Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 1 of 28
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept

Winter - 2014 Examinations

Subject Code :17323(ECN)

Model Answer

Page No: 2 of 28
1 Attempt any TEN of the following.
$2 \times 10=20$
1 a Define Cycle and time period related to a.c. waveform.
Ans-
Cycle: One complete set of positive \& negative values of alternating quantity is
01 mark known as 'cycle'.

Period: Time taken by an alternating quantity to complete one cycle is called its 01 mark time 'period'.
1 b Find frequency and amplitude of the following waveform.
Refer Figure No. 1

Fig. No. 1
Ans-
Frequency $f=\frac{1}{T}=\frac{1}{20 \times 10^{-3}}=0.05 \times 10^{3}=50 \mathrm{~Hz}$
01 mark

Amplitude $\quad \mathrm{V}_{\mathrm{m}}=100$ Volts
01 mark
1 c Define active and reactive power for R-L-C series circuit.
Ans-
Active Power (P):
The average power drawn by the AC circuit is called as Active power.
Or
01 mark
It is the power which is actually dissipated in the circuit resistance.
It is given by, $\mathrm{P}=\mathrm{VI} \operatorname{Cos} \phi$ watts (or kilowatts).
Reactive Power (Q):
Power drawn by the circuit due to reactive component (ISinф) is called as 01 mark reactive power.
It is given by, $\mathrm{Q}=\mathrm{VI} \sin \phi \mathrm{VAR} \quad($ or kVAR$)$.
1 d Draw impedance triangle and voltage phasor diagram for R-L series circuit.
Ans-

Each diagram 01 mark

Winter - 2014 Examinations

Subject Code :17323(ECN)

1 e Define susceptance and admittances for a parallel circuit.

Ans-

Susceptance-

It is imaginary part of the admittance (Y). It is defined as the ability of the purely reactive circuit (purely capacitive or purely inductive) to admit alternating current.
or
It is also defined as the ratio of reactance to the square of the impedance.
In general, Susceptance $(B)=\frac{X}{Z^{2}}$ Siemens

Admittances-

Admittance of circuit is defined as reciprocal of impedance (Y).
01 mark

01 mark

$$
Y=\frac{1}{Z}=\frac{I}{V} \quad m h o
$$

1 f Define quality factor for parallel resonance and write its mathematical expression.
Ans-
Quality factor -
It is defined as the ratio of current circulating between its branches to the line current drawn from the supply Or simply current magnification
Mathematical expression for $\mathrm{Q}-$ factor $=\frac{1}{R} \sqrt{\frac{L}{C}}$
Or
Current magnification in parallel resonant circuit is also known as Quality factor.
It is given as under-

$$
\text { current magnification }=\frac{(\text { Current through individual branch) }}{\text { total current }}=\frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{I}} \text { or }=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}}
$$

1 g Draw sinusoidal waveform of 3-phase emf and indicate the phase sequence.
Ans-

Waveform of 3-phase emf
1 h Draw circuit diagrams showing additive polarity and subtractive polarity. Ans-

Definition
01 mark
Equation 01 mark

Winter - 2014 Examinations

Subject Code :17323(ECN)

Model Answer

Page No: 4 of 28

OR
additive polarity-

Subtractive polarity-

1 i Write the procedure of converting a current source into voltage source.
Ans-
Procedure for converting a current source into voltage source
Step 1. Claculate equivalent voltage By using formula $V=\mathrm{IR}_{\mathrm{sh}}$.
Step 2. Series resistance value as $\mathrm{Rs}=\mathrm{Rsh}$
Steps 01
mark
Step 3. Connect voltage source and reistance in series as shown below.

Given current source

Equivalent voltage source

1 j State superposition theorem applied to D.C. circuits.
Ans-
Superposition theorem:-
In any linear, bilateral, multisource network, the response (voltage across any element or current through any element) of any branch is equal to the sum of the responses produced in it with each source acting alone while other sources are replaced by their internal resistances.
$1 \mathrm{k} \quad$ State maximum power theorem applied to D.C. circuits.
Ans-
Maximum Power transfer theorem-
A resistive load will have maximum power in it when its value is equal to the resistance of the network as viewed from the terminals (it is connected across), with all energy sources removed leaving behind their internal resistances.

$$
\text { i.e. } \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}
$$

Winter - 2014 Examinations

Subject Code :17323(ECN)

11 State the behavior of following elements at the time of switching i.e. transient period.
i) Pure L
ii) Pure C.

Ans-
Pure L:
i) At the instant of switching (i.e. at $t=0$) the inductor acts as open circuit.
ii) At the instant of switching (i.e. at $t=\infty$) the inductor acts as short circuit

Pure C:

i) If uncharged capacitor is connected to an energy source, a capacitor acts as a short circuit at $\mathrm{t}=0$.
ii) At the instant of switching (i.e. at $t=\infty$) the capacitor acts as open circuit \backslash

2 a An e.m.f. source represented by $\mathrm{e}=20 \sin 314 \mathrm{t}$ is connected to a pure inductance having value 10 mH . Find:
(i) The equation of current flowing through it.
(ii) Draw the waveforms of voltage and current.

