P = P_1 + P_2$ $P = 14518.8N / m^2$ $Total \ pressure \ force = p \times Area$ $Total \ pressure \ force = 14518.8 \times 2 \times 2 = 58075.2N = 58.075kN$	1/2	

Model Answer: Winter- 2018

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	b)	P_{side} = Pressure per meter on one side of wall	1/2	
		$y_{1} = \frac{1}{3} \times h_{1} = \frac{1}{3} \times 1 = 0.333m$ $a_{1} = \frac{1}{2} \times \gamma_{1} h_{1} \times h_{1} = \frac{1}{2} \times 9810 \times 1 \times 1 = 4905m^{2}$ $y_{2} = \frac{1}{2} \times h_{1} = \frac{1}{2} \times 1 = 0.5m$ $a_{2} = \gamma_{2} h_{2} \times h_{1} = 0.8 \times 9810 \times 0.6 \times 1 = 4708.8m^{2}$ $y_{3} = \frac{1}{3} \times h_{2} + h_{1} = \frac{1}{3} \times 0.6 + 1 = 1.2m$ $a_{3} = \frac{1}{2} \times \gamma_{2} h_{2} \times h_{2} = \frac{1}{2} \times 0.8 \times 9810 \times 0.6 \times 0.6 = 1412.64m^{2}$ $y = \frac{(a_{1}y_{1}) + (a_{2}y_{2}) + (a_{3}y_{3})}{a_{1} + a_{2} + a_{3}}$	1/2	
		$ \frac{1}{y} = \frac{(4905 \times 0.33) + (4708.8 \times 0.5) + (1412.64 \times 1.2)}{4905 + 4708.8 + 1412.64} $ $ \frac{1}{y} = \frac{(1618.65) + (2354.4) + (1695.17)}{11026.44} $ $ \frac{1}{y} = 0.514 \text{ mfrombase} $ $ P_{side} = \text{Pressure per meter on one side of wall} $ $ P_{side} = \left(\frac{1}{2} \times \gamma_1 \times h_1^2\right) + (\gamma_2 \times h_1 \times h_2) + \left(\frac{1}{2} \times \gamma_2 \times h_2^2\right) $	1/2	4
		$P_{side} = \left(\frac{1}{2} \times 9810 \times 1^{2}\right) + \left(0.8 \times 9810 \times 1 \times 0.6\right) + \left(\frac{1}{2} \times 0.8 \times 9810 \times 0.6^{2}\right)$ $P_{side} = 4905 + 4708.8 + 2825.28$ $\boxed{P_{2} = 12439.08 \ N/m}$	1/2	

Model Answer: Winter- 2018

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	c) Ans.	A partition wall 2 m long divides a storage tank. On one side there is liquid with specific gravity 0.87 upto a depth of 1.5 m. on the other side there is another liquid with specific gravity 0.80 stored to a depth of 1 m . Determine the resultant pressure on the partition wall and the position of at which it acts. Pressure due to liquid of sp.gr. 0.87	1/2	
		$\begin{aligned} P_1 &= \frac{1}{2} \times \gamma_L \times h_1 \times h_1 \\ P_1 &= \frac{1}{2} \times S_L \times \gamma_w \times h_1^2 \\ P_1 &= \frac{1}{2} \times 0.87 \times 9.81 \times 1.5^2 \\ \hline P_1 &= 9.6015 \text{kN/m} \\ \text{Pressure due to liquid of sp. gr. 0.8} \\ P_2 &= \frac{1}{2} \times \gamma_L \times h_2 \times h_2 \end{aligned}$	1/2	4
		$P_{2} = \frac{1}{2} \times \gamma_{L} \times h_{2} \times h_{2}$ $P_{2} = \frac{1}{2} \times S_{L} \times \gamma_{w} \times h_{2}^{2}$ $P_{2} = \frac{1}{2} \times .80 \times 9.81 \times 1.0^{2}$	1/2	
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/2	
		$P = 9.6015 - 3.924$ $\boxed{P = 5.6775 \text{ kN/m}}$ And for 2 m lenght pressure will be	1/2	
		$P = 2 \times 5.6775 = 11.355 \text{kN}$ Position of center of pressure $P\bar{h} = P_1 \ \bar{h}_1 - P_2 \ \bar{h}_2$	1	
		$5.6775 \times \bar{h} = 9.6015 \times \frac{1}{3} \times 1.5 - 3.924 \times \frac{1}{3} \times 1.0$ $\bar{h} = 0.615 m \text{ from base}$	1/2	

