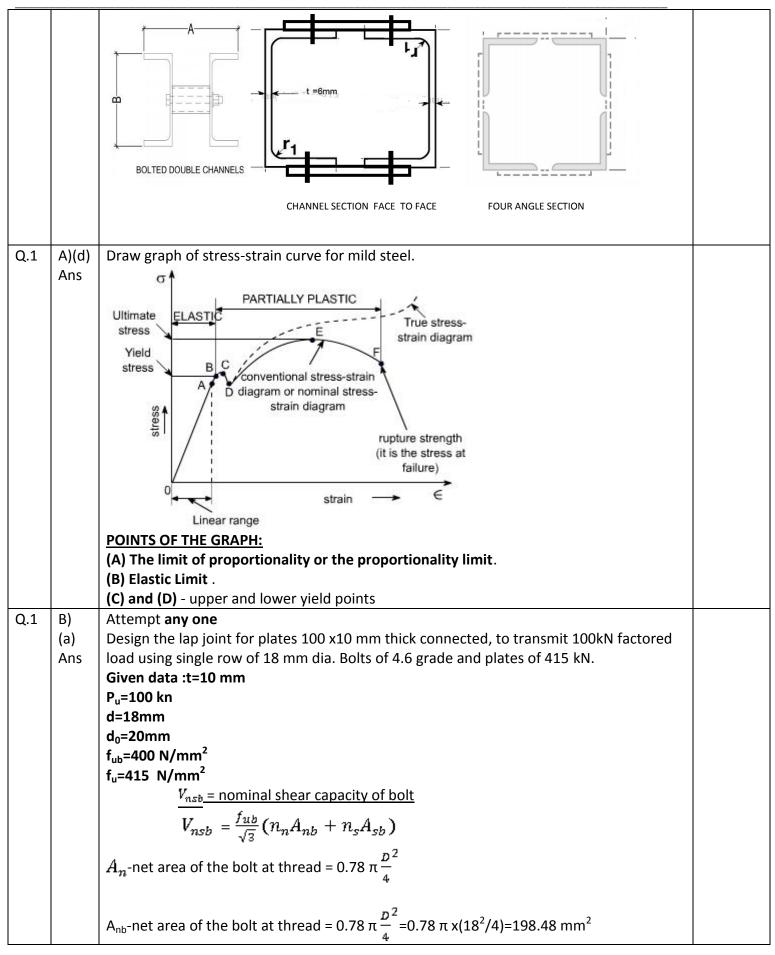


SUMMER- 18 EXAMINATION

Subject Name: DESIGN OF STEEL STRUCTURE Model Answer

Important Instructions to examiners:

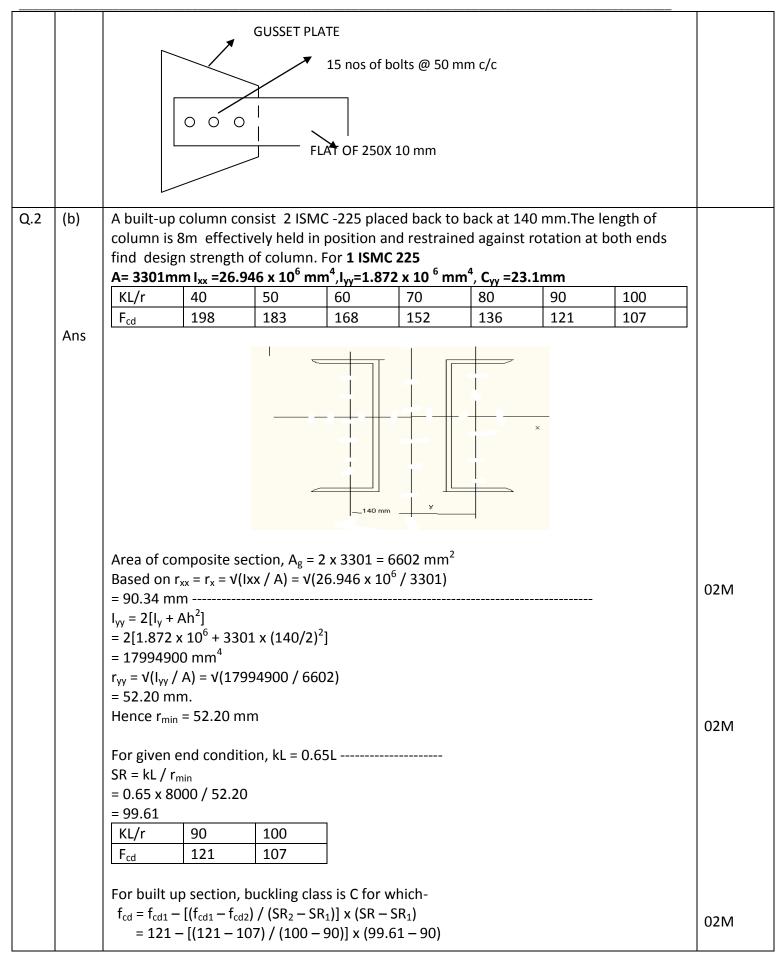
1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.