Ans:
Given- $\mathrm{e}=20 \sin 314 \mathrm{t}$ volts; $\mathrm{L}=10 \mathrm{mH}$
(i) Equation of current-

$$
\begin{aligned}
& \omega=2 \pi \mathrm{f}=314 \\
& \therefore f=\frac{314}{2 \pi}=50 \mathrm{~Hz} \\
& \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=2 \pi \mathrm{X} 50 \times 10 \times 10^{-3}=3.14 \Omega \\
& I m=\frac{V m}{X_{L}}=\frac{20}{3.14}=6.36 \mathrm{Amp} \ldots
\end{aligned}
$$

As the circuit is pure inductive Circuit ;
$i=I_{m} \operatorname{Sin}\left(\omega t-90^{\circ}\right) A m p$
$i=6.36 \sin (314 t-\pi / 2) \ldots$
01 mark
(ii) Waveforms of voltage and current-

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 6 of 28

Ans:

When an alternating voltage is applied to the plates of the capacitor, the capacitor is charged first in one direction and then in opposite direction.

From the above fig.
Let $\quad v=p . d$. developed between plates at any instant $\mathrm{q}=$ charge on plates at that instant.
Then, $\quad \mathrm{q}=\mathrm{C} v$ \qquad where C is capacitance
$\mathrm{q}=\mathrm{C} \mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$ \qquad .putting the values of v.

Now, current ' i ' given by the rate of flow of charge.
$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{CVm} \sin \omega \mathrm{t})$
$\mathrm{i}=\operatorname{CVm} \omega \operatorname{Cos} \omega \mathrm{t}$.
$i=\frac{V m}{1 / \omega C} \cos \omega t$
$\mathrm{i}=\frac{\mathrm{Vm}}{\mathrm{Xc}} \cos \omega \mathrm{t}$
Where Xc $=\frac{1}{\omega \mathrm{C}} \Omega$
$i=\operatorname{Im} \sin \left(\omega t+\frac{\pi}{2}\right)$ \qquad Where $\operatorname{Im}=\frac{\mathrm{Vm}}{\mathrm{Xc}} \mathrm{Amp}$

This is the expression for current in pure capacitive circuit.
Phasor diagram-

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No: 7 of 28
2 c For a given waveform. Refer figure No.2:
(i) Identify type of circuit
(ii) State nature of power factor
(iii) Draw phasor diagram
(iv) Write expressions for voltage and current

Fig. No. 2
Ans:
(i) Type of circuit: the type of circuit for above waveforms is R-L series 01 mark circuit.
(ii) Nature of power factor: Power factor is lagging.
(iii) Phasor diagram:

01 mark
(iv) Expression for voltage and current:

$$
\begin{aligned}
& \mathrm{v}=\mathrm{Vm} \sin \omega \mathrm{t} \\
& \mathrm{i}=\mathrm{Im} \sin (\omega \mathrm{t}-\emptyset)
\end{aligned}
$$

$1 / 2$ mark
$1 / 2$ mark

2 d Draw graphical representation of resistance, inductive reactance, capacitive reactance and impedance related to frequency for series resonance circuit.

Labeled diagram 04 marks, unlabeled 2 marks

Winter - 2014 Examinations

Subject Code :17323(ECN)

Model Answer

Page No: 8 of 28
2 e An alternating voltage of $250 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied to a coil which takes 5 A of current. The power absorbed by the circuit is 1 kW . Find the resistance and inductance of the coil.
Ans:
Given $-\mathrm{V}=250 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}, \quad \mathrm{I}=5 \mathrm{~A}, \mathrm{P}=1 \mathrm{~kW}$.
$Z=\frac{V}{I}=\frac{250}{5}=50 \Omega$
We have, $P=V I \cos \emptyset$
$\therefore \cos \emptyset=\frac{P}{V I}=\frac{1 \times 10^{3}}{250 \times 5}=0.8$
$\therefore \sin \varnothing=0.6$
$R=Z \cos \emptyset=50 X 0.8=40 \Omega$
$X_{L}=Z \sin \emptyset=50 X 0.6=30 \Omega$.
$L=\frac{X_{L}}{2 \pi f}=\frac{30}{2 \pi X 50}=0.09549 \mathrm{H}$ or 95.49 mH
2 f A R-L-C series circuit with a resistance of 20Ω, inductance of 0.25 H and capacitance of $100 \mu \mathrm{~F}$ is supplied with 240 V variable a.c. supply calculate:
(i) Resonance frequency
(ii) Current at this condition
(iii) Power factor
(iv) Quality factor.

Ans:
Given- $\mathrm{R}=20 \Omega, \mathrm{~L}=0.25 \mathrm{H}, \mathrm{C}=100 \mu \mathrm{~F}, \mathrm{~V}=240$ Volts.
(i) Resonance frequency-

$$
\text { Fo }=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}=\frac{1}{2 \pi \sqrt{\left(0.25 \times 100 \times 10^{-6}\right)}}=31.83 \Omega
$$

01 mark
(ii) Current at resonance-

$$
\text { Io }=\frac{\mathrm{V}}{\mathrm{R}}=\frac{240}{20}=12 \mathrm{Amp}
$$

01 mark
(iii) Power Factor-
at resonance is unity, $\therefore \cos \emptyset=1$
01 mark
(iv) Quality factor-

$$
\mathrm{Q}-\text { factor }=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}}=\frac{1}{20} \sqrt{\frac{0.25}{100 \mathrm{X} 10^{-6}}}=2.5
$$

