

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Total Pages: 2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATIONS Model Answer

Important Instruction to Examiners:-

Subject Code: 17505

- 1) The answers should be examined by key words & not as word to word as given in the model answers scheme.
- 2) The model answers & answers written by the candidate may vary but the examiner may try to access the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance.
- 4) While assessing figures, examiners, may give credit for principle components indicated in the figure.

The figures drawn by candidate & model answer may vary. The examiner may give credit for any equivalent figure drawn.

- 5) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.
- 7) For programming language papers, credit may be given to any other programme based on equivalent concept.

Important notes to examiner

- Q.1 b) i) In this question the edge distance (e) and gauge distance (g) are not given, therefore the student may assume other values than given in this solution are also correct. Answers may be assessed accordingly.
- Q.1 b) ii) In this question the edge distance (e) and gauge distance (g) are not given, therefore the student may assume other values than given in this solution are also correct. Answers may be assessed accordingly.
- Q.2 a) Value of edge distance (e) is not given, student may solve question by using other assume value of e. Answer shall be assessed accordingly.
- Q.5 a) In this question Dead load (DL) and Live load (LL) per panel point can be obtained by taking total plan area i.e. 16x3.5= 56 sqm and then dividing by total load by no. of panels. . Answers may be assessed accordingly.
- Q.5 b) In this question Live load (LL) and wind load (WL) per panel point can be obtained by considering total plan area and total sloping area respectively and then dividing total load by no. of panel points. . Answers may be assessed accordingly.
- Q.5 c) In this question two solutions are possible, examiner may consider any one for giving proportionate marks. Answers may be assessed accordingly.
- Solution 1) Considering bearing strength of concrete = 0.6 fck
- Solution 2) Considering bearing strength of concrete = 0.45 fck

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autosomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION <u>Model Answer</u>

1/2 | Page No: 1 / N

Subject C	Code: 17505 WINTER - 14 EXAMINATION Page	No: 1 / N
Q.NO	SOLUTION .	MARKS
1 0)	Any three	
	(i) Functions of -	(1 each)
	· Steel towers — to support transmission lines, antennas,	×4 (
	radar equipments, tanks, bridge girders	
	· Roof tousses - to provide (roof) cover to structures	
10	. Steel bridges - to facilitate transportation across rivers, v	
	· Crane girders - to facilitate movement of heavy materio	de
100	and machinery in industry.	
	Comment of the second state of the second stat	(1 each)
	(ii) Structural steel sections (any 4) with name & sketches	1 4 1
	· Angle Section · Tee Section · Channel Section · Iye Sec	na = 4)
-		1
	Spannings Spanning Spanning	
	· Tube/Pipe · Flat · Plate · Bar	
1		
	Commonwood .	
	(iii) Define -	(1 each
	1) Importance factor - The factor used to obtain design seisi	mic * 4= A
	force based on the functional use of structure.	
	x) Zone factor - The factor used to obtain design spectrum	
	depending upon the perceived seismic hazard in the zone	
135	in which the structure is located.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION Model Answer Subject Code: 17505

Page No: 2/N

Subject C	ode: 17505 Model Answer Fage P	10
Q.NO	Q la contd. SOLUTION	MARKS
3)	Response Reduction factor - It is the factor by which actual base	
	shear force (that would be generated if the structure	
	is to remain elastic during its response to the design	
	basis earthquake shaking) should be reduced to obtain	
	design lateral force.	
1	Note (A) Mark be given if matter in brocket (_)	
	even is not written.	69
4)	Fundamental Natural period - It is the first modal time	
	period of vibration of the structure.	
(n) -	Exhist two sections used as Tension member with sketches	(1/2 ear
	· single (equal or unequal) angle	*2=3
44	· Tee section	
	. Double angle on either or	
,	same sides of GP	
	III-	
-	Function of gasset plate - to facilitate connections at	1
	a place where more than one members are to be	
	jointed.	
		-

@ Remark

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified) 3/21

WINTER - 14 EXAMINATION Page No: 3 / N Model Answer Subject Code: 17505 MARKS SOLUTION Q.NO 1 contd .. Q.1 b) Solve any one Flat size 150 x10 fillet weld 8 mm Permissible shear stress 108 N/mm2 * Given data represents, question is based on Working Stress Method, Not as per Limit State Method. - External pull or tension force is also not mentioned - Can not be solved referring LSM. Note & Further, if a student wishes to solve by LSM he has to assume fu, has to calculate To (at least refering Idg or Idn), then only he can solve Such as . Assuming fu = 410 MPa. · design strength of weld/mm Pu tu xt = 410 (0.7×9) = 883.73 N/mm · For plate