Subject Code:

17505

- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answers	Marking	
No.	Q. N.		Scheme	
Q.1	A)	Attempt any THREE of the following:		
	(a)	State the full form of ISMB,ISHB,ISJC,ISMT		
	Ans	ISMB-Indian Standard Medium Beam		
		ISHB- Indian Standard Heavy Beam	01 M for	
		ISJC- Indian Standard Junior Channel	each	
		ISMT- Indian Standard Slit Medium Weight Tee Bars		
Q.1	A)b)	State any four types of load to which structures are subjected along with respective		
		relevant codes.		
	Ans	1.DEAD LOADIS 875-PART-1 -1987	01 M for	
		2. LIVE LOAD IS 875-PART-2 -1987	each	
		3. WIND LOAD IS 875-PART-3 -1987		
		4. SNOW LOAD IS 875-PART-4 -1987.		
		5.EARTHQUAKE LOADIS 1893-2002		
Q.1	A)(c)	Draw any four sketches of section used as tension member.		
	Ans			
		$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1 M each (any four)	
		ANGLE SECTION I-SECTION CHANNEL SECTION		

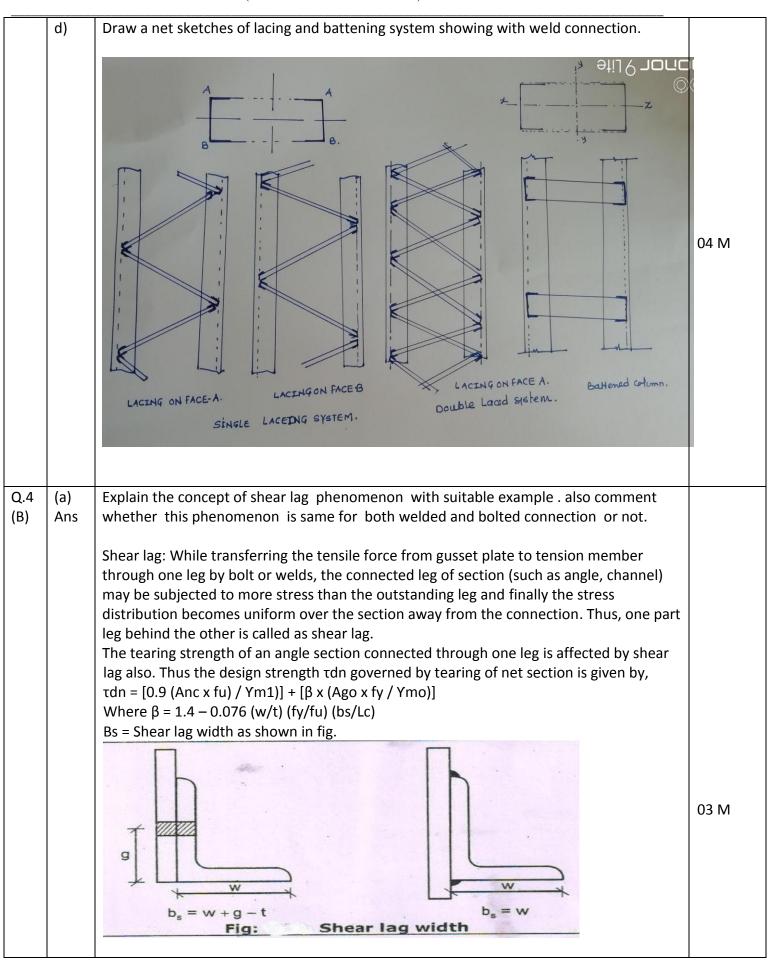


		$V_{nsb} = \frac{f_{ub}}{\sqrt{2}} (n_n A_{nb} + n_s A_{sb}) = (400 \times 1 \times 198.48) / 1.732$	
		$\sqrt{3} \left(\frac{n_n n_n b}{\sqrt{3}} + \frac{n_s n_s b}{\sqrt{3}} \right)^{-(4000000000000000000000000000000000000$	02 M
		(i) Shear capacity of bearing bolts (V _{dsb}) $V_{dsb} = \frac{V_{nsb}}{y_{mb}}$ Where, y_{mb} = partial safety factor of bolt <u>Shear capacity of bearing bolts (Vdsb) =45.36 /1.25 =36.669 kN</u> ii) Nos. of bolt = factored load / bolt value =100/36.69 = 2.72 nos. =3 nos. iii) to calculate pitch Tdn = $\frac{0.9 \text{ fu} (P - d_0) \text{ t}}{\gamma m_b}$ 33.36x1000=0.9x415(P-20)X10/1.25 P=22.7 P_min=2.5xd =2.5x 18=45mm iv) to calculate nominal bearing strength of bolt. Vnpb = 2.5 Kb * d * t *fu e = 1.5 x d_0=1.5 x20=30mm k_{b1}=e/3 d_0=0.5 k_{b2} = (P/3 d_0)-0.25 = 0.5 k_{b3} = f_{ub/} f_u=400/415 = 0.96 k_{b4}=1 (whichever is small) k_b=0.5 iv)nominal bearing strength of bolt =2.5 x0.5x18x20x415 =93.375 kN design bearing strength of bolt = V_{npb}/y_{mb}=93.375/1.25 =74.700 kN > 36.669 kN	02M
Q.1	B)(b) Ans	 Write down the step-by-step design procedure of angle purlin as per the IS 800-2007 1.Angle section are unsymmetrical about both the axes . angle section can be used as a purlin . 2. angle section can be used as a purlin provided the slope of the roof truss s is less than 30⁰ 	02 M