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 9 of 28
3 Attempt any FOUR of the following.
$4 \mathrm{X} 4=16$
a Compare series resonance to parallel resonance on the basis of:
i) Resonant frequency
ii) Impedance
iii) Current and
iv) Magnification

Ans:

Parameter	Series resonant circuit	Parallel resonant circuit		
Resonant frequency	$f o=\frac{1}{2 \pi \sqrt{L C}} \mathrm{~Hz}$	$f o=\frac{1}{2 \pi \sqrt{L C} ~ \mathrm{~Hz}}$		
Impedance	Minimum			
$\mathrm{Z}=\mathrm{R}$ ohms			\quad	Maximum
:---				
$Z_{D}=\frac{L}{C R}$ ohms				

Each parameter 01 mark

3 b Derive an expression for resonance frequency for a R-L-C parallel circuit.
Ans-
Resonance frequency for a R-L-C parallel circuit:-

Diagram
01 mark

We will consider the practical case of a coil in parallel with a capacitor, as shown in above fig. Such a circuit is said to be in electrical resonance when the reactive component of line current becomes zero. The frequency at which this happens is known as resonance frequency.

Net reactive component $=I_{C}-I_{L} \sin \emptyset_{\mathrm{L}}$
As at resonance, its value is zero, hence

$$
\mathrm{I}_{\mathrm{C}}-\mathrm{I}_{\mathrm{L}} \sin \emptyset_{\mathrm{L}}=0 \text { or } \quad \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{L}} \sin \emptyset_{\mathrm{L}}
$$

Now $\mathrm{I}_{\mathrm{L}}=\frac{V}{Z} ; \quad$ and $\mathrm{I}_{\mathrm{C}}=\frac{V}{X_{C}}$,

Hence condition for resonance becomes

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 10 of 28

$$
\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{c}}}=\frac{\mathrm{V}}{\mathrm{Z}} \mathrm{X} \frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{Z}} \quad \text { or } \quad \mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}=\mathrm{Z}^{2}
$$

Now, $X_{L}=\omega L, X_{c}=\frac{1}{\omega c}$
$\frac{\omega \mathrm{L}}{\omega \mathrm{c}}=\mathrm{Z}^{2} \quad$ or $\quad \frac{\mathrm{L}}{\mathrm{C}}=\mathrm{Z}^{2}$
$\frac{L}{C}=R^{2}+X_{L}^{2}=R^{2}+\left(2 \pi f_{0} L\right)^{2}$
$\left(2 \pi f_{0} L\right)^{2}=\frac{L}{C}-R^{2}$

Correct
Derivation
03 mark

3 c A choke coil has resistance of 2Ω and an inductance of 0.035 H is connected in parallel with a $350 \mu \mathrm{~F}$ capacitor which is in series with a resistance of 20Ω.
When the combination is connected across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate:
I) The total current taken and
II)Power factor of whole circuit.

Ans-
Given; $\mathrm{R}_{1}=2 \Omega, \mathrm{~L}=0.035 \mathrm{H}, \mathrm{C}=350 \mu \mathrm{~F}, \mathrm{R}_{2}=20 \Omega, \mathrm{~V}=200 \mathrm{~V} \& \mathrm{f}=50 \mathrm{~Hz}$

$$
\mathrm{Z}_{1}=\mathrm{R}_{1}+\mathrm{j} \mathrm{X}_{\mathrm{L}}
$$

Winter - 2014 Examinations

Subject Code :17323(ECN)

Model Answer

Page No : 11 of $\mathbf{2 8}$

Therefore, $\mathrm{Z}_{1}=2+\mathrm{j} 11 \Omega \ldots$

In polar form, $\mathrm{Z}_{1}=11.18 \angle 79.89^{\circ} \Omega$
Similarly, $Z_{2}=R_{2}-j X_{C}$
Find $X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 50 \times 350 \times 10^{-6}}=9.09 \Omega$
$Z_{2}=20-j 9.09 \Omega \ldots$

Correct impedances $\mathrm{Z}_{1} \& \mathrm{Z}_{2}=$ 1 mark

In polar form, $\mathrm{Z}_{2}=21.96 \angle-24.44^{\circ} \Omega$

Equivalent impedance of parallel branch;

$$
\begin{aligned}
\text { Zeq }=\frac{Z_{1} Z_{2}}{Z_{1}+\mathrm{Z}_{2}} & =\frac{\left(11.18 \angle 79.89^{\circ}\right) \times\left(21.96 \angle-24.44^{\circ}\right)}{(2+\mathrm{j} 11)+(20-\mathrm{j} 9.09)} \\
& =\frac{245.51 \angle 55.45^{\circ}}{22+\mathrm{j} 1.91}=\frac{245.51 \angle 55.45^{\circ}}{22.08 \angle 4.96^{\circ}}
\end{aligned}
$$

$$
\text { Zeq }=11.11 \angle 50.49^{\circ} \Omega \ldots
$$

I) $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}_{\mathrm{eq}}}=\frac{200 \angle 0^{\circ}}{11.11 \angle 50.49^{\circ}}=18.00 \angle-50.49^{\circ} \mathrm{Amp}$
II) $\operatorname{Cos} \emptyset=\operatorname{Cos}(50.49)=0.6362$ Lagging
$3 \mathrm{~d} \quad$ A coil resistance 4Ω and inductance 0.07 H is connected in parallel with another coil of resistance 10Ω and inductance 0.12 H . The combination is connected across $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine the total current \& current through each branch.
Ans-
Given; $\mathrm{R}_{1}=4 \Omega, \mathrm{~L}_{1}=0.07 \mathrm{H}, \mathrm{R}_{2}=10 \Omega, \mathrm{~L}_{2}=0.12 \mathrm{H}, \mathrm{V}=230 \mathrm{~V} \& \mathrm{f}=50 \mathrm{~Hz}$

