22315

23124 3 Hours / 70 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions : (1) All Questions are *compulsory*.

- (2) Figures to the right indicate full marks.
- (3) Assume suitable data, if necessary.

1. Attempt any FIVE of the following :

- (a) Give the SI unit of force & energy.
- (b) What are products of complete and incomplete combustion ?
- (c) Draw the block diagram of distillation unit showing all input and output.
- (d) Define : (i) Limiting component (ii) Excess component
- (e) Define : (i) Partial pressure (ii) Pure component volume
- (f) Calculate the volume occupied by 20 kg of chlorine gas at a pressure of 100 KPa and 298 K.
- (g) Name any two each of fundamental quantity and derived quantity.

2. Attempt any THREE of the following :

- (a) State Dalton's law and Amagat's law. Give their mathematical equations.
- (b) Ammonia is produced by the following reaction : $N_2 + 3 H_2 \rightarrow 2 NH_3$ Calculate :
 - Molal flow rate of hydrogen corresponding to nitrogen. Feed rate of 25
 k_{mol}/h, if they are fed in the stoichiometric proportions.
 - (ii) Kg of NH_3 produced per hour if conversion is 25% and nitrogen feed rate is 25 k_{mol}/h .

[1 of 4]

P.T.O.

Marks

10

[2 of 4]

- (c) An evaporator is fed with 15000 kg/h of a solution containing 10% NaCl, 15% NaOH and rest water. In the operation, water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45% NaOH, 2% NaCl and rest water.
 - (i) Draw the detail block diagram of this operation.
 - (ii) Calculate kg/h. of thick liquor
- (d) Explain different types of fuels with example.

3. Attempt any THREE of the following :

- (a) Define :
 - (i) Yield (ii) Conversion
 - (iii) Selectivity (iv) Stoichiometric ratio
- (b) State & explain Hess's law of constant heat summation.
- (c) Convert following pressure values in KPa.
 - (i) 100 mm of Hg (ii) 2 atm
- (d) In the production of Sulphur trioxide, 100 k_{mol} of SO₂ and 100 k_{mol} of O₂ are fed to a reactor. If the percent conversion of SO₂ is 80, calculate the composition of product stream on mole basis.

4. Attempt any THREE of the following :

- (a) Define :
 - (i) Sensible heat (ii) Latent heat
 - (iii) Specific heat (iv) Heat of reaction
- (b) 2000 kg of wet solids containing 70%, solid by weight are fed to a tray dryer where it is dried by hot air. The product finally obtained is found to contain 1% moisture by weight.

Calculate :

- (i) Kg of water removed
- (ii) Kg of dried product obtained
- (c) Explain bypass & recycle operation with block diagram.
- (d) Define gross and net calorific value.

22315

12

- (e) Convert the following :
 - (i) 1000 kg/m^3 into gram/cm³
 - (ii) $10 \text{ m}^3/\text{hr. into lit/sec.}$

5. Attempt any TWO of the following :

(a) A natural gas has the following composition by volume $CH_4 - 82\%$, $C_2H_6 - 12\%$ & $N_2 - 6\%$

Calculate :

- (i) Density of gas at 288 K and 101.325 KPa
- (ii) Composition in weight percent
- (b) Soyabean seeds are extracted with hexane in batch extractor. The flaked seeds are found to contain 18.6% oil, 69% solid and 12.4% moisture. At the end of process, cake is separated from hexane – oil mixture.

The cake is analysed to contain 0.8% oil, 87.7% solid and 11.5% moisture (by weight).

Calculate the percentage recovery of oil.

(c) C₂H₄O is prepared by oxidation of C₂H₄, 100 k_{mol} of C₂H₄ and 100 k_{mol} of O₂ are fed to a reactor. The conversion of C₂H₄ is 85% and yield of C₂H₄O is 94.12%. The reactions taking place are C₂H₄ + ½ O₂ → C₂H₄O

 $C_2H_4 + 3 O_2 \rightarrow 2 CO_2 + 2 H_2O$

Calculate the composition of product stream leaving the reactor.

6. Attempt any TWO of the following :

(a) Pure ethylene is heated from 303 k to 523 k at atmospheric pressure.

Calculate the heat added per k_{mol} of ethylene using heat capacity data given below.

$$C_p^{\circ} = 4.1261 + 155.0213 \times 10^{-3} \text{ T} - 81.5455 \times 10^{-6} \text{ T}^2$$

+ 16.9755 × 10⁻⁹ T³

12

[4 of 4]

- (b) A combustion reactor is fed with 50 k_{mol}/h of butane and 2000 k_{mol}/h of air. Calculate % excess air used and composition of the gases leaving reactor, assuming complete combustion of butane.
- (c) The waste acid from nitrating process containing 20% HNO₃, 55% H₂SO₄ & 25% H₂O by weight is to be concentrated by addition of concentrated H₂SO₄ acid containing 95% H₂SO₄ and concentrated HNO₃ acid containing 90% HNO₃ to get desired mixed acid containing 26% HNO₃ & 60% H₂SO₄. Calculate quantities of waste and concentrated acids required to get 1000 kg of desired mixed acid.