Model Answer: Winter- 2018

Que.	Sub.	Model Answers	Marks	Total
No. Q.2	Que. d) Ans.	A simple U- tube manometer is used to measure water pressure in pipe. The left limb of manometer is connected to pipe and right limb is open to atmosphere. The mercury level in left limb is 120 mm below the centre of pipe and in right limb 80 mm above the centre of pipe. Calculate the water pressure in pipe.	1	Marks
		$S_{1} = 1$ $h_{1} = 120mm = 0.12m$ $S_{2} = 13.6$ $h_{2} = 200mm = 0.20m$ $h_{p} + (S_{1} \times h_{1}) = (S_{2} \times h_{2})$ $h_{p} = (13.6 \times 0.20) - (1 \times 0.12)$ $\boxed{h_{p} = 2.6m}$	1	4
		$P_{p} = \gamma_{w} \times h_{p}$ $P_{p} = 9.81 \times 2.6$ $P_{p} = 25.506 kN/m^{2}$ OR $\frac{P_{p}}{\gamma_{w}} + (0.12 \times 1) - (0.20 \times 13.6) = 0$	1 Or 1	
		$\frac{P_p}{\gamma_w} = 2.6m$ $P_A = 2.6 \times \gamma_w$ $P_A = 25.506 kN/m^2$	1	

Model Answer: Winter- 2018

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	e)	Define the following types of flow: i) Gravity Flow ii) Steady Flow		
	Ans.	 iii) Uniform Flow iv) Laminar Flow 1) Gravity flow: If the flow of water under gravitational force is called gravity flow 	1	
		2) Steady flow: - If the depth of flow, the discharge and mean velocity of the flow at any section does not change with respect to	1	
		time, the flow is called as steady flow 3) Uniform flow: - If the depth of flow, the discharge and mean velocity flow at a given instant do not change along the length of channel, the flow is called as Uniform flow	1	4
		4) Laminar flow: If fluid particles flows parallel to each other then flow is called laminar flow. OR	1	
		If Reynold's number is less than 2000 then the flow is called as laminar flow.		
	f) Ans.	State Bernoulli's theorem with its assumption and equation. It states that in an ideal incompressible fluid when the flow is steady & continuous, the total energy of each particle of the fluid is the same. (Provided that no external energy enters or leaves the system at any point)	2	
		OR It states that in an incompressible fluid, when the flow is steady and continuous the sum of pressure energy, kinetic energy and potential energy (or datum energy) remains constant.		
		$\frac{P_1}{\gamma_L} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma_L} + \frac{V_2^2}{2g} + Z_2$	2	4
		$\frac{1}{\gamma_L} + \frac{1}{2g} + Z_1 = \frac{1}{\gamma_L} + \frac{1}{2g} + Z_2$ Where, $\frac{P_1}{\gamma_L} \text{ and } \frac{P_2}{\gamma_L} = \text{Pressure head or Pressure Energy per unit weight at section 1-1 and 2-2}$ $\frac{V_1^2}{2g} \text{ and } \frac{V_2^2}{2g} = \text{Velocity head or kinetic energy per unit weight at section 1-1 and 2-2}$ $Z_1 \text{ and } Z_2 = \text{Datum head or Potential Energy per unit weight at section 1-1 and 2-2}$	2	

Model Answer: Winter- 2018

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	a)	Attempt any FOUR of the following: A pipe line carrying an oil of specific gravity 0.9 has a diameter 250 mm at A which is gradually increase to a diameter of 500 mm at B, which is 5 m above A. if the pressure at A and B are 125 KPa and 75 Kpa respectively and discharge is 225 Litres per second, Find the loss of head and the direction of flow.		16
	Ans.	Given, Specific Gravity of oil-= 0.9 D _A = 250mm D _B = 500mm 2m D _A = 250mm D _B = $500 $		
		Q = 225 Lit/sec= 225/1000 m ³ /sec = 0.225 m ³ /sec Q = $a_A v_A = 0.225 = \frac{\Pi}{4} \times 0.25^2 \times v_A$	1/2	
		$V_A = 4.586m / s$ $Q = a_B v_B = \frac{\Pi}{4} \times 0.5^2 \times v_B$	1/2	
		$v_{B} = 1.146m/s$ Total Energy at A $TE_{A} = \frac{P_{A}}{\gamma} + \frac{v_{A}^{2}}{2g} + z_{A}$ $TE_{A} = \frac{125 \times 10^{3}}{(0.9 \times 9810)} + \frac{4.586^{2}}{2 \times 9.81} + 0 = 15.2299m$ Total Energy at B	1	4
		$TE_B = \frac{P_B}{\gamma} + \frac{{v_B}^2}{2g} + z_B$ $TE_B = \frac{75 \times 10^3}{(0.9 \times 9810)} + \frac{1.146^2}{2 \times 9.81} + 5 = 13.562m$	1	
		Loss of Head = $TE_A - TE_B = 15.2299 - 13.562$ Loss of Head = $1.6679m$	1	
		As TE _A is greater than TE _B direction of flow is from A to B		

