SUMMER-18 EXAMINATION			
Subject Name: DESIGN OF STEEL STRUCTURE	Model Answer	Subject Code:	17505

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
Q. 1	A) (a) Ans	Attempt any THREE of the following: State the full form of ISMB,ISHB,ISJC,ISMT ISMB-Indian Standard Medium Beam ISHB- Indian Standard Heavy Beam ISJC- Indian Standard Junior Channel ISMT- Indian Standard Slit Medium Weight Tee Bars	01 M for each
Q. 1	A)b) Ans	State any four types of load to which structures are subjected along with respective relevant codes. 1.DEAD LOAD ----IS 875-PART-1 -1987 2. LIVE LOAD -- IS 875-PART-2 -1987 3. WIND LOAD --- IS 875-PART-3-1987 4. SNOW LOAD --- IS 875-PART-4 -1987. 5.EARTHQUAKE LOAD ---IS 1893-2002	01 M for each
Q. 1	A)(c) Ans	Draw any four sketches of section used as tension member.	1 M each (any four)

		$\begin{aligned} V_{n s b}=\frac{f_{u b}}{\sqrt{3}}\left(n_{n} A_{n b}+n_{s} A_{s b}\right) & =(400 \times 1 \times 198.48) / 1.732 \\ & =45.36 \mathrm{kN} \end{aligned}$ (i) Shear capacity of bearing bolts $\left(V_{\mathrm{dsb}}\right)$ $V_{d s b}=\frac{V_{n s b}}{y_{m b}}$ Where, $y_{m b}=$ partial safety factor of bolt Shear capacity of bearing bolts (Vdsb) $=45.36 / 1.25=36.669 \mathrm{kN}$ ii) Nos. of bolt $=$ factored load $/$ bolt value $=100 / 36.69=2.72$ nos. $=3$ nos. iii) to calculate pitch $\begin{aligned} & \mathrm{Tdn}=\frac{0.9 \mathrm{fu}\left(\mathrm{P}-\mathrm{d}_{0}\right) \mathrm{t}}{\gamma \mathrm{~m}_{\mathrm{b}}} \\ & 33.36 \times 1000=0.9 \times 415(\mathrm{P}-20) \times 10 / 1.25 \\ & \mathrm{P}=22.7 \\ & \mathrm{P}_{\text {min }}=2.5 \times \mathrm{xd}=2.5 \times 18=45 \mathrm{~mm} \end{aligned}$ iv) to calculate nominal bearing strength of bolt. $\mathrm{Vnpb}=2.5 \mathrm{~Kb} * \mathrm{~d} * \mathrm{t} * \mathrm{fu}$ $\mathrm{e}=1.5 \times \mathrm{d}_{0}=\mathbf{1 . 5} \mathbf{x} \mathbf{2 0} \mathbf{= 3 0} \mathbf{m m}$ $k_{b 1}=e / 3 d_{0}=0.5$ $\mathrm{k}_{\mathrm{b} 2}=\left(\mathrm{P} / 3 \mathrm{~d}_{0}\right)-0.25=0.5$ $k_{b 3}=f_{u b /} f_{u}=400 / 415=0.96$ $k_{b 4}=1$ (whichever is small) $\underline{k}_{\underline{b}}=0.5$ iv)nominal bearing strength of bolt $=2.5 \times 0.5 \times 18 \times 20 \times 415=93.375 \mathrm{kN}$ design bearing strength of bolt $=\mathbf{V}_{\text {npb }} / \mathbf{Y m b}=93.375 / 1.25=74.700 \mathrm{kN}>36.669 \mathrm{kN}$	02 M 02M
			02M
Q. 1	B)(b) Ans	Write down the step-by-step design procedure of angle purlin as per the IS 800-2007 1.Angle section are unsymmetrical about both the axes . angle section can be used as a purlin. 2. angle section can be used as a purlin provided the slope of the roof truss s is less than 30^{0} Following procedure is use for design of angle purlin. 1. The gravity loads and wind load are determined. Both the load are assume to be normal to roof truss. 2. The maximum bending moment is computed by $\mathrm{wl}^{2} / 10$ or $\mathrm{WI} / 10$ Where w-unfactored uniformly distributed load, W unfactored concentrated load at centroid, L span of purlin. 3. The modulus of section required is calculated by $Z=M /(1.33 \times 0.66 X f y)$, where $\mathrm{fy}-$ yield stress. 4. A trial section of angle purlin is arrived at by assuming the depth of the angle section at $1 / 45$ of the span and width of the angle section as $1 / 60$ of the span. The depth and width must not be less than specified values to ensure that the deflection are not excessive.	02 M 02 M 02 M

