22203

23124

3 Hours / 70 Marks Seat No.
 \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following: $\mathbf{1 0}$
a) State S.I. unit of force and momentum.
b) What is law of machine
c) Define funicular polygon.
d) Write the condition of equilibrium for non-concurrent co-planer force system.
e) State two types of beam with diagram of each.
f) What do you mean by friction.
g) Define centre of gravity. How does it differ from centroid?
2. Attempt any THREE of the following:
a) State any two properties and effect of force.
b) Certain machine has a law of machin $\mathrm{P}=0.025 \mathrm{~W}+20 \mathrm{~N}$ with V.R. $=50$. Calculate its efficiency at a load of 1 KN .
c) Define effort lost in friction and load lost in friction.

Give expression of them.
d) Define angle of repose with diagram.
3. Attempt any THREE of the following:
a) Find magnitude and direction of resultant force, If $30 \mathrm{~N}, 40 \mathrm{~N}$, 50 N and 60 N , forces are acting the line joining the centre of square to its vertices as shown in Fig. no. 1.

Fig. No. 1
b) State any four properties of couple.
c) For three sheave pulley block an effort of 40 N can lift a load of 180 N. Calculate the effort lost in friction and load lost in friction along with efficiency.
d) In a lifting machine an effort of 110 N raised a load of 1100 N and an effort 500 N raised a load of 5800 N . Find the law of machine.
4. Attempt any THREE of the following:
a) Find analytically the resultant of coplaner concurrent force system as shown in Fig. no. 2. Also locate its position on figure.

b) Find the reactions offered by two surfaces of a sphere weighing 1000 N. Refer Fig. no. 3.

Fig. No. 3
c) A simply supported beam of 4 m . span is loaded with an UDL of $5 \mathrm{KN} / \mathrm{m}$ for 2 m from left end and a point load of 30 KN at 1 m from right end. Find support reactions using graphical method.
d) A parcel weighing 200 N is just on the point of moving horizontally by a horizontal force of 50 N . What is the coefficient of friction.
e) Find analytically the reactions at roller and hinges support of a beam loaded as shown in Fig. no. 4

Fig. No. 4
5. Attempt any TWO of the following:
a) A simply supported beam is subjected to point load of 100 KN and couple of 50 KN m as shown in Fig. no. 5. Determine the reactions at support A and B .

Fig. No. 5
b) A block of weight 500 N is placed on a inclined plane at an angle of 20° with horizontal. If coefficient of friction is 0.15 . Find the force P applied parallel to the plane, just move the body up the plane.
c) Locate the resultant with magnitude and direction for the force system shown in Fig. no. 6 w.r.t. pt. A.

Fig. No. 6
6. Attempt any TWO of the following: 12
a) Find centroid for ISA $90 \times 60 \times 8 \mathrm{~mm}$ (L section) as shown in Fig. no. 7.

Fig. No. 7
b) Locate the position of centroid for the lamina shown in Fig. no. 8.

Fig. No. 8
c) Find the \bar{y} of the composite body given in Fig. no. 9 .

Fig. No. 9