Model Answer: Winter- 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	b)	Define following terms: i) Reynolds Number ii) discharge iii) Flow net iv) Stream line		WILLIA
	Ans.	i) Reynolds Number- It is defined as the ratio of Inertia force to Viscous Force.	1	
		ii) Discharge – It is defined as the quantity of liquid flowing per second through a section of pipe or a channel.	1	
		iii) Flow net- a grid obtained by drawing a series of streamlines and equipotential lines is known as known as Flow net.	1	4
		iv) Stream line- It is defined as imaginary line within the flow so that the tangent at any point on it indicates the velocity at that point.	1	
	c)	Three pipes having same length , same friction factor , but different diameters as 250 mm , 100 mm and 50 mm are		
	Ans.	connected in parallel . if the total discharge through these pipe is 500 Litres per second. Calculate the discharge through each Pipe. $d_1=250\ mm=0.25\ m$		
		$d_2 = 100 \text{ mm} = 0.10 \text{ m}$		
		$d_3 = 50 \text{ mm} = 0.05 \text{ m}$		
		$Q = 500 \text{ lit/sec} = 0.5 \text{ m}^3/\text{sec}$		
		$\mathbf{f}_1 = \mathbf{f}_2 = \mathbf{f}_3$		
		$l_1 = l_2 = l_3$		
		$h_f = \frac{f_1 l_1 v_1^2}{2g D_1} = \frac{f_2 l_2 v_2^2}{2g D_2} = \frac{f_3 l_3 v_3^2}{2g D_3}$		
		$\frac{v_1^2}{D_1} = \frac{v_2^2}{D_2} = \frac{v_3^2}{D_3}$		
		$v_1^2 = \frac{D_1}{D_2} v_2^2$		
		$v_1^2 = \frac{0.25}{0.10} v_2^2$		
		$v_1^2 = 2.5v_2^2$		
		$v_1 = 1.58 v_2$		
		$v_3^2 = \frac{D_3}{D_2} v_2^2$		
		$v_3^2 = \frac{0.05}{0.10} v_2^2$		

Model Answer: Winter- 2018

Que.	Sub. Que.	Model Answers	Marks	Total Marks
Que. No. Q. 3	Sub. Que. c)	Model Answers $v_3 = 0.707 v_2$ $Q = Q_1 + Q_2 + Q_3$ $Q = A_1 V_1 + A_2 V_2 + A_3 V_3$ $0.5 = \left[\frac{\Pi}{4}(0.25)^2 \times 1.58 v_2\right] + \left[\frac{\Pi}{4}(0.1)^2 \times v_2\right] + \left[\frac{\Pi}{4}(0.05)^2 \times 0.707 v_2\right]$ $0.5 = \frac{\pi}{4}\{[0.098758 v_2] + [0.01 v_2] + [0.00176 v_2]\}$ $0.5 = 0.08675 V_2$ $V_2 = 5.763 \text{m/s}$ $V_1 = 1.58 V_2$ $V_1 = 9.112 \text{m / sec}$ $Q_1 = A_1 V_1$ $Q = \frac{\pi}{4} \times 0.25^2 \times 9.112$ $Q_1 = 0.4469 \text{m}^3 / \text{sec}$ $Q_2 = A_2 V_2 = \frac{\pi}{4} \times 0.1^2 \times 5.763 = 0.0450 \text{m}^3 / \text{sec}$ $V_3 = 0.707 V_2$ $V_3 = 0.707 V_3 = 0.707 $	Marks 1 1 1	Total Marks