Winter - 2014 Examinations

Subject Code :17323(ECN)

Model Answer

Page No : 12 of 28
Branch-1
$\mathrm{X}_{\mathrm{L} 1}=2 \pi \mathrm{fL}_{1}=2 \pi \mathrm{X} 50 \mathrm{X} 0.07=22 \Omega$
$\mathrm{Z}_{1}=\mathrm{R}_{1}+\mathrm{j} \mathrm{X}_{\mathrm{L} 1} \Omega$
$\mathrm{Z}_{1}=4+\mathrm{j} 22 \Omega$
$\mathrm{Z}_{1}=22.36 \angle 79.69^{\circ} \Omega$
Branch-2
$\mathrm{X}_{\mathrm{L} 2}=2 \pi \mathrm{fL}_{2}=2 \pi \mathrm{X} 50 \mathrm{X} 0.12=37.69 \Omega$
$\mathrm{Z}_{2}=\mathrm{R}_{2}+\mathrm{j} \mathrm{X}_{\mathrm{L} 2} \Omega$
$\mathrm{Z}_{2}=10+\mathrm{j} 37.69 \Omega$
$\mathrm{Z}_{2}=39 \angle 75.14^{\circ} \Omega$
Zeq $=\frac{Z_{1} \mathrm{Z}_{2}}{\mathrm{Z}_{1}+\mathrm{z}_{2}}=\frac{\left(22.36 \angle 79.69^{\circ}\right) \mathrm{x}\left(39 \angle 75.14^{\circ}\right)}{22.36 \angle 79.69^{\circ}+39 \angle 75.14^{\circ}}$

$$
=\frac{872.04 \angle 154.83^{\circ}}{61.30 \angle 76.80^{\circ}}
$$

Zeq $=14.22 \angle 78.03^{\circ} \Omega$
Total current $\mathrm{I}=\frac{V}{Z_{\text {eq }}}=\frac{230 \angle 0^{\circ}}{14.22 \angle 78.03^{\circ}}=16.17 \angle-78.03^{\circ} \mathrm{Amp}$
01 mark

Branch currents;
$\mathrm{I}_{1}=\frac{V}{Z_{1}}=\frac{230 \angle 0^{\circ}}{22.36 \angle 79.69^{\circ}}=10.28 \angle-79.69^{\circ} \mathrm{Amps}$
01 mark
$\mathrm{I}_{2}=\frac{V}{Z_{2}}=\frac{230 \angle 0^{\circ}}{39 \angle 75.14^{\circ}}=5.89 \angle-75.14^{\circ} \mathrm{Amps}$
01 mark
3 e Define the following terms:
i) Lagging quantity
ii) Leading quantity

Also represent the above terms for voltage and current in pure inductance and pure capacitance circuit.
Ans-
Lagging quantity -
Lagging alternating quantity is one which reaches its maximum (or zero) value later than other quantity.

Leading quantity-
Leading alternating quantity is one which reaches its maximum (or zero) value 01 mark earlier as compared to other quantity.

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 13 of 28
For pure inductive circuit-

For pure inductive circuit, current 'i' lags behind applied voltage ' v ' by 90° (or $\pi / 2) \mathrm{rad}$

For pure capacitive circuit-

For pure capacitive circuit, 'i' leads applied voltage ' v ' by $90^{\circ}(\pi / 2) \mathrm{rad}$

3 f A $200 \mathrm{~W}, 100 \mathrm{~V}$ lamp is connected in series with a capacitor to a $120 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c. supply calculate:
i) The capacitance required
ii) The phase angle between voltage and current.

Ans-
Given: $200 \mathrm{~W} \& \mathrm{~V}_{1}=100 \mathrm{~V}$ lamp
(i) Capacitance required:

$$
\mathrm{P}=\mathrm{I}^{2} \mathrm{R}=\frac{\mathrm{V} 1^{2}}{\mathrm{R}} \text { watts }
$$

Thus $\mathrm{R}=\frac{\mathrm{V} 1^{2}}{\mathrm{P}}=\frac{100^{2}}{200}=50 \Omega$

$$
\mathrm{V}_{1}=\mathrm{IR}
$$

$$
\mathrm{I}=\frac{\mathrm{V}_{1}}{\mathrm{R}}=\frac{100}{50}=2 \mathrm{Amp}
$$

$\mathrm{Z}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{120}{2}=60 \Omega$.