		 Following procedure is use for design of angle purlin. 1. The gravity loads and wind load are determined. Both the load are assume to be normal to roof truss. 2. The maximum bending moment is computed by wl²/10 or Wl/10 Where w –unfactored uniformly distributed load, W unfactored concentrated load at centroid, L span of purlin. 3. The modulus of section required is calculated by Z=M/(1.33 X 0.66Xfy), where fy – yield stress. 4. A trial section of angle purlin is arrived at by assuming the depth of the angle section at 1/45 of the span and width of the angle section as 1/60 of the span. The depth and width must not be less than specified values to ensure that the 	02 M 02 M

	1		T
		5. A suitable angle section is selected from IS handbook for the calculated leg length	
		of angle section .the modulus of section provided should be more than modulus	
		of section calculated in step no.3.	
Q.2		Attempt any two	
	(a)	A flat 250 x 10 mm is connected to gusset plate using 20mm dia.bolts of 4.6 grade design	
		lap joint and draw neat sketch of joint designed.	
		Nominal daim. Of bolt = 20mm	
	Ans	A _{nb} -net area of the bolt at thread = $0.78 \pi \frac{D^2}{4} = 0.78 \pi x (20^2/4) = 245.04 \text{ mm}^2$	
		For bolts of grade 4.6	
		f_{ub} =400 N/mm ²	
		$f_u=415 \text{ N/mm}^2$	
		i)find design shearing strength of bolt	
		V_{nsb} = nominal shear capacity of bolt	
		$V_{nsb} = \frac{f_{ub}}{\sqrt{3}} (n_n A_{nb} + n_s A_{sb}) = (400 \times 1 \times 245.04) / 1.732 = 56.59 \text{ kN}$	02 M
		Shear capacity of bearing bolts (V _{dsb})	
		$V_{dsb} = rac{V_{nsb}}{V_{mb}}$	
		5 110	
		Where, y_{mb} = partial safety factor of bolt	
		Shear capacity of bearing bolts (Vdsb) =56.59 /1.25 =45.272 kN	02 M
		ii) to calculate nominal bearing strength of bolt.	
		Vnpb = 2.5 Kb * d * t *fu	
		e = 2 x d ₀ =2 x20=40mm , P=2.5 D =2.5 X 20 =50 mm	
		k _{b1} =e/3 d ₀ =0.606	
		k _{b2} =(P/3 d ₀)-0.25 =0.507	
		$k_{b3} = f_{ub/} f_u = 400/415 = 0.96$	
		k _{b4} =1	
		(whichever is small)	
		<u>k_b =0.507</u>	
		ii)nominal bearing strength of bolt =2.5 x0.507x20x10x415 =103.93 kN	02M
		design bearing strength of bolt = V _{npb /} y _{mb} =103.97/1.25 =83.148 kN	
		(therefore bolt value =45.271 kN)	
		iii)Full strength of member =0.9 x(f_{u} / y_m)x area of plan	01 M
		= 0.9 x(410/1.25)x(250-1x22)x10	
		=673.05 kN	
		iv) Nos of bolts required = full strength of bolt /bolt value	
		= 673.056 /45.271 = 15 nos.	01 M