Model Answer: Winter- 2018

Subject: Hydraulics

Que.	Sub.	Model Answers	Marks	Total
No. Q.3	Que. d)	Explain Water hammer in a pipe with its effects and remedial		Marks
· ·	Ans.	Mater hammer - In a long pipe, when flowing water is suddenly brought to rest by closing the value or by any similar cause, there will be sudden rise in pressure as the momentum of water is being destroyed. A pressure wave is a transmitted along the pipe. A sudden rise in pressure has the effect of hammering action on the walls of the pipe . this phenomenon of sudden rise in pressure is known as water hammer or hammer blow.	2	4
		The magnitude of pressure rise depend on – speed at which valve is closed, velocity of flow, length of pipe, elastic properties of pipe material. Effect: 1. Noise (Roaring Noise) is created. 2. Pipe may burst. Remedial Measures: 1. Close the valve gradually. 2. Rise in pressure should be gradual.	2	
	e)	A horizontal pipe of 150 mm diameter is suddenly enlarged to 200 mm diameter. Calculate the loss of head if 12 litres per second of water flows from smaller to larger section . also calculate the loss of head if the direction of flow is reversed. Take $Cc=0.62$.		
	Ans.	Q = 12 Lit/sec Loss of head in sudden expansion=? Loss of head in sudden contraction = ? Cc= 0.62		
		$Q = A_1 V_1 = A_2 V_2 = 12 \text{ lit / sec} = 0.012 \text{ m}^3/\text{sec}$ $0.012 = \frac{\pi}{4} 0.15^2 v_1$ $V_1 = 0.6794 \text{ m/sec}$	1	
		$Q = A_2 V_2$ $0.012 = \frac{\pi}{4} 0.20^2 v_2$	1	
		$V_2 = 0.3822$ m/sec Loss of head due to sudden expansion = $\frac{(v_{1}-v_{2})^2}{2g} = \frac{(0.6794-0.3822)^2}{2\times 9.81} = 0.0045 m$	1	4
		Loss of head when direction of flow is reversed that is due to sudden contraction = h_{conc} $h_{conc} = \frac{v_1^2}{2g} \left[\frac{1}{c_c} - 1 \right]^2$ $h_{conc} = \frac{0.6794^2}{2 \times 9.81} \left[\frac{1}{0.62} - 1 \right]^2$	1	
		$H_{\rm conc} = 0.0088277 \text{ m}$	_	

Model Answer: Winter- 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Que. No. Q. 3	Sub. Que. f) Ans.	Define the following terms: i) Wetted area ii) Wetted perimeter iii) Hydraulic mean depth iv) Open channel flow. Wetted area- It is wetted cross sectional area of flow section of the channel Wetted perimeter — It is length of channel boundary in contact with the flowing water / liquid at any section. OR It is perimeter of the section getting wet during the flow hydraulic mean depth — it is the ratio of wetted area to wetted perimeter. Open channel flow- It is defined as a passage in which liquid flows with its upper surface exposed to atmosphere.	Marks 1 1 1 1	

Model Answer: Winter- 2018

	G 1			
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4		Attempt any FOUR of the following:		(16)
	a)	Define most economical channel section and state the conditions		
	Ang	for a trapezoidal section to be most economical.		
	Ans.	Most economical channel section –		
		A channel section is considered to be the most economical when it can		
		pass a maximum discharge for a given cross sectional area, resistance		
		coefficient and bottom slope. Or		
		The most economical channel section is the one which gives	2	
		maximum discharge for a given amount of excavation.		
		Conditions for a trapezoidal section –		4
		1. Half of the top = Length of the sloping side		
		$\frac{b+2ny}{2} = y\sqrt{n^2+1}$	1 Mark	
		$\frac{1}{2} = y\sqrt{n^2 + 1}$	each	
		b = bottom width, side slope 1 vertical to n horizontal, y= depth of		
		flow 2. Hydraulic Radius = R = y / 2		
		2. Trydraune Radius – R – y / 2		
	b)	A rectangular channel 6 m wide carries water at a rate of 10		
	,	m ³ /sec. calculate the slope required to maintain a depth of 1.5 m.		
		A rectangular channel section		
	Ans.	b= 6m		
		$Q = 10 \text{ m}^3/\text{sec}$		
		y = 1.5 m		
		slope = ?		
		P = b + y + y = 9 m	1	
		$A = b \times y = 6 \times 1.5 = 9 \text{ m}^2$	1	4
		R = A/P = 9/9 = 1		
		Q = A. V	1	
		$V = C\sqrt{RS}$		
		Assume $C = 60$		
		$10 = 9 \times 60 \sqrt{1 \times S}$	1	
		$0.0185 = \sqrt{S}$		
		S = 0.0003422 or 1 in 2916	1	
		(Note: If students assume suitable value of C, appropriate marks		
		should be given)		
]	