Winter - 2014 Examinations
Subject Code :17323(ECN)
Model Answer
Page No : 14 of 28

$$
\cos \varnothing=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{50}{60}=0.83 \text { lead }
$$

$\sin \varnothing=0.55$
$X_{c}=Z \sin \varnothing=60 X 0.55$
$X_{c}=33 \Omega$.
$\mathrm{C}=\frac{1}{2 \pi \mathrm{fX}_{\mathrm{c}}}=\frac{1}{2 \pi \mathrm{X} 50 \mathrm{X} 33}=96.45 \mu \mathrm{~F}$.
01 mark
(ii) Phase angle between voltage and current-

Since power factor, $\cos \varnothing=0.83$

$$
\therefore \emptyset=\operatorname{Cos}^{-1}(0.83)=33.90^{\circ}
$$

$4 \quad$ Attempt any FOUR of the following.
4 a Draw the waveforms of a 3-phase emf. With following phase sequence.
i) $R-B-Y$
ii) $B-R-Y$

Solution:
I) $\mathrm{R}-\mathrm{B}-\mathrm{Y}$

II) $\mathrm{B}-\mathrm{R}-\mathrm{Y}$

$4 \mathrm{~b} \quad$ Three coils each with a series resistance of 10Ω and inductance of 0.35 mH are connected in star to a 3 -phase, $440 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the line current and total power taken per phase.

Ans-
Given data : $\mathrm{R}=10 \Omega, \mathrm{~L}=0.35 \mathrm{mH}, \mathrm{V}_{\mathrm{L}}=440 \mathrm{~V}$ and $\mathrm{f}=50 \mathrm{~Hz}$
$X_{L}=2 \pi f L=2 \pi X 50 \times 0.35 \times 10^{-3}=0.1099 \Omega$
01 mark
$\mathrm{Z}_{\mathrm{ph}}=\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}=10+\mathrm{j} 0.10 \Omega$

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 15 of 28
Magnitude, $\mathrm{Z}_{\mathrm{ph}}=10 \Omega$.
$\mathrm{V}_{\mathrm{ph}}=\frac{V_{L}}{\sqrt{3}}=\frac{440}{\sqrt{3}}=254.03 \mathrm{~V}$
01 mark

Line Current-
$\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{ph}}=\frac{\mathrm{V}_{\mathrm{ph}}}{\mathrm{Z}_{\mathrm{ph}}}=\frac{254.03}{10}=25.40 \mathrm{Amp}$
Total Power taken per phase:
$\operatorname{Cos} \emptyset=R / Z=10 / 10=1$
$\mathrm{P}=\mathrm{V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \operatorname{Cos} \emptyset=254.03 \mathrm{X} 25.40 \mathrm{X} 1=6452.362$ Watts
01 mark
4 c A delta connected induction motor is supplied by 3 -phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The line current is 43.3 A and the total power taken from the supply is 24 KW . Find the resistance and reactance per phase of motor winding.

Ans:
Given data: Delta load, $\mathrm{V}_{\mathrm{L}}=\mathrm{Vph}=400 \mathrm{~V}, \mathrm{~F}=50 \mathrm{~Hz}, \mathrm{I}_{\mathrm{L}}=43.3 \mathrm{~A}, \mathrm{P}=24 \mathrm{KW}$.
We have,
$P=\sqrt{3} V I \cos \emptyset$,
$\therefore \cos \emptyset=\frac{\mathrm{P}}{\sqrt{3} \times \mathrm{VII}}=\frac{\left(24 \times 10^{3}\right)}{\sqrt{3} \times 400 \times 43.3}=0.8$ lag.
Thus ,Sinø=0.6.
Now, for delta-
$\mathrm{Iph}=\frac{\mathrm{I}_{\mathrm{L}}}{\sqrt{3}}=\frac{43.3}{\sqrt{3}}=25 \mathrm{Amp}$.
$\mathrm{Zph}=\frac{\mathrm{Vph}}{\mathrm{Iph}}=\frac{400}{25}=16 \Omega$.
01 mark
Resistance -
$\mathrm{R}=\mathrm{Z} \cos \emptyset=16 \mathrm{X} 0.8=12.8 \Omega$.
01 mark
Reactance-
$\mathrm{X}=\mathrm{Z} \operatorname{Sin} \emptyset=16 \mathrm{X} 0.6=9.6 \Omega$.

4 d Derive the formulae for star to delta transformation.
Ans-
Star to delta conversion:
Consider the star connected network as shown in below fig. it will be replaced by the equivalent delta connected network.

Winter - 2014 Examinations

Subject Code :17323(ECN)
$\underline{\text { Model Answer }}$
Page No : 16 of 28

We write expressions for equivalent resistances between corresponding terminals of the two networks and proceed.

Resistance between 1 and 2

$$
\begin{equation*}
\text { for star }=\mathrm{R}_{1}+\mathrm{R}_{2}=(\text { for delta })=\frac{R_{12}\left(R_{23}+R_{31}\right)}{\left(R_{12}+R_{23}+R_{31}\right)} \tag{1}
\end{equation*}
$$

Resistance between 2 and 3

$$
\begin{equation*}
\text { for star }=\mathrm{R}_{2}+\mathrm{R}_{3}=(\text { for delta })=\frac{R_{23}\left(R_{12}+R_{31}\right)}{\left(R_{12}+R_{23}+R_{31}\right)} \tag{2}
\end{equation*}
$$

Resistance between 3 and 1

$$
\text { for star }=\mathrm{R}_{3}+\mathrm{R}_{1}=(\text { for delta })=\frac{R_{31}\left(R_{12}+R_{23}\right)}{\left(R_{12}+R_{23}+R_{31}\right)}
$$

Subtracting (2) from (3) we get,

$$
\begin{equation*}
\mathrm{R}_{1}-\mathrm{R}_{2}=\frac{R_{12}\left(R_{31}-R_{23}\right)}{\left(R_{12}+R_{23}+R_{31}\right)} \tag{4}
\end{equation*}
$$