		= 107.546 mPa			
		Design compressive strength			
		$P_d = f_{cd} \times A_g$	02M		
		= 107.546 x 6602			
		= 710018 N = 770.018 kN			
Q.2	(c)	An ISMB 400 @ 604.3 N/m is used as simply supported beam of span 4.0 M. The			
	Ans	compression flange of the beam is laterally supported throughout the span. Determine			
		design flexural strength working udl on the beam per meter span.			
		Take Zp = 1176.18×10^3 mm ³ , Ymo = 1.1, β b = 1.0, fy = 250 mPa.			
		Given L = 4 m = 4000 mm Zxx = Zp/s = 1176.18 x 103 / 1.14 = 1031.74 x 10 ³ mm ³			
		$12xx - 2p/s - 1176.18 \times 1057 1.14 - 1051.74 \times 10^{-1001}$ $1xx = Zxx \times ymax = 1031.74 \times 10^{3} \times 400/2 = 206.35 \times 10^{6} \text{ mm}^{4}$			
		Assuming udl = 'w' kN/m.			
		i.To calculate design flexural strength, Md			
		$Md = (\beta b \times Zp \times fy) / Ymo = (1 \times 1176.18 \times 103 \times 250) / 1.10$			
		= 267.27 x 106 N-mm = 267.27 kN-m	04 M		
		ii. $M_u = wu \times L^2/8 = w_u \times 4^2/8 = 2 w_u$ kN/m			
		iii. Equating Md and Mu			
		267.27 = 2wu			
		$w_u = 131.135 \text{ kN/m.}$			
		w = wu/Yf = 131.135/1.5 = 87.42 kN/m.	04 M		
Q.3	(2)	Attempt any four			
	 (a) Define bolt value, pitch, gauge and edge distance in bolted joint. Ans i)bolt value:-is defined as the overall strength of fastener for design purpose and it is 				
		taken as minimum of Shearing strength and Bearing strength of bolt.	1M		
		ii)pitch,			
		i) Pitch: it is the centre to centre distance of the bolts in a row, measured along the			
		direction of load.			
		iii)gauge:-It is a distance between the two consecutive bolts of adjacent rows and it is	1M		
		measured at right angle to the direction of load.			
		iv)edge distance			
		iii) Edge distance: it is the distance from centre of bolt hole to the nearest edge of plate	1M		
		measured perpendicular to the direction of load.			
	b)				
	Ans	State two types of welded joints and draw sketch of any one.	02 M		
	/ 115	Types Of Welded Joints	02 101		
		1.Butt weld			
		2.Fillet weld			
			02 M		
			(any		
			one)		
		(a) Butt welds s(b) Fillet weld			
		Draw sketch of any one.			

Q.3	(c)	\M/ritath	a specification of IS code for design a	of angle nurlin	
Q.3	(c) Apc				
	Ans				
		purlin .	saction can be used as a nurlin area	ided the clone of the reaf truce c is less then	
		2. angle 30°	section can be used as a purin prov	ided the slope of the roof truss s is less than	
		30			04.14
		Followin	ng procedure is use for design of ang	lo purlin	04 M
				-	
			ormal to roof truss.	etermined. Both the load are assume to be	
			he maximum bending moment is co	mouted $hywl^2/10 \text{ or }Wl/10$	
			_	ibuted load, W unfactored concentrated	
			bad at centroid, L span of purlin.		
			· · ·	lculated by Z=M/(1.33 X 0.66Xfy),where fy –	
			ield stress.	$\frac{1}{10000000000000000000000000000000000$	
		-		d at by assuming the depth of the angle	
				of the angle section as 1/60 of the span.	
			•	than specified values to ensure that the	
			eflection are not excessive.	than specified values to ensure that the	
		-		om IS handbook for the calculated leg length	
				on provided should be more than modulus	
			f section calculated in step no.3.	on provided should be more than modulus	
Q.3	(d)		y eight types of steel roof trusses wi	ith their spans	Any eight
Q.3	Ans	Sr.no	types of steel roof trusses		01 M for
	Alls			spans .	each
		1. 2.	King Post Truss Queen Post Truss	6 meters	Cacil
			-	6-9meters	
		3.	Howe- triangle 4-pannel –	6-15 meters	
		4. 5	Howe- triangle 6-pannel –	12-24 m	
		5.	Fink or French truss	12-18m	
		6.	Compound French truss	20-30 m	
		7.	Pratt Truss –	16-30 meters	
		8	Fan Truss –	10-15 meters	
		9.	North Light Roof Truss	8-10 meters.	
Q.3	(e)		e design steps for wind load in steel		
	Ans	•	steps to calculate wind load on ro	of truss as per IS-875-1987:	
		•	n wind speed (Vz)=k1 k2 k3 Vb		
			efficient-(k1)	-	4 M
			n ,Height And Structure Size Factor, I	<2	
			graphy Factor. k3		
			wind speed -Vb		
		-	pressure (Pz)=0.6 (Vz)2(N/m ²)		
			oad on roof		
		• •	- Cpi)Apz		
			efficient of external wind pressure		
			fficient of internal wind pressure		
			ce area of structural element in (m2)		
		-	gn wind pressure (N/m²)		
Q.4		Attempt	any three		