→ Tdg = Ag. fy = (150×10) 250 = 340-90×103 N Tan = 0.9 An fu = 0.9 (150×16) \$10 442.8×163 N

Weld length req = $\frac{T_d}{k_d} = \frac{340.90 \times 10}{883.73} = 385.75 \text{ mm}}{883.73} = \frac{385.75 \text{ mm}}{800 \text{ mm}}$ Required lap length = $\frac{390}{2} = 195 \text{ mm}$.

-: Td = 340.90 × 103 N (minimum out of Tdg, Tdn)

Subject Code: 17505

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION Model Answer

Page No: 4 / N

Q NO 1(b) contd. SOLUTION	MARKS
Constant Con	
(ii) Determination of block shear Strength.	
1 d=20	
90 As 3T db = 22	
1 # 10 + 0 2000	
e 60 +60 +	
1-60-1 30	0
Sall of 'a' and la's are not awar	
Values of 'g' and 'e') are not given.	
but can be assumed as $g = \frac{90}{2} = 45$ (averaging)	0
€ = 1.5 do = 1.5 x 22 = 33 mm	-
$Avq = (33 + 2x60) 10 = 1590 \text{ mm}^2$	
Avn = (33 + 2×60 - 2.5×22)10= 980 mm²	2
Atq = (45) 10 = 450 mm²	
Atn = (45- 23/2) 10 = 340 mm²	
licing,	
Tdb, = Avg. fg + 0.9 Atn-fu V3 Ymo Ym,	(
V3 Ymo Ym,	
$= \frac{1530 \times 250}{\sqrt{3} \times 101} + \frac{0.9 \times 340 \times 410}{1.25} = \frac{301.13 \times 10^3 \text{ N}}{1.25}$	0
V3 x 101 1-25	
Tdb2 = Atg. 6 + 0.9 Avn. fu	
Ymo V3 Ym,	
$= \frac{450 \times 250}{1-1} + \frac{0.9 \times 980 \times 410}{\sqrt{3} \times 1.25} = 269.29 \times 10^{3} \text{ N}$	0
1-1 V3 x 1.25	

Tdb = 269-29 KM.

Note - As the values of 'e' and 'g' are not given in the question, student may assume other values than given in solution. Answers may be assessed accordingly.

Subject Code: 17505

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION Model Answer

Page No: 5/N

Q.NO	SOLUTION	MARKS
2-2	Solve any two (2 ×8 = 16)	
100	Determine bolt value	
	For both d=20 mm : do = 22 mm Anb = 245 mm p=50	pon
	Grade 4-6 i.e. fub = 400 N/mm²	
	@ value of e not given assumed e = 1.5 do = 33 mm	0
17	Note Student may solve question by using other	
	assumed value of e other than above.	6
	Answers shall be assessed accordingly	
	For plate t=10 mm fu = 410 N/mm2	
	Design strength of bolt-	
	-in single shear	
	$Vds_1b = \frac{f_{Nb}}{V3} \frac{(n_0 \cdot Anb)}{V3 \times 10^{2}} = \frac{400}{V3 \times 10^{2}} \frac{(1 \times 245)}{(1 \times 245)} = \frac{45 \cdot 26 \times 10^{3}}{10^{3}} \times \frac{100}{10^{3}} = \frac{100}{10^{3}} \times \frac{100}{10^{3}} \times \frac{100}{10^{3}} = \frac{100}{10^{3}} \times \frac{100}{10^{3}} \times \frac{100}{10^{3}} = \frac{100}{10^{3}} \times \frac{100}{10^{3}} = \frac{100}{10^{3}} \times \frac{100}{10^{3}} = \frac{100}{10^{3}} \times \frac{100}{10^{3}} \times \frac{100}{10^{3}} \times \frac{100}{10^{3}} = \frac{100}{10^{3}} \times \frac{100}{10^{3}} \times \frac{100}{10^{3}} \times \frac{100}{10^{3}} = \frac{100}{10^{3}} \times \frac{100}{10^{3}} $	
	V3 Ymb V3 x1.25 = 45.26 kN	0
41)	- in double shear $Vds_2b = 2 Vds_1b = 2 \times 45.26 = 90.52$	6n (1)
	-in bearing over 10 mm thick plate	(
	Vapb = (2.5 kb dxt x fu)/7mb	
	kb is smaller of e 33 0.5	1
	La Strong Land	
	$\frac{P}{3do} = 0.28 = \frac{50}{3 \times 22} = 0.25 = 0.507$	
	$\frac{\rho}{3do} - 0.25 = \frac{50}{3 \times 22} - 0.25 = 0.507$ $\frac{\rho}{3do} = \frac{50}{3 \times 22} - 0.25 = 0.507$	(2)
	$\frac{P}{3do} = 0.28 = \frac{50}{3 \times 22} = 0.25 = 0.507$	2
	$\frac{P}{3d0} = 0.28 = \frac{50}{3 \times 22} = 0.507$ $\frac{f_{11}b}{f_{11}} = \frac{400}{410} = 0.975$ and 1	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION

