22480

23124 3 Hours / 70 Marks

Seat No.				

Instructions : (1) All Questions are *compulsory*.

- (2) Answer each Section on same / separate answer sheet.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.

1. Attempt any FIVE of the following :

(a) If
$$f(x, y) = 3x + 4xy$$
 find $\frac{\partial f}{\partial x}$.

(b) If
$$f(x, y) = x^2y + \sin x + \cos y$$
 find $\frac{\partial^2 f}{\partial x \partial y}$.

(c) Find the Eigen values of the matrix
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
.

(d) Find rank of matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$$
.

(e) Find the value of 'P', if the vectors $\overline{a} = p\overline{i} + 5\overline{j} + \overline{k} \& \overline{b} = 2\overline{i} - \overline{j} + 3\overline{k}$ are equal.

Marks

[2 of 4]

- (f) Find the projection of $\overline{a} = 2\overline{i} + \overline{j} + \overline{k}$ on $\overline{b} = \overline{i} + 3\overline{j} + \overline{k}$.
- (g) Construct forward difference table for the following data :

x	1	2	3	4	5
f (<i>x</i>)	4	13	34	73	136

2. Attempt any THREE of the following :

- (a) Examine f(x, y) = xy subject to the constraint $g(x, y) = 4x^2 + y^2 = 8$ for maximum and minimum value.
- (b) Examine the following linear system of equation for consistency and solve if consistent :

$$4x - 2y + 6z = 8$$
$$x + y - 3z = -1$$
$$15x - 3y + 9z = 21$$

(c) Reduce the matrix to ECHLON form & hence find its rank.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 4 & 5 \end{bmatrix}$$

(d) Find the angle between the vectors $\overline{a} = 2\overline{i} + 2\overline{j} + \overline{k} \& \overline{b} = 3\overline{i} + 6\overline{j} + 2\overline{k}$.

3. Attempt any THREE of the following :

- (a) If $f(x, y) = x^3 + y^3 + 6xy$ then find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \& \frac{\partial^2 f}{\partial y \partial x}$.
- (b) Find inverse of following matrix by elementary transformation :

$$\mathbf{A} = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

22480

12

[3 of 4]

- (c) Determine the value of λ for which the system of linear equation 3x + 2y + 4z = 3, $x + y + z = \lambda$, 5x + 4y + 6z = 15 are consistent, also find its solution.
- (d) Find the local minima of function $f(x, y) = 2x^2 + 2xy + 2y^2 6x$.

4. Attempt any THREE of the following :

- (a) Show that the equations 2x + 6y = -11, 6x + 20y 6z = -3, 6y 18z = -1 are not consistent.
- (b) Find a vector of magnitude $\sqrt{7}$ units & perpendicular to the vectors $\overline{a} = 2\overline{i} + \overline{j} - 3\overline{k} \otimes \overline{b} = \overline{i} - 2\overline{j} + \overline{k}.$
- (c) Find the Scalar product of the vector $\overline{a} = \overline{i} + \overline{j} + \overline{k} \& \overline{b} = 2\overline{i} + 4\overline{j} 5\overline{k} \& \overline{c} = 2\overline{i} + 2\overline{j} + 3\overline{k}$.

(d) Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 14 & -10 \\ 5 & -1 \end{bmatrix}$.

(e) If
$$\overline{a} = \overline{i} - 2\overline{j} + 3\overline{k}$$
, $\overline{b} = 2\overline{i} + \overline{j} - \overline{k}$ & $\overline{c} = \overline{j} + \overline{k}$ find vector $\overline{a} \times (\overline{b} \times \overline{c})$.

5. Attempt any TWO of the following :

(a) Find $\frac{dy}{dx}$ at x = 0 using suitable interpolation table :

x	0	1	2	3	4	5
У	4	8	15	7	6	2

(b) Find f(12) using Newton's forward difference interpolation table :

x	10	15	20
f (<i>x</i>)	14	18	28

12

[4 of 4]

(c) Solve the following linear programming problem graphically to find optimal solution :

Maximize z = 5x + 3ySubject to $3x + 5y \le 15$ $5x + 2y \le 10$ $x \ge 0, y \ge 0$

6. Attempt any TWO of the following :

(a) Given the squares of integers in the following data. Find the value of (13)² using extrapolation.

x	3	5	7	9
У	9	25	49	81

(b) (i) Evaluate $\int_{2}^{7} \frac{1}{x} dx$ using trapezoidal rule and by dividing the interval

[2, 7] into five equal sub-intervals.

(ii) Evaluate $\int_{0}^{2} \sqrt{x} dx$ by using Simpson's one third rule, by dividing the

interval (0, 2) into four sub-intervals.

(c) Solve the following linear programming problem using Simplex method to find optimal solution :

Maximize $z = 3x_1 + 4x_2$

Subject to $x_1 + x_2 \le 450$

 $2x_1 + x_2 \le 600$

 $x_1, x_2 \ge 0$

22480