	(a)	Define effective length and slenderness ratio for column		
	Ans	Effective length: this is the length of column in a buckled condition between two	02M	
		successive points of contraflexure.		
		slenderness ratio: It is defined as the ratio of effective length to least radius of gyration	02M	
		of the section.		
Q.4	(b)	Draw a neat sketch of a)V-butt welded joint b) lap bolted joint		
	Ans			
			02M	
		Butt weld		
		Dura set di Serie M	02M	
		Butt weld, single-V		
		0 0 0 0		
		0 0 0		
		0 0		
		Single bolted lap joint Double bolted lap joint		
Q.4	(c)	State general requirements of lacing as per IS code		
	Ans			

	General requirements for lacing as per IS-800.
	a) Members comprising two main components laced and tied, should where practicable,
	have a radius of gyration about the axis perpendicular to the plane of lacing not less
	than the radius of gyration about the axis parallel to the plane of lacing.
	(b)As far as practicable, the lacing system shall be uniform throughout the length of the
	column.
	c) Except for tie plates double laced systems and single laced systems on opposite sides
	of the main components shall not be combined with cross members (ties) perpendicular
	to the longitudinal axis of the strut, unless all forces resulting from deformation of the
	strut members are calculated and provided for in the design of lacing and its fastenings.
	d) Single laced systems, on opposite faces of the components being laced together shall
	preferably be in the same direction so that one is the shadow of the other, instead of
	being mutually opposed in direction.
	e) The effective slenderness ratio, (kl/r)e., of laced columns shall be taken as 1.05 times
	the (KI/ r)o, the actual maximum slenderness ratio, in order to account for shear
	deformation effects.
	f) Width of Lacing Bars In bolted/riveted construction, the minimum width of lacing bars
	shall be three times the nominal diameter of the end bolt rivet.
	g) Thickness of Lacing Bars The thickness of flat lacing bars shall not be less than one-
	fortieth of its effective length for single lacings and one-sixtieth of the effective length
	for double lacings. h) Rolled sections or tubes of equivalent strength may be permitted instead of flats, for
	lacings.
	i) Angle of Inclination: Lacing bars, whether in double. Or single systems, shall be
	inclined at an angle not less than 40° or more than 70° to the axis of the built-up
	member.
	j)The maximum spacing of lacing bars, whether connected by bolting, riveting or
welding	, shall also be such that the maximum slenderness ratio of the components of
the mai	n member, between consecutive lacing connections is not greater than 50 or 0.7
times t	he most unfavorable slenderness ratio of the member as a whole, whichever is
less, wh	nere al is the unsupported length of the individual member
	n lacing points, and r, is the minimum radius of gyration of the individual
	r being laced together.
-	re lacing bars are not lapped to form the connection to the components of the
	rs, they shall be so connected that there is no appreciable interruption in the
-	ation of the system.
	icing shall be proportioned to resist a total transverse shear, Vt, at any point in
	mber, equal to at least 2.5 percent of the axial force in the member and shall be
	equally among all transverse lacing systems in parallel planes.
m) For i	members carrying calculated bending stress due to eccentricity of loading,
م به به الم ما	end moments and/or lateral loading, the lacing shall be proportioned to resist
the actu	ual shear due to bending.
the acturn) The s	ual shear due to bending. slenderness ratio, Kl/r, of the lacing bars shall not exceed 145. In bolted/riveted
the acturn) The s	ual shear due to bending. Slenderness ratio, Kl/r, of the lacing bars shall not exceed 145. In bolted/riveted ction, the effective length of lacing bars for the determination of the design
the acturn) The s constru	ual shear due to bending. Slenderness ratio, KI/r, of the lacing bars shall not exceed 145. In bolted/riveted ction, the effective length of lacing bars for the determination of the design h shall be taken as the length between the inner end fastener of the bars for
the acturn) The s constru strength single la	ual shear due to bending. slenderness ratio, Kl/r, of the lacing bars shall not exceed 145. In bolted/riveted ction, the effective length of lacing bars for the determination of the design h shall be taken as the length between the inner end fastener of the bars for acing, and as 0.7 of this length for double lacings effectively connected at
the acturn) The sconstruction of the strength single la intersection of the strength single la intersection of the strength single la strength stre	ual shear due to bending. slenderness ratio, Kl/r, of the lacing bars shall not exceed 145. In bolted/riveted ction, the effective length of lacing bars for the determination of the design h shall be taken as the length between the inner end fastener of the bars for acing, and as 0.7 of this length for double lacings effectively connected at ctions. In welded construction, the effective lengths shall be taken as 0.7 times
the acturn) The sconstru strength single la intersection the dist	ual shear due to bending. slenderness ratio, Kl/r, of the lacing bars shall not exceed 145. In bolted/riveted ction, the effective length of lacing bars for the determination of the design h shall be taken as the length between the inner end fastener of the bars for acing, and as 0.7 of this length for double lacings effectively connected at ctions. In welded construction, the effective lengths shall be taken as 0.7 times ance between the inner ends of welds connecting the single lacing bars to the
the acturn) The sconstruction of the strength single la intersection of the strength single la intersection of the strength single la strength strength single la strength str	ual shear due to bending. slenderness ratio, Kl/r, of the lacing bars shall not exceed 145. In bolted/riveted ction, the effective length of lacing bars for the determination of the design h shall be taken as the length between the inner end fastener of the bars for acing, and as 0.7 of this length for double lacings effectively connected at ctions. In welded construction, the effective lengths shall be taken as 0.7 times ance between the inner ends of welds connecting the single lacing bars to the