Adding (1) and (4) and simplifying we get

$$
\begin{array}{r}
2 \mathrm{R}_{1}=\frac{2 R_{12} R_{31}}{\left(R_{12}+R_{23}+R_{31}\right)}, \text { hence } \mathrm{R}_{1}=\frac{R_{12} R_{31}}{\left(R_{12}+R_{23}+R_{31}\right)}, \\
\text { Similarly } \quad \mathrm{R}_{2}=\frac{\mathrm{R} 23 \mathrm{R} 12}{\mathrm{R} 12+\mathrm{R} 23+\mathrm{R} 31} \quad \mathrm{R}_{3}=\frac{\mathrm{R} 31 \mathrm{R} 23}{\mathrm{R} 12+\mathrm{R} 23+\mathrm{R} 31} \quad------------- \tag{5}
\end{array}
$$

From above expressions

$$
\begin{equation*}
\frac{R_{1}}{R_{2}}=\frac{R_{31}}{R_{23}}, \frac{R_{2}}{R_{3}}=\frac{R_{12}}{R_{31}} \text { and } \frac{R_{3}}{R_{1}}=\frac{R_{23}}{R_{12}} \tag{6}
\end{equation*}
$$

From (5) $\quad \mathrm{R}_{12}=\left[R_{1}\left(R_{12}+R_{23}+R_{31}\right) / R_{31}\right]$

$$
=R_{1}\left(\frac{R_{12}}{R_{31}}+\frac{R_{23}}{R_{31}}+1\right)
$$

$\operatorname{Using}(6) \quad \mathrm{R}_{12}=R_{1}\left(\frac{R_{2}}{R_{3}}+\frac{R_{2}}{R_{1}}+1\right)=\left(\frac{R_{1} R_{2}}{R_{3}}+R_{2}+R_{1}\right)$.

Winter - 2014 Examinations

Subject Code :17323(ECN)

Model Answer
Page No : 17 of 28
Similarly we can write,

$$
\mathrm{R}_{23}=\left(\frac{R_{3} R_{2}}{R_{1}}+R_{2}+R_{3}\right) \quad \text { and } \quad \mathrm{R}_{31}=\left(\frac{R_{3} R_{1}}{R_{2}}+R_{3}+R_{1}\right)
$$

4 e Using mesh analysis calculate voltage drop across 10Ω resistance in following circuit. Refer figure No. 3

Fig. No. 3

Ans-

Apply KVL for loop I- (A-B-D-A)

Apply KVL for loop (II) - (B-C-D-B)

$$
\begin{aligned}
& -4 \mathrm{I}_{2}-20+10\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0 \\
& -4 \mathrm{I}_{2}-20+10 \mathrm{I}_{1}-10 \mathrm{I}_{2}=0 \\
& 10 \mathrm{I}_{1}-14 \mathrm{I}_{2}=20 \\
& 5 \mathrm{I}_{1}-7 \mathrm{I}_{2}=10--------------- \text { equation (2) }
\end{aligned}
$$

01 mark
Both
Solving equation (1) and (2) we get,

$$
\mathrm{I}_{1}=5.81 \mathrm{Amp},
$$

mark

And $\quad I_{2}=2.71 \mathrm{Amp}$

$$
\begin{aligned}
& -5 \mathrm{I}_{1}-10\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+60=0 \\
& -5 \mathrm{I}_{1}-10 \mathrm{I}_{1}+10 \mathrm{I}_{2}=-60 \\
& -15 \mathrm{I}_{1}+10 \mathrm{I}_{2}=-60 \\
& -3 \mathrm{I}_{1}+2 \mathrm{I}_{2}=-12------------------- \text {-equation (1) }
\end{aligned}
$$

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 18 of 28
4 f For following circuit calculate resistance R. Using Node analysis. Refer Figure No. 4

Fig. No. 4
Ans:

As current through R is not given students may assume suitable value eg. 2 A and proceed. Other values are also to be considered and answer to assessed for steps.
Apply KCL at node A;
$I_{1}+I_{2}+I_{3}=0$
***Assume $I_{2}=2$ Amp
$\frac{V_{A}-10}{10}+2+\frac{V_{A}-25}{5}=0$
$\frac{\left(5\left(V_{A}-10\right)+10\left(V_{A}-25\right)\right)}{10 \times 5}+2=0$
$\frac{5 V_{A}-50+10 V_{A}-250}{50}+2=0$
$15 V_{A}-300=-100$
$15 V_{A}=200$
$V_{A}=\frac{200}{15}=13.33 \mathrm{Volts}$
now,
$R=\frac{V_{A}}{I_{2}}=\frac{13.33}{2}=6.67 \Omega$

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 19 of 28
$5 \quad$ Attempt any one of the following.
a With the help of phasor diagram, derive the relationship between line and phase values in balanced star connected 3-phase suppy.
Ans:

As seen from the above diagram, in this form of interconnection, there are two phase windings between each pair of terminals but since there similar ends have joined together, they are in opposition.
Thus the potential difference between any two terminals is the phasor difference of the two phase emf's.
Assume a balanced system where,

$$
\begin{gathered}
E_{R}=E_{Y}=E_{B}=E_{p h}=\text { phase voltage } \\
V_{R Y}=V_{Y B}=V_{B R}=V_{L}=\text { line voltage }
\end{gathered}
$$