Model Answer: Winter- 2018

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	c)	Explain the phenomenon of hydraulic jump and its occurance in		
		field.		
	Ans.	Hydraulic Jump and its occurrence in the field:		
		Hydraulic jump is defined as sudden and turbulent passage of water		
		from super critical state to subcritical state. It is rapidly varied flow.		
		It occurs where there is change in depth of flow from rapid to tranquil	1	
		state is in abrupt manner over a relatively short distance.		
		The flow in hydraulic jump is accompanied by the formation of		
		turbulent rollers and there is dissipation o f energy.	1	4
		Occurrence-	Mark	
		1. In a canal below a regulating sluice	each	
		2. At the foot of spillway	(Any	
		3. Where steep channel bottom slope suddenly changes to flat slope	two)	
		Hydraulic jump		
		Depth greater than critical Depth less than critical	1	
		Subcritical flow		
		The state of the s		
	d)	i) Define Froud's number and state its significance.		
		ii) Write chezy's equation and Manning's equation used for		
		determination of velocity of flow through open channel.		
	Ans.	i) Froud's number- It is defined as the square root of the ratio of		
	AIIS.	Inertia force and gravity force.		
		$F_r = \frac{v}{\sqrt{gD}}$	1	
		Where, $v =$ mean velocity of flow $g =$ Gravitational acceleration		
		D = Hydraulic depth		4
		Significance-		
		If Fr > 1 It is supercritical force		
		If $Fr = 1$ It is critical flow	1	
		If $Fr < 1$ It is subcritical force	4	
		Frouds number is used to identify the type of flow		
		ii) Chezy's equation		
		$V = C\sqrt{RS}$	1	
		C = Chezy's constant $R = hydraulic mean depth$	1	
		S = bed slope		
		Manning's equation		
		$V = \frac{1}{N} \times R^{2/3} \times S^{1/2}$		
		N = Manning's constant $R = hydraulic radius S = bed slope$	1	

Model Answer: Winter- 2018

Sub. Code: 17421 **Subject: Hydraulics**

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	e) Ans.	 Explain the working of venturimeter with neat sketch. Venturimeter is practical application of Bernoulli's theorem. It is an instrument used to measure discharge in a pipeline, generally permanently fixed in pipe line. It consists of three parts a) Convergent Cone b) Throat c) Divergent Cone Qactual = A1A2/√A1-A22/√A2-A22/√A2 × √2gh h = shows pressure difference between inlet and throat Working: 1) The Venturimeter consist of a short converging tube leading to a cylindrical portion called throat. 2) The angle of convergent cone is 21° and the angle of divergent cone is from 7° to 15°. 3) The angle of divergent cone is smaller because when water is passing through throat, its velocity is more, since area of throat is less. 4) As this water passing through diversion cone there is chance of separation of fluid flow from boundary of diversion cone causing cavitation. 	2	Marks
		5) The pressure difference from section 1 and section 2 is measured by U-tube manometer. 6) The axis of Venturimeter may be horizontal or vertical or incline. CONVERGING THROAT DIVERGING PIEW MAIN FIFE PIEW PIEW FIG. Fig: Venturimeter	2	4

Model Answer: Winter- 2018

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
-		Model Answers A sharp edged orifice has a diameter of 25 mm and coefficient of velocity and coefficient of contraction are 0.98 and 0.62 respectively. The jet drops 1 m in horizontal distance of 2.5 m. Determine the flow in m³/sec and head over the orifice. $C_c = 0.62 C_v = 0.98 d_1 = 25 \text{ mm} y = 1 \text{ m} x = 2.5 \text{ m}$ $C_v = \frac{x}{\sqrt{4yH}}$ 0.98 $C_V = \frac{x}{\sqrt{4yH}}$ $0.98 = \frac{2.5}{\sqrt{4 \times 1 \times H}}$ $\sqrt{4H} = 2.55$ Squaring on both sides $4H = 6.5077$ $H = 1.626 \text{ m} = \text{Head over the orifice}$ $C_d = C_c \times C_v$ $C_d = 0.98 \times 0.62 = 0.6076$ Actual discharge = $C_d \times \text{Theorotical discharge}$ $= C_d \times \text{Area of orifice} \times \sqrt{2gH}$ $= 0.60 \times \frac{\pi}{4} \times (0.025)^2 \times \sqrt{2 \times 9.81 \times 1.626}$ $Q = 0.0016837 \text{ m}^3/\text{sec}$	Marks 1 1 1	