		Comments : To maintain a uniform approach to both welded and bolted members, the	01 M
		same provisions for shear lag in bolted members were applied to welded members.	
Q.4	(B) (b)	Determine the design strength of single angle in tension member using ISA 80x50x8 mm.The longer leg is connected to gusset plate 10 mm thick by 5mm weld as shown in fig. for ISA Ag= 978 mm ² β = 1.18	
	Ans	5 MM WELD 110 MM LONG 80 MM	
		1. $T_{dg} = A_g \{f_y/y _{fn0T} = 970 \times 250 / 1.1 = 222.272 \text{ kN}$ 2. As it is a welde 50MM et 5 MM WELD 230 MM LONG $T_{dn} = 0.9 \times A_{nc} \{f_y/y_{m1}\} + \beta \times A_{go} \{f_y/y_{m0}\}$ $\beta = 1.4 - 0.076 \{w/t\} \{fy/fu\} \{bs/lc\}$ $\beta = 1.4 - 0.076 \{50/8\} \{250/410\} \{50/230\} = 1.192 > 0.7$ $< 0.9 \times (410 \times 1.1) / (250 \times 1.25) = 1.2988 \text{ therefore ok}$	01 M
		$T_{dn} = 0.9 x(80-4)x8x \{410/1.25\} + 1.274x(50-4)x8(\{250/1.10\} = 286.03 \text{ kN}T_{db} \text{ for gusset plate 10 mm thick}$ $T_{db} = A_{vg}\{f_{y}/(1.732xy_{m1})\} + 0.9xA_{tn} \{f_{u}/\gamma_{m1}\}$ $T_{db} = (50x10+230x10)x\{250/(1.732x1.1)\} + 0.9x80x10x \{410/1.25\}$	01 M
		$T_{db} = 367415.49 + 236160 = 603.575 \text{ kN}$	01 M
		T _{db} = 0.9x(50 x10+230 x10) {410/(1.732x1.25) } +(80 x10){250/ 1.1} T _{db} = 659.046 kN T _{db} for member ISA 80x50x8 is in relation with the thickness of gusset plate of 10 mm thickness	01 M
		Therefore $T_{db} = 659.046 \times 8 / 10 = 527.23 \text{ kN}$ $T_{db} = 603.575 \times 8 / 10 = 482.86 \text{ KN}$	01 M
		Therefore the strength of member is the least of 1. T_{dg} =222.272 kN 2. T_{dn} = 286.03 kN 3. T_{db} = 482.86 kN Therefore the strength of members is 222.272 kN	01.04
0 5		Therefore the strength of member is 222.272 kN	01 M
Q.5	(a)	Attempt any two Design a square slab base and concrete block for column section SC250 with two cover plates 300x25 mm carrying 3000 Kn axial Load . take M15 , tf = 17 mm , bf= 250 mm overall hight h = 300mm amd SBC= 300 kpa .	
	Ans	Given: SC 250, P = 3000 kN, SBC = 300 kPa, M15 – fck = 15 N/mm ² , $f_y = 250 \text{ mPa}$, $b_f = 250 \text{ mm}$, $t_f = 17 \text{ mm}$ $P_u = 3000 \times 1.5 = 4500 \text{ kN}$. Bearing area of base plate (A) = $P_u/(0.6f_{ck})$	
		For a square base plate Size of plate= $\sqrt{500000} = 707.106 \text{ mm}^2$	2M