Q. 2	(b)	A built-up column consist 2 ISMC -225 placed back to back at 140 mm . The length of column is 8 m effectively held in position and restrained against rotation at both ends find design strength of column. For 1 ISMC 225$\mathrm{A}=3301 \mathrm{~mm}_{\mathrm{xx}}=26.946 \times 10^{6} \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{yy}}=1.872 \times 10^{6} \mathrm{~mm}^{4}, \mathrm{C}_{\mathrm{yy}}=23.1 \mathrm{~mm}$							
		KL/r	40	50	60	70	80	90	100
		F_{cd}	198	183	168	152	136	121	107

Ans

Area of composite section, $\mathrm{A}_{\mathrm{g}}=2 \times 3301=6602 \mathrm{~mm}^{2}$
Based on $r_{x x}=r_{x}=V(1 x x / A)=V\left(26.946 \times 10^{6} / 3301\right)$
$=90.34 \mathrm{~mm}$
$\mathrm{I}_{\mathrm{yy}}=2\left[\mathrm{I}_{\mathrm{y}}+\mathrm{Ah}^{2}\right]$
$=2\left[1.872 \times 10^{6}+3301 \times(140 / 2)^{2}\right]$
$=17994900 \mathrm{~mm}^{4}$
$r_{y y}=V\left(l_{y y} / A\right)=V(17994900 / 6602)$
$=52.20 \mathrm{~mm}$.
Hence $r_{\text {min }}=52.20 \mathrm{~mm}$
For given end condition, $\mathrm{kL}=0.65 \mathrm{~L}$
$\mathrm{SR}=\mathrm{kL} / \mathrm{r}_{\text {min }}$
$=0.65 \times 8000 / 52.20$
$=99.61$

KL / r	90	100
$\mathrm{~F}_{\mathrm{cd}}$	121	107

For built up section, buckling class is C for which-

$$
\begin{aligned}
f_{c d} & =f_{c d 1}-\left[\left(f_{c d 1}-f_{c d 2}\right) /\left(S R_{2}-S R_{1}\right)\right] \times\left(S R-S R_{1}\right) \\
& =121-[(121-107) /(100-90)] \times(99.61-90)
\end{aligned}
$$

		$=107.546 \mathrm{mPa} .$ \qquad Design compressive strength $\begin{aligned} P_{d} & =f_{c d} \times A_{g} \\ & =107.546 \times 6602 \\ = & 110018 \mathrm{~N}=770.018 \mathrm{kN} . \end{aligned}$	02M
Q. 2	(c) Ans	An ISMB 400 @ $604.3 \mathrm{~N} / \mathrm{m}$ is used as simply supported beam of span 4.0 M . The compression flange of the beam is laterally supported throughout the span. Determine design flexural strength working udl on the beam per meter span. Take $\mathrm{Zp}=1176.18 \times 10^{3} \mathrm{~mm}^{3}, \mathrm{Ymo}=1.1, \beta b=1.0, \mathrm{fy}=250 \mathrm{mPa}$. Given $\mathrm{L}=4 \mathrm{~m}=4000 \mathrm{~mm}$ $\begin{aligned} & Z x x=Z p / s=1176.18 \times 103 / 1.14=1031.74 \times 10^{3} \mathrm{~mm}^{3} \\ & \mathrm{Ixx}=Z x x \times y \max =1031.74 \times 10^{3} \times 400 / 2=206.35 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ Assuming udl = ' w ' kN/m. i.To calculate design flexural strength, Md $M d=(\beta b \times Z p \times f y) / Y m o=(1 \times 1176.18 \times 103 \times 250) / 1.10$ $=267.27 \times 106 \mathrm{~N}-\mathrm{mm}=267.27 \mathrm{kN}-\mathrm{m} .$ ii. $M_{u}=w u \times L^{2} / 8=w_{u} \times 4^{2} / 8=2 w_{u} \quad k N / m$ iii. Equating Md and Mu $267.27=2 w u$ $\mathrm{w}_{\mathrm{u}}=131.135 \mathrm{kN} / \mathrm{m}$. $w=w u /$ Yf $=131.135 / 1.5=87.42 \mathrm{kN} / \mathrm{m}$.	04 M 04 M
Q. 3	(a) Ans b) Ans	Attempt any four Define bolt value, pitch, gauge and edge distance in bolted joint. i)bolt value:-is defined as the overall strength of fastener for design purpose and it is taken as minimum of Shearing strength and Bearing strength of bolt. ii) pitch, i) Pitch: it is the centre to centre distance of the bolts in a row, measured along the direction of load. iii)gauge:-It is a distance between the two consecutive bolts of adjacent rows and it is measured at right angle to the direction of load. iv)edge distance iii) Edge distance: it is the distance from centre of bolt hole to the nearest edge of plate measured perpendicular to the direction of load. State two types of welded joints and draw sketch of any one. Types Of Welded Joints 1.Butt weld 2.Fillet weld Draw sketch of any one.	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & \\ & \\ & \\ & 02 \mathrm{M} \\ & \\ & \\ & 02 \mathrm{M} \\ & \text { 02 } \\ & \text { (any } \\ & \text { one) } \end{aligned}$