Model Answer: Winter- 2018

Subject: Hydraulics

Que.	Sub.		37.	Total
No.	Que.	Model Answers	Marks	Marks
Q. 5	a)	Attempt any FOUR of the following: A reservoir has catchment area of 20 km². The intensity of maximum rainfall over the catchment area is 2.5 cm/hr, 40% of which flows to the reservoir over the weir .Using Francis formula, Find length of weir. The head over the weir does not exceed 80		(16)
	Ans.	cm. Area = 20 km^2 = $20 \text{ x} 10^6 \text{ m}^2$ Discharge = $(20 \text{ x} 10^6 \text{ x} 2.5) / (100 \text{x} 60 \text{x} 60)$ = $138.89 \text{ m}^3/\text{s}$ Discharge over weir $40\% = 40/100 \text{ x} 138.89$ = $55.55 \text{ m}^3/\text{s}$ We know	1	4
		$Q = 1.84 \times (L - 0.1 n H)H^{\frac{3}{2}}$ $55.55 = 1.84 \times (L - 0.1 \times 2 \times 0.8) \times 0.8^{\frac{3}{2}}$ $55.55 = 1.84 \times (L - 0.16) \times 0.715$ $42.22 = (L - 0.16)$ $L = 42.38 \text{m}$	2	
	L)	Sketch and describe cup type current meter.		
	b) Ans.	Fish tail Wire to connect to counter Direction of flow Cups Vertical axis Frame Counter weight 5 kg (Note: 1 mark for sketch and 1 mark for labeling.)	2	
		 Working: In a cup type current meter the wheel or revolving element has the form of a series of conical cups, mounted on a spindle. Spindle is held vertical at right angle to the direction of flow. Current meter is used to find out velocity of water. Current meter consist of a wheel containing blades on cups. These cups are vertically immersed in stream of water. The thrust exerted by water on the cups. The number of revolutions of the wheel per unit time is proportional to the velocity of flow. The revolution counter operated by dry cell. The counter is calibrated or a calibration curve is provided to read velocity. 	2	4

Model Answer: Winter- 2018

Subject: Hydraulics

	1		T	·
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	c)	Determine the discharge through 60° triangular notch in m³/sec		
	Ans.	under the head of 0.16 m. If cd = 0.6.		
		$\Theta = 60^{\circ}$		
		H = 0.16		
		$C_d = 0.6$		
		$Q = \frac{8}{15} c_d \sqrt{2g} \tan \frac{\Theta}{2} H^{5/2}$	2	
		$Q = \frac{8}{15} \times 0.6 \times \sqrt{2 \times 9.81} \times \tan \frac{60}{2} \times 0.16^{5/2}$	2	4
		$Q = 8.380 \times 10^{-3} \text{ m}^3/\text{sec}$		
	d)	A centrifugal pump has 70% efficiency. It is used to deliver 25		
	u)	lit/sec of water a static head of 17 m. The delivery and Suction		
		pipe together are 90 m long and are 100 mm diameter and f= 0.04 for both pipes. Calculate the power of pump.		
	Ans.	$Q = 25 \text{ lit/sec} = 25 \times 10^{-3} \text{ m}^3/\text{sec}$		
		$\eta = 70\%$ $f = 0.04$		
		D = 0.1 m		
		H = 17		
		$velocity = \frac{Q}{A}$		
		$velocity = \frac{25 \times 10^{-3}}{\frac{\pi}{4} \times (0.1)^2}$		
		V = 3.183 m/sec		
		Head loss due to friction $\int lv^2$	1	
		$h_f = \frac{f v}{2gD}$		
		$h_f = \frac{0.04 \times 90 \times 3.183^{\ 2}}{2 \times 9.81 \times 0.1}$		
		$h_f = 18.59 \text{ m}$		
		Total manometric head = Hm = 17 +18.59	1	
		= 35.59 m		