L _p = 708 mm say L _p = 708 mm, B _p = 708 mm	
Larger projection a = $(L_p - D) / 2 = (708 - 350) / 2 = 179 \text{ mm}$ Smaller projection b = $(B_p - B) / 2 = (708 - 300) / 2 = 204 \text{ mm}$ Ultimate pressure from below on the base plate- W = P _u / $(L_p \times B_p) = 4500 \times 10^3 / (708 \times 708) = 8.97 \text{ N/mm}^2$	2M
Thickness of base plate $t_s = \sqrt{[2.5 x w x (a^2 - 0.3b^2) x Y_{mo} / f_y]} > t_f$	2M
$\overline{= \sqrt{[2.5 \times 8.97 \times (179^2 - 0.3 \times 204^2) \times 1.1 / 250]}} = 43.97 \text{ mm say 45 mm >1}$ $(t_f) \text{ Size of concrete I}$ $A_f = (P_u \times Y_{mo}) / \text{ SBC x } Y_f) = (4500 \times 1.1) / (300 \times 1.5) = 11 \text{ m}^2$	
$A_{f} = (P_{u} \times T_{mo}) / 3BC \times T_{f} = (4300 \times 1.1) / (300 \times 1.3) = 11 \text{ If } H_{F}$ For equal projection- $L_{f} = 3.31 \text{ m say } L_{f} = 3.3 \text{ m }, B_{f} = 3.3 \text{ m}$ Provide M15 concrete pedestal of size 3.3m x3.3 m Actual projection- $= (L_{f} - L_{p}) / 2 = (3300 - 708) / 2 = 1296 \text{ mm and}$ $= (B_{f} - B_{p}) / 2 = (3300 - 708) / 2 = 1296 \text{ mm}$ Considering 45 ⁰ angle of dispersion, Df = 1296 mm.	1M
3.3m	1М