Q. 3	(c) Ans	Following procedure is use for design of angle purlin. 1. The gravity loads and wind load are determined. Both the load are assume to be normal to roof truss. 2. The maximum bending moment is computed by $\mathrm{wl}^{2} / 10$ or $\mathrm{WI} / 10$ Where w -unfactored uniformly distributed load, W unfactored concentrated load at centroid, L span of purlin. 3. The modulus of section required is calculated by $Z=M /(1.33 \times 0.66 \times f y)$, where $f y-$ yield stress. 4. A trial section of angle purlin is arrived at by assuming the depth of the angle section at $1 / 45$ of the span and width of the angle section as $1 / 60$ of the span. The depth and with must not be less than specified values to ensure that the deflection are not excessive. 5. A suitable angle section is selected from IS handbook for the calculated leg length of angle section .the modulus of section provided should be more than modulus of section calculated in step no.3.			04 M
Q. 3	(d) Ans	Enlist any eight types of steel roof trusses with their spans.			Any eight 01 M for each
		Sr.no	types of steel roof trusses	spans.	
		1.	King Post Truss	6 meters	
		2.	Queen Post Truss	6-9meters	
		3.	Howe- triangle 4-pannel -	6-15 meters	
		4.	Howe- triangle 6-pannel -	$12-24 \mathrm{~m}$	
		5.	Fink or French truss	12-18m	
		6.	Compound French truss	20-30 m	
		7.	Pratt Truss -	16-30 meters	
		8	Fan Truss -	10-15 meters	
		9.	North Light Roof Truss	8-10 meters.	
Q. 3	(e) Ans	Write the design steps for wind load in steel roof truss. 国国design steps to calculate wind load on roof truss as per IS-875-1987: 1. Design wind speed (Vz)=k1 k2 k3 Vb i. Risk Coefficient-(k1) ii. Terrain ,Height And Structure Size Factor, k2 iii. Topography Factor. k3 iv. basic wind speed -Vb 2. wind pressure $(\mathrm{Pz})=0.6(\mathrm{Vz}) 2---\left(\mathrm{N} / \mathrm{m}^{2}\right)$ 3. wind load on roof F = (Cpe - Cpi) Apz Cpe - Coefficient of external wind pressure Cpi - Coefficient of internal wind pressure A - surface area of structural element in (m2) pz - design wind pressure ($\mathrm{N} / \mathrm{m}^{2}$)			4 M
Q. 4		Attempt any three			

