23124
3 Hours / 70 Marks
Seat No. \square

Instructions: (1) All Questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following :

(a) Find value of \ddot{x} if $\frac{\log x}{\log 4}=\frac{\log 64}{\log 16}$.
(b) Find the area of triangle whose vertices are $(0,0),(3,6)$ and $(-8,-2)$ using determinant method.
(c) Without using calculator find value of ' $\sin 15^{\circ}$.
(d) Calculate the surface area of the cube having length of one side as 5.3 cm .
(e) If the volume of a room is $792 \mathrm{~m}^{3}$ and the area of the floor is $132 \mathrm{~m}^{3}$, find the height of the room.
(f) Find range and co-efficient of range of the following data $50,90,120,9,13$, 11, 5.
(g) If the mean of data is 12 and co-efficient of the data is 45%, then find the standard deviation of the data.
2. Attempt any THREE of the following :
(a) If $\mathrm{A}=\left[\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}3 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]$, then verify that $(A B)^{T}=B^{T} \cdot A^{T}$.
(b) Resolve into partial fractions,

$$
\frac{x^{2}+1}{x\left(x^{2}-1\right)}
$$

(c) Calculate variance for the data :

$\boldsymbol{x}_{\mathbf{i}}$	10	20	30	40	50
$\mathbf{f}_{\mathbf{i}}$	12	15	17	11	9

(d) Following equations are obtained as a result of an experiment

$$
\alpha \mathrm{I}_{1}-\mathrm{I}_{2}+\mathrm{I}_{3}=0,4 \mathrm{I}_{1}-\mathrm{I}_{3}=2,2 \mathrm{I}_{2}+\mathrm{I}_{3}=2 \text {, find } \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3} \text { using Cramer's rule. }
$$

3. Attempt any THREE of the following :
(a) Prove that $\tan \left(\frac{\pi}{4}+\mathrm{A}\right) \cdot \tan \left(\frac{\pi}{4}-\mathrm{A}\right)=1$.
(b) If $\tan \mathrm{A}=\frac{1}{3}, \tan \mathrm{~B}=\frac{1}{4}$ where $0<\mathrm{A}<\frac{\pi}{2}, \pi<\mathrm{B}<\frac{3 \pi}{2}$, find $\sin (\mathrm{A}+\mathrm{B})$.
(c) Simplify $\frac{\sec ^{2}\left(135^{\circ}\right)}{\cos \left(-240^{\circ}\right)-2 \sin \left(930^{\circ}\right)}$.
(d) Prove that $\frac{\sin 4 \theta+\sin 2 \theta}{1+\cos 2 \theta+\cos 4 \theta}=\tan 2 \theta$.
4. Attempt any THREE of the following :
(a) If $\mathrm{A}=\left[\begin{array}{ccc}x & 2 & -5 \\ 3 & 1 & 2 \mathrm{y}\end{array}\right]$, $\mathrm{B}=\left[\begin{array}{ccc}2 \mathrm{y}+5 & 6 & -15 \\ 9 & 3 & -6\end{array}\right]$ and if $3 \mathrm{~A}=\mathrm{B}$, find x and y.
(b) Resolve into partial fraction,

$$
\frac{x^{2}+1}{x^{3}+1}
$$

(c) Show that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}=\frac{1}{8}$.
(d) Prove that $\frac{\sin 7 x+\sin x}{\cos 5 x-\cos 3 x}=\sin 2 x-\cos 2 x \cdot \cot x$.
(e) Prove that $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\cot ^{-1}(2)$.

5. Attempt any TWO of the following :

(A) Attempt the following :
(i) Find the equation of the straight line passing through $(-3,10)$ and sum of their intercept is 8 .
(ii) Find the equation of straight line passing through the points $(-4,6)$ and $(8,-3)$.
(B) Attempt the following :
(i) Find the equation of a straight line that passes through point $(3,4)$ and perpendicular to the line $3 x+2 y+5=0$.
(ii) Find acuate angle between line

$$
3 x-2 y+4=0 \text { and } 2 x-3 y-7=0
$$

(C) Attempt the following :
(i) The area of a rectangular courtyard is 3000 sq.m. Its sides are in the ratio $6: 5$. Find the perimeter of the courtyard.
(ii) A swimming pool is 12 m long and 7.5 m broad. It is 2.5 m deep at its deep end and 1.4 m deep at its shallow end. Calculate its capacity in kilolitres.
6. Attempt any TWO of the following :
(a) Solve the following equation by using matrix inversion method :
$x+2 y+3 z=1,2 x+3 y+2 z=2 \& 3 x+2 y+4 z=1$
(b) Find the mean deviation from mean of the following data :

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of Students	5	8	15	16	6

(c) Attempt the following :
(i) Find range and co-efficient of range of the following :

$\boldsymbol{x}_{\mathbf{i}}$	10	20	30	40	50
$\mathbf{f}_{\mathbf{i}}$	7	5	3	2	1

(ii) The runs scored by two batsmen A and B in 5 one day matches are given below :

\mathbf{A}	48	50	39	46	37
\mathbf{B}	50	52	60	55	53

Who is more consistent?

