11819 3 Hours / 100 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. (A) Answer any THREE of the following:

12

- (a) List the factors affecting the rate of a chemical reaction.
- (b) Define Gibb's free energy. How the feasibility of a chemical reaction is determined from Gibb's free energy?
- (c) Define Σ_A and X_A . Give the mathematical expression for Σ_A .
- (d) Define space velocity and space time. Give its unit.

(B) Answer any ONE of the following:

6

(a) Explain the steps involved in the differential method of analysis of kinetic data. Give its one merit and one demerit over integral method of analysis.

[1 of 4] P.T.O.

17562 [2 of 4]

(b) Give the Arrhenius equation and explain the terms involved in it. At 500 K the rate of bimolecular reaction is ten times the rate at 400 K. Find the energy of activation from Arrhenius law.

2. Answer any TWO of the following:

16

- (a) Derive the temperature dependency of rate constant from Collision theory.
- (b) A homogeneous liquid phase reaction A \rightarrow R, $-Y_A = KC_A^2$ takes place with 50% conversion in MFR.

What will be the conversion if the original reactor is replaced by PFR of equal size – all else remaining unchanged ?

(c) Explain any four methods of preparation of catalyst with example.

3. Answer any FOUR of the following:

16

- (a) What will be the entropy change when 2g mole of an ideal gas is heated from a volume of 80 l at 50° C to volume of 140 l at 200° C? $C_V = \frac{7.8 \text{ cal}}{\text{mol K}}$
- (b) Derive the integrated form of rate expression for zero order reaction in terms of concentration and conversion.
- (c) Derive the relation between ΔG and K.
- (d) Compare elementary reaction and non-elementary reaction (4 points).
- (e) Explain the steps involved in solid catalysed gas phase reactions.

4. (A) Answer any THREE of the following:

12

 (a) Derive the integrated form of rate equation for second order irreversible reaction of the form 2A → products. 17562 [3 of 4]

- (b) Compare fluidized bed reactor and packed bed reactor based on following points:
 - (i) Recovery units
 - (ii) Catalyst regeneration
 - (iii) Isothermal condition
 - (iv) Size of Catalyst
- (c) Define half life. Give its mathematical expression and explain the terms involved in it.
- (d) Derive the relation between k_p and k_y .

(B) Answer any ONE of the following:

6

- (a) Explain the types of intermediates formed in a non-chain reaction.
- (b) Derive the relation between conversion and thermodynamic equilibrium constant for the second order reversible reaction $A + B \longrightarrow R + S$.

5. Answer any TWO of the following:

16

- (a) After 8 minutes in a batch reactor, reactant ($C_{AO} = 1 \text{ mole/}l$) is 80% converted. After 18 minutes conversion is 90%. Find the rate of reaction. (K and order both)
- (b) Derive the performance equation for a constant volume MFR where first order reaction is taking place. Give the graphical representation also.
- (c) Compare MFR and PFR. (8 points)

6. Attempt any FOUR of the following:

16

- (a) How feed should be admitted when PFR's are connected in parallel?
- (b) Based on Vant Hoff equation, explain why temperature increase is not desirable for exothermic reactions.

P.T.O.

17562 [4 of 4]

- (c) Differentiate between molecularity and order of reaction. (4 points)
- (d) Draw the graph of concentration Vs time for
 - (i) First order reversible reaction
 - (ii) First order irreversible reaction

Write the value of slope also.

(e) Give the relation between C_A and X_A for constant volume and variable volume systems.