(ISO/IEC - 27001-2013 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

| | Generalrequirements tor lacing as per Is-800.
 a) Members comprising two main components laced and tied, should where practicable,
 have a radius of gyration about the axis perpendicular to the plane of lacing not less
 than the radius of gyration about the axis parallel to the plane of lacing.
 (b)As far as practicable, the lacing system shall be uniform throughout the length of the
 column.
 c) Except for tie plates double laced systems and single laced systems on opposite sides
 of the main components shall not be combined with cross members (ties) perpendicular
 to the longitudinal axis of the strut, unless all forces resulting from deformation of the
 strut members are calculated and provided for in the design of lacing and its fastenings.
 d) Single laced systems, on opposite faces of the components being laced together shall
 preferably be in the same direction so that one is the shadow of the other, instead of
 being mutually opposed in direction.
 e) The effective slenderness ratio, (kl/r)e., of laced columns shall be taken as 1.05 times
 the (Kl/ r)o, the actual maximum slenderness ratio, in order to account for shear
 deformation effects.
 f) Width of Lacing Bars In bolted/riveted construction, the minimum width of lacing bars
 shall be three times the nominal diameter of the end bolt rivet.
 g) Thickness of Lacing Bars The thickness of flat lacing bars shall not be less than one-
 fortieth of its effective length for single lacings and one-sixtieth of the effective length
 for double lacings.
 h) Rolled sections or tubes of equivalent strength may be permitted instead of flats, for
 lacings.
 i) Angle of Inclination: Lacing bars, whether in double. Or single systems, shall be
 inclined at an angle not less than 40' or more than 70 to the axis of the built-up
 member.
 j)The maximum spacing of lacing bars, whether connected by bolting, riveting or |
| :--- | :--- | :--- | :--- |

		Comments : To maintain a uniform approach to both welded and bolted members, the same provisions for shear lag in bolted members were applied to welded members.	01 M
Q. 4	(B) (b) Ans	Determine the design strength of single angle in tension member using ISA 80x50x8 mm . The longer leg is connected to gusset plate 10 mm thick by 5 mm weld as shown in fig. for ISA $\mathrm{Ag}=978 \mathrm{~mm}^{2} \beta=1.18$ 5 MM WELD 110 MM LONG 1. $T_{d g}=A_{g}\left\{f_{y} / y /\right.$ mos- $10 \times 250 / 1.1=222.272 \mathrm{kN}$ 2. As it is a welde ${ }^{50 \mathrm{MM}}$ əc 5 MMWELD 230 MM LONG $\begin{aligned} & \mathrm{T}_{\text {dn }}=0.9 \times \mathrm{xA}_{\text {nc }}\left\{\mathrm{f}_{\mathrm{y}} / \mathrm{y}_{\mathrm{m} 1}\right\}+\beta \times \mathrm{A}_{\mathrm{go}}\left\{\mathrm{f}_{\mathrm{y}} / \mathrm{y}_{\mathrm{m} 0}\right\} \\ & \beta=1.4-0.076\{\mathrm{w} / \mathrm{t}\} \mathrm{fy} / \mathrm{fu}\}\{\mathrm{bs} / \mathrm{lc}\} \\ & \beta=1.4-0.076\{50 / 8\}\{250 / 410\}\{50 / 230\}=1.192>0.7 \end{aligned}$ $<0.9 \times(410 \times 1.1) /(250 \times 1.25)=1.2988$ therefore ok $\mathbf{T}_{\mathrm{dn}}=0.9 \times(80-4) \times 8 \times\{410 / 1.25\}+1.274 \times(50-4) \times 8(\{250 / 1.10\}=\mathbf{2 8 6 . 0 3} \mathbf{k N}-$ T_{db} for gusset plate 10 mm thick $T_{d b}$ for member ISA $80 \times 50 \times 8$ is in relation with the thickness of gusset plate of 10 mm thickness Therefore $\begin{aligned} & \mathrm{T}_{\mathrm{db}}=659.046 \times 8 / 10=527.23 \mathrm{kN} \\ & \mathrm{~T}_{\mathrm{db}}=603.575 \times 8 / 10=482.86 \mathrm{KN}-- \end{aligned}$ Therefore the strength of member is the least of 1. $\mathrm{T}_{\mathrm{dg}}=222.272 \mathrm{kN}$ 2. $\mathrm{T}_{\mathrm{dn}}=286.03 \mathrm{kN}$ 3. $\mathrm{T}_{\mathrm{db}}=482.86 \mathrm{kN}$ Therefore the strength of member is 222.272 kN	01 M
Q. 5	(a) Ans	Attempt any two Design a square slab base and concrete block for column section SC250 with two cover plates $300 \times 25 \mathrm{~mm}$ carrying 3000 Kn axial Load .take M 15 , tf $=17 \mathrm{~mm}$, bf= 250 mm overall hight $h=300 \mathrm{~mm}$ amd $\mathrm{SBC}=300 \mathrm{kpa}$. For a square base plate Size of plate $=\sqrt{ } \mathbf{5 0 0 0 0 0}=\mathbf{7 0 7 . 1 0 6} \mathbf{~ m m}$ Size of plate for equal projections a and b	2M