Model Answer: Winter- 2018

_	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	d)	$P = \frac{\gamma_w Q H_m}{\eta}$ $P = \frac{9810 \times 25 \times 10^{-3} \times 35.59}{0.70}$ $P = 12469.21 \text{ watt} = 12.469 \text{ kW}$ OR If sunction head is considered $h = \frac{v^2}{2g} = \frac{3.183^2}{2 \times 9.81} = 0.516 m$ $Total \text{ manometric head} = \text{Hm} = 17 + 18.59 + 0.516$ $= 36.106 \text{ m}$ $P = \frac{9810 \times 25 \times 10^{-3} \times 36.106}{0.70}$ $P = 12649.99 \text{ Watt} = 12.649 \text{ kW}$ (Note- if students consider minor losses = 10% of major loss, then appropriate marks should be given.)	1	4
	e) Ans.	Enlist any four component parts of centrifugal pump with their function. The following are the main component parts of centrifugal pump. 1. Impeller 2. Casing 3. Suction pipe with a foot valve and strainer 4. Deliver pipe 1. Impeller: the rotating part of the centrifugal pump is called impeller. It consists of series of backward curved vanes. The impeller is mounted on a shaft which is connected to the shaft of an electric motor. 2. Casing: It is as air tight passage surrounding the impeller and is designed in such a way that the kinetic energy of water discharged at the outlet of the impeller is converted into pressure energy before the casing and enters the delivery pipe. 3. Suction pipe with a foot valve and a strainer: A foot valve which is a non- return valve or one any type of valve is fitted at the lower end of the suction pipe. The foot valve opens only in the upward direction. A strainer is also fitted at the lower end of the suction pipe. 4. Delivery pipe: A pipe whose one end is connected to the outlet of the pump and other delivers the water at the required height is known as delivery pipe.	2	4

Model Answer: Winter- 2018

Subject: Hydraulics

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
Q. 5	f)	Define: Turbine and state its necessity and types.		
	Ans.	<u>Turbine-</u>		
		A turbine is defined as machine that converts hydraulic energy into	1	
		mechanical energy.		
		Necessity-		
		Turbines are quite essential to convert water power into mechanical	1	4
		power . Mechanical power further converted into electric power using		
		generator. Hydroelectric project provide cheap electric power.		
		Types- 1. Francis Turbine		
		2. Pelton wheel	2	
		3. Kaplan Turbine.		
		5. Kapian Furome.		

Model Answer: Winter- 2018

Sub. Code: 17421 Subject: Hydraulics

Que.	Sub.	Model Answers	Marks	Total
No. Q.6	Que.	Attempt any TWO of the following:		Marks (16)
Q.	a)	Explain construction and working of Bourdon's pressure gauge		(20)
		with a neat sketch.		
	Ans.			
		Scale		
		Scale		
		Bourdon		
		tube		
		Spring	4	
		Pinion Adjustable Link		
		Sector		
		Segment lever		
		Pivot		
		Stop		
		Socket		
		www.InstrumentationToday.com		
		Bourdon Tube Pressure Gauge		8
		(Note: 2 marks for sketch and 2 marks for labeling.)		
		Construction and Working:		
		Bourdon tube pressure gauge is used to measure high pressure. It		
		consists of tube as shown in fig. having elliptical cross section. This tube is called as Bourdons Tube. One end of this tube is connected the	4	
		point whose pressure is to be measured and other end free. When fluid	4	
		enters in the tube elliptical cross section of tube becomes circular. Due to this the free end of tube shifts outward. This motion is transferred		
		through link and pointer arrangement. The pointer moves over a		
		calibrated scale, which directly indicates the pressure in terms of N/m ²		
		or m head of mercury.		
		As the pressure in the case containing the bourdon tube is usually atmospheric, the pointer indicates gauge pressure.		
		and points markets gauge pressure.		

Model Answer: Winter- 2018

Subject: Hydraulics

Que.	Sub.	Model Answers	Marks	Total
No.	Que. b)	Two reservoirs are connected by siphon pipe, the vertex of which	WICHKS	Marks
Q.6	D)			
		is 2 m above the level of water in the higher reservoir. The length		
		of pipe from inlet to vertex is 600 m and from vertex to outlet is		
		800 m. The pipe diameter is 1000 mm. If the pressure at the vertex		
		is 2.5 m of water absolute. Find the discharge and level difference		
		between the reservoir. Take $f = 0.04$. The pressure is 10.33 m of		
	A	water absolute.		
	Ans.	Pressure at vertex 2.5 m water absolute = $2.5 - 10.33 = -7.83$ m gauge Applying Bernoulli's equation between P and C $v^2 = 0.04 \times 600 \times v^2$	1	8
		$0 = -7.83 + 2 + \frac{v}{2g} + \frac{3.61 \times 366 \times v}{2g}$ $7.83 - 2 = \frac{v^2}{2g} + \frac{24 v^2}{2g}$ $5.83 = \frac{25 v^2}{2g}$ $\frac{5.83 \times 2 \times 9.81}{25} = v^2$	1	
		$4.575 = v^2$	1	
		V = 2.138 m/s	1	
		Considering all losses	1	
		$H = \frac{flv^2}{2gD} + \frac{v^2}{2g}$	1	
		$H = \frac{0.04 \times 1400 \times 2.138^2}{2 \times 9.81 \times 1} + \frac{1^2}{2 \times 9.81}$		
		H = 13.05 + 0.05 = 13.10 m	1	
		Discharge = $Q = A.V$	1	
		$Q = \frac{\pi}{4} \times 1^2 \times 2.138$	٠	
		$Q = 1.68 \text{ m}^3/\text{s}$	1	

