22331

23124

3 Hours / 70 Marks

Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- Define the following:
 - i) Precession
 - ii) Resolution.
- b) Draw circuit diagram of universal shunt in DC ammeter.
- c) State two uses of spectrum analyzer.
- d) List one example of time domain and frequency domain instrument.
- e) List any four features of logic analyzer.
- f) i) Classify the following bridges :-
 - (1) Hay bridge
 - (2) Schering bridge.
 - ii) State one application of above bridge circuit.
- g) Draw the circuit of Maxwell bridge.

12

2. Attempt any THREE of the following:

- a) Describe gross error, systematic error and write one source of these error.
- b) State the reason for ammeter never connected in shunt across source of emf
- c) State the formula for frequency and phase measurement using Lissajous pattern on CRO with necessary diagram.
- d) Compare series type and shunt type ohm-meter.

3. Attempt any THREE of the following:

value of shunt resistance.

- a) A 1 mA, PMMC meter movement with an internal resistance of 100Ω is to be converted into 0 100 mA. Calculate the
- b) Draw the block diagram of basic spectrum analyzer and heterodyne type spectrum analyzer.
- c) Write specifications of DMM or logic analyzer.
- d) Draw the block diagram of dual trace CRO and state the function of ALT/CHOP mode.

4. Attempt any <u>THREE</u> of the following:

- a) Design a multirange DC ammeter using basic movement with an internal resistance $Rm = 50\Omega$ and full scale deflection current Im = 1mA. The range required are O 10mA, O 50mA
- b) Draw the circuit diagram of half wave rectifier type AC voltmeter (Ideal and practical circuit diagram) and explain the function of additional component in practical circuit.
- c) Explain the working of successive approximation type DVM.
- d) Explain the function of grid and final anode in CRT.
- e) Draw and explain time base generator circuit.
- f) i) Draw block diagram of DSO.
 - ii) State two advantages of DSO over analog dual trace CRO.

22331 [3]

	<i>J</i> 1	[3]	Aarks				
5.		Attempt any <u>TWO</u> of the following:					
	a)	i) Write the meaning of absolute instrument and secondary instrument. Write one example of each one.					
		ii) Define any two dynamic characteristics.					
b)		i) Digital voltmeter is having $3\frac{1}{2}$ digit display.					
		(1) Calculate the resolution.					
		(2) Find the value displayed on this meter when unknown voltage, $V = 3.5427$ volts and the range is $0 - 10V$.					
		ii) Draw the diagram of Lux meter.					
	c)	Explain the operation of Ramp type DVM with block diagram and waveform.					
6.		Attempt any TWO of the following:	12				
	a)	Draw the block diagram of logic analyzer. List the modes or types of display in it.					
	b)	Draw the block diagram and explain Digital LCR-Q meter.					
	c)	i) List the detectors used in AC and DC bridges.					
		ii) In an AC bridge, arms contains following constants -					
		arm AB $- R = 1 k\Omega$,					
		arm BC - unknown inductor coil.					
		arm CD $- R = 1 k\Omega$.					
		arm DA $- R = 470\Omega$ 11 C = 0.22 μ F.					
		Calculate the unknown constants.					