\begin{tabular}{|c|c|c|c|}
\hline Q. 5 \& (b)
Ans \& \begin{tabular}{l}
Calculate DL and LL per panel for steel roof truss having span \(=20 \mathrm{~m}\) panel points \(=10\) spacing \(=4 \mathrm{~m}\) rise \(=3 \mathrm{~m}\) wt. of GI Sheets \(=100 \mathrm{~N} / \mathrm{m}^{2}\) bracing \(=75 \mathrm{~N} / \mathrm{m}^{2} \mathrm{wt}\). of purlin \(=150\) \(\mathrm{N} / \mathrm{m}^{2}\) \\
Given: i) Unit wt. of roof covering(GI Sheets) \(=100 \mathrm{~N} / \mathrm{m}^{2}\) \\
ii)Self-wt. of purlin \(=150 \mathrm{~N} / \mathrm{m}^{2}\) \\
iii) Wt. of bracing \(=75 \mathrm{~N} / \mathrm{m}^{2}\) \\
ii) Rise \(=3 \mathrm{~m}\) \\
iii) Total no. of panels=10 \\
iv) \(\mathrm{Span}=20 \mathrm{~m}\) \\
a. Calculation of Dead load: \\
i. Self-weight of truss \(=[(\mathrm{L} / 3)+5] \times 10\)
\[
=[(20 / 3)+5] \times 10=116.67 \mathrm{~N} / \mathrm{m}^{2}
\] \\
ii. Unit weight of roof covering \(=100 \mathrm{~N} / \mathrm{m}^{2}\) \\
iii.Self-weight of purlin \(=150 \mathrm{~N} / \mathrm{m}^{2}\) \\
iv. Weight of bracing \(=75 \mathrm{~N} / \mathrm{m}^{2}\) \\
Hence Total Dead load per \(\mathrm{m}^{2}=116.6+100+150+75=441.66 \mathrm{~N} / \mathrm{m}^{2}\) \(\qquad\) \\
Dead load per intermediate panel point = Dead load per \(\mathrm{m}^{2} \mathrm{x}\) plan area of roof per panel pt. \\
Dead load per intermediate panel point \(=441.6 \times 4 \times(20 / 10)=3532.8 \mathrm{~N}\). \\
--- \\
Dead load per end panel point \(=3532.8 / 2=1766.4 \mathrm{~N}\). \\
b. Calculation of Live load: \\
Angle of truss \((\theta)=\tan ^{-1}[3 /(10)]=16.69^{\circ}\) \\
Live load on purlin \(=750-[(16.69-10) \times 20]\) \\
\(=616 \mathrm{~N} / \mathrm{m}^{2}>400 \mathrm{~N} / \mathrm{m}^{2}\) Hence OK \\
Live load on truss \(=(2 / 3) \times 616=410.67 \mathrm{~N} / \mathrm{m}^{2}\) \\
Live load per intermediate panel point \(=\) Live load per \(\mathrm{m}^{2} \mathrm{x}\) plan area of roof per panel point \\
Live load per intermediate panel point \(=410.67 \times 4 \times(20 / 10)=3285.36 \mathrm{~N}\) \\
Live load per end panel point \(=3285.36 / 2=1642.68 \mathrm{~N}\) -
\end{tabular} \& \(1 M\)
\(1 M\)
\(1 M\)
\(1 M\)
\(1 M\)

$1 M$
$1 M$
$1 M$

\hline Q. 5 \& (c)

