## 23124

## 3 Hours / 70 Marks Seat No. <br> $\square$

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

## Marks

1. Solve any FIVE of the following: $\mathbf{1 0}$
a) Define odd and even function with suitable example.
b) If $f(x)=x^{2}+6 x+10$ find $f(0)+f(2)$
c) Find $\frac{d y}{d x}$ if $y=x^{10}+10^{x}+\mathrm{e}^{x}$
d) Evaluate : $\int \frac{1+x-x^{2}}{\sqrt{x}} \mathrm{~d} x$
e) Evaluate : $\int \frac{d x}{1+\cos 2 x}$
f) Find the area under the curve $y=x^{2}$ from $x=0$ to $x=3$ with x -axis.
g) State trapezoidal rule of numerical integration.
2. Solve any THREE of the following:
a) Find $\frac{d y}{d x}$ if $x^{2}+y^{2}+x y-y=0$ at $(1,2)$.
b) If $x=a(\theta-\sin \theta)$ and $y=a(1-\cos \theta)$ find $\frac{d y}{d x}$.
c) Find the maximum and minimum value of $x^{3}-9 x^{2}+24 x$.
d) Find the radius of curvature of the curve $y=x^{3}$ at the point $(2,8)$.
3. Solve any THREE of the following:
a) Find the equation of the tangent and normal to the curve

$$
13 x^{2}+2 x^{2} y+y^{3}=1 \text { at }(1,-2)
$$

b) Find $\frac{d y}{d x}$. if $y=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$
c) Find $\frac{d y}{d x}$ if $y=x^{x}$
d) Evaluate : $\int \frac{\cos x \mathrm{~d} x}{(2+\sin x)(3+\sin x)}$
4. Solve any THREE of the following:
a) Evaluate : $\int \frac{e^{x}(x+1)}{\cos ^{2}\left(x e^{x}\right)} \mathrm{d} x$
b) Evaluate : $\int \frac{d x}{4-5 \cos ^{x}}$
c) Evaluate $: \int \frac{x \cdot \sin ^{-1} x}{\sqrt{1-x^{2}}}$
d) Evaluate : $\int \frac{2 x+1}{(x+1)(x+2)(x+3)} \mathrm{d} x$
e) Evaluate : $\int_{0}^{\pi / 2} \frac{1}{1+\sqrt{\tan x}} \mathrm{~d} x$
5. Solve any TWO of the following:
a) Find the area bounded by the parabolas $y^{2}=9 x$ and $x^{2}=9 y$.
b) Attempt the following:
i) Verify that $y=\sin (\log x)$ is a solution of differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0
$$

ii) Solve : $\left(1+x^{2}\right) \mathrm{d} y-\left(1+y^{2}\right) \mathrm{d} x=0$
c) The velocity of a particle is given by $v=t^{2}-6 t+7$.

Find distance covered in 3 seconds.
6. Solve any TWO of the following: 12
a) Attempt the following:
i) Given:

$$
\begin{aligned}
& x: \quad 0 \quad \pi / 8 \quad \pi / 4 \\
& \tan x: 00.4141 \quad 1 \\
& \text { Find } \int_{0}^{\pi / 4} \mathrm{f}(x) \mathrm{d} x \text { using Trapezoidal rule. }
\end{aligned}
$$

ii) Evaluate : $\int_{0}^{2} \mathrm{e}^{-x} \mathrm{dx}$ by using Simpson's one-third rule. Given :

| $x$ | $:$ | 0 | $1 / 2$ | 1 | $3 / 2$ | 2 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $y=\mathrm{e}^{-x}:$ | 1 | 0.6064 | 0.3676 | 0.2231 | 0.1353 |  |

b) Evaluate : $\int_{3}^{3} x^{4} \mathrm{~d} x$ using Trapezoidal rule by dividing $[-3,3]$ into seven intervals.
c) Evaluate : $\int_{0}^{\pi / 2} \cos x \mathrm{~d} x$ using Simpson's $(3 / 8)^{\text {th }}$ rule with $\mathrm{n}=8$.