6/21

Page No: 6 / N Model Answer Subject Code: 17505 MARKS SOLUTION Q.NO 2 Contd Hence, For both in single shear -Bott value is lesser of Vds,b and Vdpb i.e. 45.26 km for bott in double shear Bolt value is lesser of Vds2b and Vdpb i.e. \$2.00 km Determine design compressive strength 2 ISA 90 x 90 x 10 L = 3m with one bolt at each end rmin of ascembly (of 2 equal angles) = tex of single angle = 27.3 mm KL = 0.85 L = 0.85 x3 = 2.55 M = 2550 MM Stenderness ratio KL 2550 , 93.40 Corresponding fed = 121 - (93.40-90), 14 = 116.24 N/mm² Design Compressive strength = 116.24 × (2×1703) = 395.91 x103 N = 395.91 kN - W = (Dead load + Superimposed load) per m

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

7/21

WINTER - 14 EXAMINATION

Subject C	ode: 17505 <u>Model Answer</u> Pag	e No: 7 / N
Q .NO 2	c contd. SOLUTION	MARKS
	Wu = 1-5 × 45 = 67.5 kN/m	
	: Design moment MD= Mu= 67.5 x 6/2 = 303.75 kNm	0
	& Design shear $V_0 = V_{\mu} = 67.5 \times 6_2 = 202.50$ kNm.	0
	• For flexure, Zp read = Md. Ymo = 303.75 x106 x1.1	
3		
	: Zpregd = 1336.5 x10 mm	. 0
	Zp available (140135 ×103) > Zp regd : OK	. 0
	Ze regd = Zp regd = 1336.5 x103.	
	= 1172-37 × 10 mm ³	
	Ze available (1223.8 x103) > Ze reqq : OK.	0
	i.e. Available ISLB 450 is safe in flexure.	
44	· Check for shear,	
	Design Shear Strength	
	Va = (Ditw) 19/13 = (450 18.3) 250/13	0
	= 507.805 KN. > Vu .: OK.	
	and Vu = 302.5 = 0.4 < 0.6 : 0k Vd 507.805 : Safe in shear	0
	· Check for deflection,	
	- permissible ymax = 1/300 = 6000/300 = 20 mm.	0
	- actual ymax for service condition	
	$\frac{5 \text{ Nol}^4}{384 \text{ EI}} = \frac{5 \times 45 \times (6000)^4}{384 \left(2 \times 10^5\right) \times \left(235.36 \times 10^6\right)}$	0
	384 EI 384 (2×105)×(235.36×10°)	

= 13.78 mm

act Ymax < per Ymax, section is safe in deflection as

- Q. 3 (a) Bolted joint may fail due to-
 - (i) Shear failure
 - (ii) Tensile failure
 - (iii) Bearing failure

(i) Shear failure occurs due to single / double failure of bolt or tearing failure of plate. This type of failure is avoided by providing minimum edge distance in the bolted joint.

01 M

(ii) Tensile failure occurs due to tensile failure of bolt or tensile failure of plate. Normally the bolt subjected to tensile force fails if factored tensile force is greater than the tensile capacity of bolt.

(iii) Bearing failure occurs due to bearing failure of bolt or bearing failure plate. Normally the bolt material is of higher strength than steel plate; as a result bearing failure takes place in the plate material.

