22303

23124

3 Hours / 70 Marks Seat No.
 \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following: $\mathbf{1 0}$
a) Define moment of inertia.
b) State Hooke's Law.
c) Define volumetric strain.
d) Define Bulk Modulus.
e) What is point of contra flexure? State its importance.
f) For a cantilever beam of span 4 m , if u.d.l. of $10 \mathrm{KN} / \mathrm{m}$ is acting on full span, calculate maximum shear force and bending moment.
g) State the effective length for a column fixed at both ends having 6 cm length. Draw figure for it.
2. Attempt any THREE of the following:
a) A square has 100 mm side. Calculate M.I. about it's vertical centroidal axis and about it's polar axis. (Izz)
b) A semicircular lamina has a base diameter of 140 mm . Calculate M.I. about its horizontal and vertical centroidal axis. Also calculate the minimum radius of gyration.
c) A symmetrical I section has over all depth of 300 mm . It has flanges of size $150 \mathrm{~mm} \times 10 \mathrm{~mm}$ and web thickness is 10 mm . Find M.I. about centroidal axis parallel to flange.
d) A mild steel flat 100 mm wide, 12 mm thick and 5 m long carries an axial load of 20 KN . Find stress, strain and change in length of bar. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
3. Attempt any THREE of the following:
a) A force of 30 KN is required to punch a circular hole of 16 mm diameter in a metal plate of thickness 2 mm . Calculate the compressive stress developed in the punching rod and shear stress developed in the metal plate.
b) A mild steel rod 20 mm in diameter and 300 mm long is enclosed centrally inside a hollow copper tube of external diameter 30 mm and internal diameter 25 mm . This composite bar is subjected to an axial pull of 40 KN . Find the stress developed in the rod and the tube.
Take $\mathrm{E}_{\mathrm{s}}=200 \mathrm{KN} / \mathrm{mm}^{2} \mathrm{E}_{\mathrm{cu}}=100 \mathrm{KN} / \mathrm{mm}^{2}$.
c) If modulus of elasticity $\mathrm{E}=110 \mathrm{GPa}$ and

Modulus of rigidity $=\mathrm{G}=45 \mathrm{GPa}$, find bulk Modulus and Poisson's ratio.
d) A cube of 200 mm side is subjected to a compressive force of 3500 KN on all its faces. The change in volume of the cube is $5000 \mathrm{~mm}^{3}$. Calculate the bulk modulus and modulus of elasticity if Poission's ratio is 0.28 .
4. Attempt any THREE of the following:
a) A cantilever beam of span 4 m carries two point loads 10 KN and 20 KN at 1 m and 3 m from fixed end respectively draw SFD and BMD.
b) A beam having an over all depth of 300 mm is used as a cantilever for a span of 1.2 m . Calculate the intensity of u.d.l. it can carry, including self weight if the bending stress is not to exceed $8 \mathrm{~N} / \mathrm{mm}^{2}$, M.I. about N.A. for the beam is $4.05 \times 10^{8} \mathrm{~mm}^{4}$.
c) A rectangular beam is 60 mm wide and 160 mm deep of span 5 m . It is simply supported and it carries a concentrated point load of 40 KN acting downwards at mid span. Find the maximum shear stress induced in the beam section.
d) A strut 2.4 m long is 40 mm in diameter. One end of strut is fixed while the other end is hinged. Calculate Euler's crippling load if $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Also calculated safe load if factor of safety is 2.5 .
e) A rectangular column has cross section $300 \mathrm{~mm} \times 200 \mathrm{~mm}$ and length of 3 m . Find slenderness ratio if
(i) both ends are hinged.
(ii) both ends are fixed.
5. Attempt any TWO of the following:
a) A tensile test is carried out on m.s. bar or 10 mm diameter with a gauge length of 50 mm . The bar yields under a load of 20 KN . It reaches a maximum load of 40 KN and breaks at 25 KN . The final gauge length of the specimen is 67 mm after test.

Calculate:
i) Yield stress
ii) Ultimate stress
iii) Breaking stress
iv) Actual stress if diameter of ruptured neck is 7 mm
v) Percentage reduction in area
vi) Percentage elongation
P.T.O.
b) A beam $A B C D$ is simply supported at A and D $A B=B C=C D=2 \mathrm{~m}$. It is subjected to an u.d.l. of $10 \mathrm{KN} / \mathrm{m}$ on span AB . A point load of 20 KN is acting downwards at point C. (4 m from A). Draw SFD and BMD.
c) A beam ABC is simply supported at A and B . Span $\mathrm{AB}=6 \mathrm{~m}$ and overhang $\mathrm{BC}=2 \mathrm{~m}$. It carries on u.d.l. of $15 \mathrm{KN} / \mathrm{m}$ on Span AB and a point load of 30 KN is acting at point C downwards. Draw SFD and BMD.
6. Attempt any TWO of the following: $\mathbf{1 2}$
a) A cantilever beam of span 4 m , carries a point load of 2 KN acting at 2 m from fixed end. An u.d.l. of $1 \mathrm{KN} / \mathrm{m}$ is acting on full span. Draw SFD and BMD.
b) A beam section is 100 mm wide and 200 mm deep. It is subjected to a shear force of 60 KN . Determine the maximum shear stress at N.A. and shear stress 50 mm above N.A. Draw shear stress distribution diagram showing these two stresses.
c) A timber beam is 100 mm wide and 200 mm deep. It is simply supported over a span of 6 m . It carries an u.d.l. of $12 \mathrm{KN} / \mathrm{m}$ on full span and a central point load of a 4 KN acting downwards. Calculate the maximum bending stress developed in the beam and draw bend stress distribution diagram.