Ans \& | Explain the design procedure with formulae and meaning of each term in it to calculate panel point's live load and wind load for steel roof truss. |
| :--- |
| Live load:- IS 875 part-ii makes the following provisions for live loads for the design of sheets and purlins. |
| Up to 10^{0} slope $: 0.75 \mathrm{~N} / \mathrm{m}^{2}$ |
| For more than 10° slope :0.75-0.02($\theta-10$) where, θ-slope of sheeting. |
| However, a minimum of $0.4 \mathrm{kN} / \mathrm{N} / \mathrm{m}^{2}$ live load should be consider in any case. |
| For the design of trusses the above live load may be reduced to $2 / 3$. |
| The purlins and sheets should be checked to support a concentrated load of 0.9 KN . |
| Live load per intermediate panel point = Live load per $\mathrm{m}^{2} \mathbf{x}$ plan area of roof per panel |
| point |
| wind load:률design steps to calculate wind load on roof truss as per IS-875-1987: |
| 1. Design wind speed (Vz)=k1 k2 k3 Vb |
| i. Risk Coefficient-(k1) |
| ii. Terrain ,Height And Structure Size Factor, k2 |
| iii. Topography Factor. k3 | \& 4M

\hline
\end{tabular}

		iv. basic wind speed -Vb 2. wind pressure $(\mathrm{Pz})=0.6(\mathrm{Vz}) 2---\left(\mathrm{N} / \mathrm{m}^{2}\right)$ 3. wind load on roof F = (Cpe - Cpi) Apz Cpe - Coefficient of external wind pressure Cpi - Coefficient of internal wind pressure A - surface area of structural element in (m2) pz - design wind pressure ($\mathrm{N} / \mathrm{m}^{2}$)		4M
Q. 6	(a) Ans	Enlist any four components of plate girder and write their functions. components of plate girder:		$\begin{aligned} & 01 \mathrm{M} \\ & \text { each } \end{aligned}$
		components	Function	
		a)web plate	Keep flanges at required distance. Resist the shear in the beam.	
		b)flange plate	Provided to resist bending moment acting on th beam by developing compressive force.	
		c)end posts or bearing stiffeners	Stiffeners are provided to safeguard the web	
		d)intermediate transverse stiffeners	against local buckling failure	
		e)longitudinal stiffeners		
		f)web splices	For providing additional length and strength.	
		g)flange splices		
Q. 6	(b) Ans	State the design steps for rolled steel b STEP NO. 1 calculate max. Bending mo factored load. STEP NO. 2 OBTAINED SECTION MODU STEP 0.3 select suitable section so that step no. 4 check the section classificati step no. 5 calculate design shear for $\mathrm{Vd}=\mathrm{f}_{\mathrm{y}} \mathrm{D} \mathrm{t}_{\mathrm{w}} / 1.732 \mathrm{y}_{\mathrm{mo}} \quad$ check $\mathrm{Vd}>\mathrm{V}$ step no. 6 calculate moment resisted by $M d=\beta_{b}\left(Z_{p}\right) f_{y} / y_{\text {mo }} \quad \beta_{b}=1$ for plas $\beta_{b}=\left(Z_{p}\right)$ required for plastic sect step no. 7 check for deflection i.e maxi values given Step no. 8 check for web buckling.	am when it is laterally restrained nt and shear force i.e. (M \&V resp.) From $J S\left(Z_{p}\right) \text { required. }\left(Z_{p}\right)_{\text {required. }}=f_{y} \times M / y_{m o} \quad y_{m o=1.1}$ $\left.Z_{p}\right)_{\text {provided } .>}\left(Z_{p}\right)_{\text {required. }}$ from b / t_{f} and d / t_{w} b ND V <0.6 V_{d} the section section and compact section $\left.Z_{p}\right)_{\text {provided }}$ and compact section um deflection of service load < permissible	04 M
Q. 6	(c) Ans	Draw a neat sketch showing the mair horizontally.	tie member at support having free to slide	

			04 M
Q. 6	(d) Ans.	State the effective length for a compressive member having end conditions are 1. Restrained against translation and free against rotation at both ends. 2. Restrained against translation and free against rotation at one end but roller support at other end.	$\begin{aligned} & 02 \mathrm{M} \\ & 02 \mathrm{M} \end{aligned}$
		End conditions effective length	
		1.Restrained against translation and free against rotation at both ends 1.0 L	
		$2 . \quad$ Restrained against translation and free against rotation at 1.2 L one end but roller support at other end.	
Q. 6	(e) Ans.	State the classification of cross section of beams based on moment rotation behavior. Classification of c / s of beam based on moment - rotation behaviour as per IS 800-2007 1. Class 1 - Plastic 2. Class 2 - Compact 3. Class 3 - Semi compact 4. Class 4 - Slender	01 M for each