According To Above
Statement; line voltage $V_{R Y}$ between line 1 and 2 is vector difference of $E_{R} \& E_{Y}$ line voltage $V_{Y B}$ between line 2 and 3 is vector difference of $E_{Y} \& E_{B}$
line voltage $V_{B R}$ between line 3 and 1 is vector difference of $E_{B} \& E_{B}$

Labeled vector diagram 04 mark
Unlabeled 2 marks

Then ,
The p.d. between line $1 \& 2$ is ; $V_{R Y}=E_{R}-E_{Y}$
$V_{R Y}$ is found by compounding E_{R} and E_{Y} reversed and its value is given by

Winter - 2014 Examinations

Subject Code :17323(ECN)

Model Answer

Page No : 20 of 28
diagonal of theparallelogram. Its magnitude is calculated as below-

$$
\begin{aligned}
V_{R Y} & =2 \times E p h \times \cos \left(\frac{60^{\circ}}{2}\right) \\
& =2 \times E p h \times \cos 30^{\circ} \\
& =2 \times E p h \times \frac{\sqrt{3}}{2} \\
\therefore V_{R Y} & =\sqrt{3} . E p h
\end{aligned}
$$

5 b State Norton's theorem. Also write stepwise procedure for applying Norton's theorem to simple circuit.
Ans:
Norton's Theorem:
Norton's theorem states that, any complex linear, bilateral active network can be converted into simple network consisting of a single current source (I_{SN}) and a single resistance ($\mathrm{R}_{\mathrm{TH}} / \mathrm{R}_{\mathrm{N}}$).
Where, $\mathrm{I}_{\mathrm{SN}}=$ it is the short circuit current flowing through the load terminals when load terminals are shorted.
And $\mathrm{R}_{\mathrm{TH}} / \mathrm{R}_{\mathrm{N}}=$ Thevenin's or Norton's equivalent resistance, which is total resistance of the network seen through load terminals when voltage sources are replaced by short circuit and current sources are replaced by open circuit.

Stepwise procedure for applying Norton's theorem-
Consider the simple general circuit as shown in below figure.

Step-1) To find I_{SN} :

- Remove load resistance R_{L}, and then short the load terminals A \& B.
- Find the short circuit current (I_{SN}) flowing through the short circuited branch by using any one of the network simplification technique.

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 21 of 28

Step-2) To find R_{TH} :

- Remove load resistance (R_{L}).
- Short circuit all voltage sources in the given network (or replace those voltage sources with their internal resistances if given).
- Open circuit all current sources in the given network (or replace those current sources with their internal resistances if given).
- Now network contain only resistance in it. Find equivalent resistance of the network seen through the load terminals A \& B.

Step-3) Norton’s Equivalent Network:

- Draw Norton's equivalent diagram as below.

Determine the load current $\left(\mathrm{I}_{\mathrm{L}}\right)$ using equation,

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{SN}} \mathrm{X} \frac{\mathrm{R}_{\mathrm{TH}}}{\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}} \mathrm{Amp}
$$

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 22 of 28
5 c Calculate current through each branch using superposition theorem. Refer figure No. 5

Fig. No. 5

Ans:

- Consider 20 V source acting alone -

$$
I_{1}^{\prime}=\frac{V}{R_{1}}=\frac{20}{8}=2.5 \mathrm{Amp} .
$$

$$
I_{2}^{\prime}=I_{3}^{\prime}=\frac{V}{\left(R_{2}+R_{3}\right)}=\frac{20}{(10+12)}=0.90 \mathrm{Amp}
$$

Consider 3 Amp source acting alone -

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 23 of 28
Simplified diagram-
10Ω

$I_{1}^{\prime \prime}=0 A m p$.
$I_{2}^{\prime \prime}=\frac{3 \times 12}{(10+12)}=1.63 \mathrm{Amp}$.
$I_{3}^{\prime \prime}=\frac{3 \times 10}{(10+12)}=1.36 \mathrm{Amp}$.
02 mark

- By superposition theorem -
$I_{1}=I_{1}^{\prime}+I_{1}^{\prime \prime}=2.5+0=2.5 \mathrm{Amp}$.
$I_{2}=I_{2}^{\prime}+I_{2}^{\prime \prime}=0.90-1.63=-0.73 \mathrm{Amp}$.
*difference of two currents is taken because both currents are opposite to each other

$$
I_{3}=I_{3}^{\prime}+I_{3}^{\prime \prime}=0.90+1.36=2.26 \mathrm{Amp}
$$

02 marks
$6 \quad$ Attempt any FOUR of the following.
$4 X 4=16$

6 a Convert following circuit into Thevenin's circuit across A \& B. refer figure No. 6

Fig. No. 6
Ans:
To Find V_{TH} remove load resistance R_{L} and calculate open circuit voltage available between load terminals A \& B-

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer

$\mathrm{V}_{\mathrm{TH}}=24 \mathrm{~V}+$ voltage across 4Ω
Applying KVL to determine voltage drop across 4Ω :

$$
\begin{aligned}
& -4 I-4 I-24+12=0 \\
& -8 I-12=0 \\
& 8 I=-12 \\
& I=-\frac{12}{8}=-1.5 \mathrm{Amp}
\end{aligned}
$$