Model Answer: Winter- 2018

Subject: Hydraulics

Que.	Sub.	3.6 1.1 A	N# 1	Total
No.	Que.	Model Answers	Marks	Marks
Q.6	c) Ans.	Design a section of an unlined channel to carry a discharge of 6 m^3 /sec with bed slope of 1 to 3600 and side slope 1.5 H :1 V . The average velocity of flow is not to exceed 0.667m/s. Take N = 0.025. Given, $Q = 6 m^3$ /sec $V = 0.667 m/s$ $N = 1.5/1$		
		We know Q = A.V $6 = A \times 0.667$ $A = 9 \text{ m}^2$ But, Area of trapezoidal A = bd + nd ² $9 = d(b + nd) \dots (1)$	1	
		Now, We know Manning's equation $V = \frac{1}{N} R^{\frac{2}{3}} S^{\frac{1}{2}}$	1	
		$0.667 = \frac{1}{0.025} \times R^{\frac{2}{3}} \times (\frac{1}{3600})^{\frac{1}{2}}$ $R^{\frac{2}{3}} = 1$	1	
		R = 1 But,		
		$R = \frac{A}{P}$ $1 = \frac{9}{P}$		
		P = 9 But, P = $b + 2d\sqrt{1 + n^2}$ 9 = $b + 2d\sqrt{1 + 1.5^2}$	1	
		9 = b + 3.6d b = 9 - 3.6d(2)	1	
		Putting value of b from equation 2 in equation 1 d(9-3.6d+1.5d) = 9 d(9-2.1 d) = 9	1	
		$9d - 2.1 d^{2} = 9$ $2.1d^{2} - 9d + 9 = 0$ $d - 9 \pm \sqrt{9^{2} - 4 \times 2.1 \times 9}$	1	
		$d = \frac{2 \times 2.1}{2 \times 2.1}$ $d = 2.68 \text{ m} \text{or } d = 1.595$ But if we put $d = 2.68$ in equation 2 becomes negative $d = 1.595$ m		
		$b = 1.8 \times 1.595 = 3.25 \text{m}$	1	

Model Answer: Winter- 2018

No. Que. Model Aliswers Mark Q.6 c) OR If student consider the section as most economical then, Sloping side = $\frac{1}{2}$ x Top width and R = $\frac{d}{2}$ $\frac{d\sqrt{1+n^2}}{d\sqrt{1+1.5^2}} = \frac{b+2nd}{2}$ 1.8d = $\frac{b+3d}{2}$ 1.8d = $\frac{b+3d}{2}$ 1 at $\frac{b+3d}{2}$ 2 at $\frac{b+3d}{2}$ 3 at $\frac{b+3d}{2}$ 4 at $\frac{b+3d}{2}$ 5 at $\frac{b+3d}{2}$ 6 at $\frac{b+3d}{2}$ 7 at $\frac{b+3d}{2}$ 8 at $\frac{b+3d}{2}$
Applying Manning's formula $V = \frac{1}{N}R^{\frac{2}{3}}S^{\frac{1}{2}}$ $0.667 = \frac{1}{0.025} \times \frac{d^{\frac{2}{3}}}{2} \times (\frac{1}{3600})^{\frac{1}{2}}$ $\frac{0.667 \times 0.025 \times 1.58}{0.016} = d^{\frac{2}{3}}$ 1 $1.654 = d^{\frac{2}{3}}$ $d = 2.12 \qquad b = 1.272$ (Note: Base width to depth ratio is not given in numerical therefore students may solve the problem by considering most economical channel section. Consider this and give appropriate marks.)