Bearing failure of bolt (iii) bearing failure plate

	Some		
ubject	t code-	17505 Page- 9	121
Q.3 (b)	Disadvantages (i) (ii)	s of welded connections w.r.t. bolted connections. Welded connections require skilled labour and supervision. Welded connections are more brittle and therefore its fatigue	Any 4x1=4
	(iii)	strength is less as compared to bolted connections. It is difficult to inspect a welded joint as compared to inspect a bolted joint.	
	(iv)	Internal stresses and warping are produced due to uneven heating and cooling in welded connections.	
	(v) (vi)	Welded connections require electricity. Welded connections are over rigid as compared to bolted	
	(vii)	connections. Member to be jointed may distort due to heat during welding	
	(viii)	process. There is possibility of brittle fracture in case of welded connections.	
Q.3 (c)	Steel roof truss	s is a frame structure in which straight members are arranged	
	and pin connec	cted at their ends so that the members generally form triangles.	01
	Advantages to	use steel roof truss	
		At the places of high rainfall steel roof truss is used to avoid roof drainage problem.	01
		For large spans, steel roof truss is used because use of beams will become uneconomical.	01
	iii.	Use of steel roof truss is advantageous in industrial building, commercial complexes, cinema halls, malls and stadium roofs	01
Q.3 (d)	Purlin is a flex	ural member subjected to transverse loads and is supported at	02
	roof trusses.	n principal rafter running perpendicular to it over two adjacent	
		ion for angle purlin -	
	Bending Mon bi – axial bendi	nent about both axes should be considered and designed for ing requirements.	01
		deflections shall not exceed 150 for elastic cladding	01
		180 for brittle cladding	-

subject code-17505

Page -10/21

1 m for

Any 4x0.5

Q.3	(e)	The selection of	criteria of	type of roof	truss i	s as	listed below-	
	300	(i)		mof truce			and the second second second	

- (ii) Pitch of roof truss
- (iii) Purpose for which truss is to be designed- whether pitched roof truss or parallel chord truss Roof coverings
- (iv)
- Fabrication and Transportation (v)
- (vi) Aesthetic
- (vii) Climate

Pitch: - It is the ratio of rise to span of truss.

01

Slope: - It is the ratio of rise to half span of truss.

01

(a) Channels back to back

(c) I - Section with flange plates

(d) four angles

(e) Double Angle Section

(f) Double I Section

(ii)general requirements for lacing: (a) Thickness of flat lacing bars shall not be less than I/40 for single 4x1=4 lacing and 1/60 for double lacing.

(b) Lacing bars shall be inclined at an angle not less than 40° nor more than 70° to the axis of the built-up member.

- (c) Lacing system shall be uniform through act the length of the column.
- (d) The minimum width of lacing bars shall be three times the nominal diameter of the end bolt.
- (e) Lacing flats to be designed for transverse shear of 2.5 % of axial force in the member.
- (f) Slenderness ratio of lacing flats shall not exceed 145.

(iii) Effective length of column

The effective length of a column is the distance between the points of zero moment or points of contra flexures of a buckled column.

01

01

02

01

Effective length = 1.2L

(iv) Local buckling in compression member-

The buckling of the plate element of the cross – section under compression or shear may take place before over all bucking. This phenomenon is called local buckling. Hence local buckling involves distortion of cross – section.

Local buckling effect :Local buckling reduces over all load carrying capacity of the
member.

01

Hence to prevent local buckling effects – adopt higher thickness of elements i.e.by controlling width to thickness ratios as per IS requirements.

Q.4	(b)	(i) Gross -section yielding -	1
		 Deformation of the tension member in longitudinal direction may take place before it fractures, making the structure unserviceable, is called gross – section yielding. 	01
		 Hence, to prevent deformation due to yielding the stress on gross – section shall be less than yield stress. i.e. \(\frac{\tau}{Ag} < \Fy\) 	01
		• $T_{dg} = \frac{Ag.Fy}{\gamma m0}$	
		Net - section rupture -	
		 Tension member is connected to gusset plate by means of bolts, and when member is loaded, the fibers adjacent to the bolt hole yield due to stress concentration. When load increase in the member the entire net section of the member reaches the ultimate stress, which is called as net section rupture. 	01
		 Hence, to prevent failure of tension member due to net section rupture, ultimate strength of tension member should be greater than design force in the member. 	01
		i.e. $A_n f_v > T$	
		• $T_{dn} = \frac{T}{\gamma m1} = \frac{An.fy}{\gamma m1}$	01
		as there is no reserve strength of any kind beyond ultimate strength of tension member factor 0.9 should be applied to calculate	
		Hence, T _{dn=0.9} Anky ymi	01