Now $\mathrm{V}_{\mathrm{TH}}=24+$ voltage across 4Ω

$$
\begin{aligned}
& =24+(-1.5 \times 4) \\
& =18 \text { Volts }
\end{aligned}
$$

Find R_{TH} :

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 25 of $\mathbf{2 8}$
**4 Ω and 4Ω are in parallel to each other-

$$
R_{T H}=\frac{4 X 4}{4+4}=2 \Omega
$$

Equivalent diagram-

$$
R_{T H}=2 \Omega
$$

$$
I_{L}=\frac{V_{T H}}{R_{T H}+R_{L}}=\frac{18}{2+6}=2.25 \mathrm{~A}
$$

$6 \mathrm{~b} \quad$ Calculate the value of R_{L} in the following circuit using maximum power transfer theorem for the transfer of maximum power to the load. Refer figure No. 7

Fig. No. 7

Ans:

Maximum amount of power will be delivered to load when load resistance equal to Thevenin's resistance-
Find R_{TH} :

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 26 of 28
5Ω and 10Ω are in series with each other-
$\mathrm{R}_{\mathrm{TH}}=5 \Omega+10 \Omega=15 \Omega$

Thus, $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}=15 \Omega$
c Determine current through 10Ω resistance using mesh analysis. Refer fig No. 8

Fig. No. 8
Ans:

Apply KVL to loop (I) - (A-B-C-D-A)
$-4 \mathrm{I}_{1}-8-6 \mathrm{I}_{1}-10\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0$
$-4 \mathrm{I}_{1}-8-6 \mathrm{I}_{1}-10 \mathrm{I}_{1}+10 \mathrm{I}_{2}=0$
$-20 \mathrm{I}_{1}+10 \mathrm{I}_{2}=8$
$-10 \mathrm{I}_{1}+5 \mathrm{I}_{2}=4$
01 mark

Apply KVL to loop (II) - (D-E-A-D)
$-2 \mathrm{I}_{2}+16+10\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0$
$-2 \mathrm{I}_{2}+16+10 \mathrm{I}_{1}-10 \mathrm{I}_{2}=0$
$10 \mathrm{I}_{1}-12 \mathrm{I}_{2}=-16$
01 mark

Solving equation (1) and (2) we get;

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 27 of $\mathbf{2 8}$

$$
\begin{aligned}
& \mathrm{I}_{1}=0.455 \mathrm{Amp}, \\
& \mathrm{I}_{2}=1.71 \mathrm{Amp},
\end{aligned}
$$

01 mark

Current through $10 \Omega=\mathrm{I}_{1}-\mathrm{I}_{2}=0.455-1.71=-1.255 \mathrm{Amp}$

6 d Derive the expression for resonance frequency in R-L-C series circuit. Ans:

The frequency at which the net reactance of the series circuit is zero is called the resonant frequency fo. Its value can be found as under:
$X_{L}-X_{C}=0 \quad$ Or $\quad X_{L}=X_{C}$
$\omega_{o} L=\frac{1}{\omega_{0} C}$.

$$
\begin{gathered}
\omega_{o}^{2}=\frac{1}{L C} . \\
\therefore(2 \pi f o)^{2}=\frac{1}{L C} \\
\therefore f o=\frac{1}{2 \pi \sqrt{L C}}
\end{gathered}
$$

6 e Explain the concept of initial and final conditions in the switching circuits for the elements R, L and C.

Concept of initial condition:
Consider the network as shown in fig. below-

01 marks

A voltage source is connected to resistor and inductor using a switch. When a switch is closed, voltage V is applied to resistor and inductor. For the switch, $\mathrm{t}=0$ is mentioned. It indicates switch is closed at time instant $\mathrm{t}=0$. The time $\mathrm{t}=0$ is called reference time. In any switching network it is assumed that closing of switch takes place instantaneously. That means the switch takes zero time to close from open condition. Thus at time $t=0$; the condition of network is changed due to switching action. The network conditions at this instant are called as initial

Winter - 2014 Examinations

Subject Code :17323(ECN)
Model Answer
Page No : 28 of 28
conditions.
Initial conditions:
Resistor: initial conditions in resistor are not present, as the equation ($\mathrm{v}=\mathrm{i} \mathrm{R}$) is time independent.
Inductor: at the time of switching inductor acts as an open circuit. 01 mark
Capacitor: at the time of switching inductor acts as an short circuit

Concept of final condition:
If the switch is on, the switch at $t=0$ and then the network remains without switching action for a long time then the network conditions corresponding to this situation is known as the final condition or the steady state condition.
The final condition or steady state condition is also known as the network condition at $=\infty$.
Final Conditions:
Resistor: final conditions in resistor are not present, as the equation ($\mathrm{v}=\mathrm{i} \mathrm{R}$) is time independent. Final conditions for resistor are zero.
Inductor: At the time of $(t=\infty)$ inductor acts as an short circuit.
Capacitor: at the time of switching (i.e. at $\mathrm{t}=\infty$) the capacitor acts as open circuit.
6 f Draw the phasor diagram and waveforms of voltage, current and power in a pure inductance circuit supplied by a single phase a.c. source.
Ans:
Phasor Diagram of Pure Inductive Circuit-

Phasor diag
01 mark

Voltage And Current Waveforms:

Power waveform
V \& I
waveform 01 mark

Power waveform 02 mark