			1
Q.5	(b)	Calculate DL and LL per panel for steel roof truss having span =20 m panel points =10	
		spacing =4m rise =3m wt. of GI Sheets = 100 N/m^2 bracing =75 N/m ² wt. of purlin =150	
		N/m ²	
	Ans	Given: i) Unit wt. of roof covering(GI Sheets) = 100N/m ²	
		ii)Self-wt. of purlin = 150 N/m ²	
		iii)Wt. of bracing = 75 N/m ²	
		ii) Rise=3m	
		iii) Total no. of panels=10	
		iv) Span =20 m	
		a. Calculation of Dead load:	1M
		i. Self-weight of truss = $[(L/3) + 5] \times 10$	
		$= [(20/3) + 5] \times 10 = 116.67 \text{ N/m}^2$	
		ii.Unit weight of roof covering = 100 N/m^2	
		iii.Self-weight of purlin = 150 N/m^2	1M
		iv.Weight of bracing = 75 N/m ²	
		Hence Total Dead load per $m^2 = 116.6 + 100 + 150 + 75 = 441.66 \text{ N/m}^2$	1M
		Dead load per intermediate panel point = Dead load per $m^2 x$ plan area of roof per panel	1M
		pt. Dead load per intermediate panel point = 441.6 x 4 x (20/10) = 3532.8 N	
		Dead load per end panel point = 3532.8/2 = 1766.4 N	1M
			1M
		b. Calculation of Live load:	
		Angle of truss (θ) = tan ⁻¹ [3/(10)] = 16.69 ⁰	1M
		Live load on purlin = 750 – [(16.69 – 10) x 20]	1M
		= 616 N/m ² > 400 N/m ² Hence OK	
		Live load on truss = $(2/3) \times 616 = 410.67 \text{ N/m}^2$	
		Live load per intermediate panel point = Live load per $m^2 x$ plan area of roof per panel	
		point	
		Live load per intermediate panel point = 410.67 x 4 x (20/10) = 3285.36 N	
0 5	(0)	Live load per end panel point = 3285.36/2 = 1642.68 N	
Q.5	(c)	Explain the design procedure with formulae and meaning of each term in it to calculate panel point's live load and wind load for steel roof truss.	
	Anc	Live load:- IS 875 part-ii makes the following provisions for live loads for the design of	
	Ans	sheets and purlins.	
		Up to 10 [°] slope :0.75N/m ²	
		For more than 10° slope :0.75-0.02(θ -10) where, θ –slope of sheeting.	
		However, a minimum of 0.4 kN/ N/m ² live load should be consider in any case.	
		For the design of trusses the above live load may be reduced to 2/3.	
		The purlins and sheets should be checked to support a concentrated load of 0.9 KN.	
		Live load per intermediate panel point = Live load per $m^2 x$ plan area of roof per panel	
		point	4M
		wind load: 22 design steps to calculate wind load on roof truss as per IS-875-1987:	-+1VI
		1. Design wind speed (Vz)=k1 k2 k3 Vb	
		i. Risk Coefficient-(k1)	
		ii. Terrain ,Height And Structure Size Factor, k2	
		iii. Topography Factor. k3	

Q.6	(a) Ans	 iv. basic wind speed -Vb 2. wind pressure (Pz)=0.6 (Vz)2(N/m²) 3. wind load on roof F = (Cpe - Cpi)Apz Cpe - Coefficient of external wind pressure Cpi - Coefficient of internal wind pressure A - surface area of structural element in (m2) pz - design wind pressure (N/m²) Enlist any four components of plate girder and write their functions. 			
		components Function			
		a)web plate	Keep flanges at required distance.	01 M	
			Resist the shear in the beam.	each	
		b)flange plate	Provided to resist bending moment acting on the		
			beam by developing compressive force.		
		c)end posts or bearing stiffeners	Stiffeners are provided to safeguard the web		
		d)intermediate transverse stiffeners	against local buckling failure		
		e)longitudinal stiffeners			
		f)web splices	For providing additional length and strength.		
		g)flange splices			
Q.6	(b)	State the design steps for rolled steel be	am when it is laterally restrained		
	Ans	STEP NO.1 calculate max. Bending moment and shear force i.e. (M &V resp.) From factored load. STEP NO.2 OBTAINED SECTION MODULUS (Z_p) required.(Z_p) required.= $f_y \times M / \gamma_{mo} \gamma_{mo=1.1}$ STEP O.3 select suitable section so that (Z_p) provided .>(Z_p) required. step no.4 check the section classification from b/t _f and d/t _w step no.5 calculate design shear for web Vd = $f_y D t_w / 1.732 \gamma_{mo}$ check Vd > V AND V <0.6 Vd step no.6 calculate moment resisted by the section Md = $\beta_b (Z_p) f_{y/} \gamma_{mo} \beta_b = 1$ for plastic section and compact section $\beta_b = (Z_p) \text{ required. /}(Z_p) \text{ provided}$ for plastic section and compact section step no.7 check for deflection i.e maximum deflection of service load < permissible values given			
Q.6	(c)	Step no.8 check for web buckling.Draw a neat sketch showing the main tie member at support having free to slide			
	Ans	horizontally.			

		GUSSET PLATE	RAFTER IE MEMBER BASE PLATE	04 M	
Q.6	(d) Ans.	 State the effective length for a compressive member having end conditions are 1. Restrained against translation and free against rotation at both ends. 2. Restrained against translation and free against rotation at one end but roller support at other end. 			
		End conditions	effective length	02 M	
		1.Restrained against translation and free against rotation at both ends	1.0 L		
		 Restrained against translation and free against rotation at one end but roller support at other end. 	1.2 L	02 M	
Q.6	(e) Ans.	 State the classification of cross section of beams based on moment of Classification of c/s of beam based on moment – rotation behaviour 1. Class 1 – Plastic 2. Class 2 – Compact 3. Class 3 – Semi compact 4. Class 4 – Slender 		01 M for each	