23124
 3 Hours / 70 Marks

Seat No. \square

Instructions : (1) All Questions are compulsory.
(2) Figures to the right indicate full marks.
(3) Assume suitable data, if necessary.

Marks

1. Attempt any FIVE of the following :
(a) Give the SI unit of force \& energy.
(b) What are products of complete and incomplete combustion?
(c) Draw the block diagram of distillation unit showing all input and output.
(d) Define : (i) Limiting component (ii) Excess component
(e) Define: (i) Partial pressure (ii) Pure component volume
(f) Calculate the volume occupied by 20 kg of chlorine gas at a pressure of 100 KPa and 298 K .
(g) Name any two each of fundamental quantity and derived quantity.
2. Attempt any THREE of the following :
(a) State Dalton's law and Amagat's law. Give their mathematical equations.
(b) Ammonia is produced by the following reaction : $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ Calculate :
(i) Molal flow rate of hydrogen corresponding to nitrogen. Feed rate of 25 $\mathrm{k}_{\mathrm{mol}} / \mathrm{h}$, if they are fed in the stoichiometric proportions.
(ii) Kg of NH_{3} produced per hour if conversion is 25% and nitrogen feed rate is $25 \mathrm{k}_{\mathrm{mol}} / \mathrm{h}$.
(c) An evaporator is fed with $15000 \mathrm{~kg} / \mathrm{h}$ of a solution containing $10 \% \mathrm{NaCl}$, $15 \% \mathrm{NaOH}$ and rest water. In the operation, water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45% $\mathrm{NaOH}, 2 \% \mathrm{NaCl}$ and rest water.
(i) Draw the detail block diagram of this operation.
(ii) Calculate kg / h. of thick liquor
(d) Explain different types of fuels with example.
3. Attempt any THREE of the following :
(a) Define :
(i) Yield
(ii) Conversion
(iii) Selectivity
(iv) Stoichiometric ratio
(b) State \& explain Hess's law of constant heat summation.
(c) Convert following pressure values in KPa .
(i) 100 mm of Hg
(ii) 2 atm
(d) In the production of Sulphur trioxide, $100 \mathrm{k}_{\mathrm{mol}}$ of SO_{2} and $100 \mathrm{k}_{\mathrm{mol}}$ of O_{2} are fed to a reactor. If the percent conversion of SO_{2} is 80 , calculate the composition of product stream on mole basis.
4. Attempt any THREE of the following :
(a) Define:
(i) Sensible heat
(ii) Latent heat
(iii) Specific heat
(iv) Heat of reaction
(b) 2000 kg of wet solids containing 70%, solid by weight are fed to a tray dryer where it is dried by hot air. The product finally obtained is found to contain 1% moisture by weight.

Calculate :
(i) Kg of water removed
(ii) Kg of dried product obtained
(c) Explain bypass \& recycle operation with block diagram.
(d) Define gross and net calorific value.
(e) Convert the following :
(i) $1000 \mathrm{~kg} / \mathrm{m}^{3}$ into gram $/ \mathrm{cm}^{3}$
(ii) $10 \mathrm{~m}^{3} / \mathrm{hr}$. into lit/sec.
5. Attempt any TWO of the following :
(a) A natural gas has the following composition by volume
$\mathrm{CH}_{4}-82 \%, \mathrm{C}_{2} \mathrm{H}_{6}-12 \% \& \mathrm{~N}_{2}-6 \%$
Calculate :
(i) Density of gas at 288 K and 101.325 KPa
(ii) Composition in weight percent
(b) Soyabean seeds are extracted with hexane in batch extractor. The flaked seeds are found to contain 18.6% oil, 69% solid and 12.4% moisture. At the end of process, cake is separated from hexane - oil mixture.

The cake is analysed to contain 0.8% oil, 87.7% solid and 11.5% moisture (by weight).

Calculate the percentage recovery of oil.
(c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ is prepared by oxidation of $\mathrm{C}_{2} \mathrm{H}_{4}, 100 \mathrm{k}_{\mathrm{mol}}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$ and $100 \mathrm{k}_{\mathrm{mol}}$ of O_{2} are fed to a reactor. The conversion of $\mathrm{C}_{2} \mathrm{H}_{4}$ is 85% and yield of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ is
94.12%. The reactions taking place are
$\mathrm{C}_{2} \mathrm{H}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Calculate the composition of product stream leaving the reactor.
6. Attempt any TWO of the following :
(a) Pure ethylene is heated from 303 k to 523 k at atmospheric pressure.

Calculate the heat added per $\mathrm{k}_{\mathrm{mol}}$ of ethylene using heat capacity data given below.

$$
\begin{aligned}
\mathrm{C}_{\mathrm{p}}^{\circ}= & 4.1261+155.0213 \times 10^{-3} \mathrm{~T}-81.5455 \times 10^{-6} \mathrm{~T}^{2} \\
& +16.9755 \times 10^{-9} \mathrm{~T}^{3}
\end{aligned}
$$

(b) A combustion reactor is fed with $50 \mathrm{k}_{\mathrm{mol}} / \mathrm{h}$ of butane and $2000 \mathrm{k}_{\mathrm{mol}} / \mathrm{h}$ of air. Calculate \% excess air used and composition of the gases leaving reactor, assuming complete combustion of butane.
(c) The waste acid from nitrating process containing $20 \% \mathrm{HNO}_{3}, 55 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ \& $25 \% \mathrm{H}_{2} \mathrm{O}$ by weight is to be concentrated by addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and concentrated HNO_{3} acid containing 90% HNO_{3} to get desired mixed acid containing $26 \% \mathrm{HNO}_{3} \& 60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.
Calculate quantities of waste and concentrated acids required to get 1000 kg of desired mixed acid.