Page - 13/21

0.4

(ii) (i)
$$Tdg = \frac{A_3. Fy}{8m_0} = \frac{978 \times 250}{1.10}$$

= 222 272 7 N

where,
$$\beta = 1.4 - 0.076 \left(\frac{W}{t} \right) \left(\frac{fy}{Fy} \right) \left(\frac{bs}{Lc} \right)$$

$$= 1.4 - 0.076 \left(\frac{80}{8} \right) \left(\frac{250}{410} \right) \left(\frac{80}{170} \right)$$

01

$$Tdn = 0.9 \times 368 \times 410 + \frac{1.182 \times 608 \times 210}{1.25}$$

01

(iii)
$$Tab_1 = \frac{Avg \cdot Fy}{\sqrt{3} \cdot y_{mo}} + \frac{o \cdot g \ Atn \cdot Fy}{8m_1}$$

where, Ang = total welding 1 x t

= Avn

$$= Avn$$
Atg = 50×8 = 400 mm²

= Ath

Rage-14/21

$$= \frac{2720 \times 250}{\sqrt{3} \times 1.10} + \frac{0.9 \times 400 \times 410}{1.25}$$

= 475 KN

. 01

$$= \frac{0.9 \times 2720 \times 410}{\sqrt{3} \times 1.25} + \frac{400 \times 250}{1.10}$$

01

.. Design strength of Tension Member is the lesser value of Tag, Tan, Tab

.. Design strength of member is = 222.27 KN

01

subject: 17505 Page-15/21 DSS (17505) W-2014 Pg. No. slope 0 = tan (3/8) = 20.551° Dead Load Calculation: a Weight afroof covering = 120 cos 20.55% = 128.16 N/m2 · self wt of trus = (=+5) x10 $=\left(\frac{16}{3}+5\right)\times10 = 103.33 \text{ N/m}^2$ · Weight of bracing = 75 N/m2 · Weight of purlin = 80 N/m2 Total DL = 386.49 N/m2 .. Dead Load on one panel point = Intensity of DL x Area under one panel point = 386.49 x 2 x 3.5 = 2705.43 N = 2.705 kN -Live Load Calculation: Live Load for purdin = 750- (0-10)x20 = 750- (20.556-10)×20 = 538.88 N/m2x400N/m2 :. Live land for trus = 2 x538.88 2M = 359.27 N/m2 Live load on one panel point = 359,27 x2x3,5 Note: DLELL perpanel point can = 2514.9 N be obtained by taking total plan area 15 16x35 = 52 m 2 and then = 2:515.KN dividing by total doad by no. of panel points.

by Taking total plan area i.e. 16x3.5 = 56 m² aw then dividing by total low by number of land points.

Anguers may be assessed accordingly.

subject crde-17505

Pige 16 /21

DSS(17805) W-2014

Pg. No

Q.5(b) for worst combination

· Pd = (Cpe-Cpi) p

= (-1.0-0.5) 1650 = -2475 N/m2 - 3-(2M

a = tan (4.5) = 24.23°

Wind Load per panel point = Design wind pressure x . Spacing x Inclined panel length

 $= -2475 \times \frac{2}{\cos 524.23} \times 5$

= -27140.97 N (uplift)

= -27.14 kN

1 - (2m)

= 750 - (24.23-10) x20

= 465.4 N/m2 x 400 N/m2

"Live Load on trus = 2 x 465.4

= 310.27 N/m2 - O (1m)

Liveland on panel point = 310.27 x 2 x 5

=31027 N

= 3.1027 km = 2 (2 m

Note: LiveLond and wind lond per panel point can be obtained by considering total plan area and total sloping area respectively and then dividing by total lond by no. of panel points.

Mte:- LL and w. L Per Panel Paint can be obtained by considering total plan area and total sloping area respectively & then dividing total load by number of Panel Points:

In this question Two Solutions are losable. solution D-considering Bearif stepth of concerte = 0-6fck Page-17/21 subject code-17505 DSS (17505) W-2014 pg. No. a.5(c) Axial load = 1.58 MN = 1580KN Ultimate Load = 1.5 x1580 = 2370 KN Bearing area of base plate A = Pu o. 6 fek 0.6 fek $A = \frac{2370 \times 10^3}{0.6 \times 20} = 197500 \text{ mm}^2 = 0 - 10$ 540 BxD=197500 - Degn B = D-300+140 380 mm B=D-160 - Oegn (D-160) D=197500 D= 160D-197500=0 1.D=5315mm Adopt D = 540 mm -. B= 380 mm & a=b=120mm W = 2370×103 = 11.55 N/mm2 t= 125w (950.36) mo Thickness of plate t= \[\int \frac{2.5\times 11.55(120^2 - 0.3\times 120^2)\times 1.1}{250} t = 35.78 mm = 36mm < tf Provide base plate of size 540mmx330x36mm, Area of convete block A = P4. Ymo 58c.74 A = 2370×103×1.1 = 8.69 m2 for equal projections Bx D = 8.69 m2 = 8.69 x106 mm2 B-440 = D-600 : B=D-160 : D=160D-8.69×106=0

Page-18/21 subject ade- 17505 DSS(17505) W-2014 (2.5 (c) contd. Adopt D=3030 mm = 3103 m B= 2870 mm = 2.87 m Actual projections $a=b=1245 \, \text{mm}$ Considering 45° angle of dispersion of load The depth of concrete block = 1.245 m Cleat angle ISA 100×100×10 Alternate solution by taking Bearing Stress= 0.45fck solution 2) considering Bearing strength of concrete = 0.45 fek

Subject code - 17505 Page

Page - 19/21

DSS (17505) W-2014 pg. No. a.5(c) Axial load = 1.58 MN = 1580KN Ultimate Land = 1.5 x1580 = 2370 KN Bearing area of base plate A = Pu oxistek 0.45fek 140 mm 600 BxD= 26333333 - Degn B = D-300+140 B=D-160 - Degn (D-160) D=263333.33 D2- 160D-2633333=0 1. D= 600 mm Adopt D= 600 mm .. B = 440 mm & a = b = 150 mm 2370×103 = 8.98 N/mm2 Thickness of plate t= \[\frac{2.5\times 8.98(150=0.3\times 150^2)\times 1.1}{2.5\times 8.98(150=0.3\times 150^2)\times 1.1} Provide base plate of size 600mm x 440 mm = 40mm < to Area of concrete block A = P4. Ymo = 2 A = 2370×103×11 = 8.69 m2 200×103×115 for equal projections B x D = 8:69 m2 = 8:69 x106 mm2 B-440 = D-600 . B=D-160 . D2-160D-8.69×106-0 D=3028.9mm -

(b) Design bending strength,

Md = \frac{Zp}{Ymo} \frac{bh}{th} = \frac{212}{6.7} = \frac{31.64}{384} \frac{20}{7mo} = \frac{1.11}{475.14 \text{x10}^3 \text{x20}} = \frac{10.78}{1.11} \frac{20.78}{7mo} = \frac{1.11}{1.11} = \frac{10.78}{1.11} \frac{10.78}{1.11} = \frac{10.78}{1.11} \frac{10.78}{1.11} \frac{10.78}{1.11} = \frac{10.78}{1.11} \frac{10.78}{

Plastic sections has sufficient ductility.

compact sections have relatively lower rotation.

Semi compact sections, bending stress is limited to yieldstress.

For slender members local or lateral building occurs in the elastic sange.

Q6(d) slab base

- 1) thickness of base plate required with more
- ii) cleat angles are used to fasten column section to base plate
- 111) simple in construction
- in Economical

Gresseted base

- i) thickness of base plate acquired less compared to stab base.
- ii) cleat angles are used to faster gusset plate to base plate, so stiffners of joint increases.
- 111) complex in construction
- iv) Expensive but stronger.
- Q.6(e) Column bases sprends the load on wider area so that intensity of bearing pressure on converte block is within limit. The lead on column is transferred to lowe plate through bearing. Cleat angles holds the Column in possition and make easy commention of column section with base plate. Plan area of a converte depends on SBC of soil. cleat angles are provided to hold column and connect it to base plate.