\square

Instructions: (1) All Questions are compulsory.
(2) Answer each Section on same / separate answer sheet.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

1. Attempt any FIVE of the following :
(a) If $\mathrm{f}(x, \mathrm{y})=3 x+4 x y$ find $\frac{\partial \mathrm{f}}{\partial x}$.
(b) If $\mathrm{f}(x, \mathrm{y})=x^{2} \mathrm{y}+\sin x+\cos \mathrm{y}$ find $\frac{\partial^{2} \mathrm{f}}{\partial x \partial \mathrm{y}}$.
(c) Find the Eigen values of the matrix $\mathrm{A}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.
(d) Find rank of matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10\end{array}\right]$.
(e) Find the value of ' P ', if the vectors $\overline{\mathrm{a}}=\mathrm{p} \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+\overline{\mathrm{k}} \& \overline{\mathrm{~b}}=2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+3 \overline{\mathrm{k}}$ are equal.
(f) Find the projection of $\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}$ on $\overline{\mathrm{b}}=\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+\overline{\mathrm{k}}$.
(g) Construct forward difference table for the following data :

\boldsymbol{x}	1	2	3	4	5
$\mathbf{f}(\boldsymbol{x})$	4	13	34	73	136

2. Attempt any THREE of the following :
(a) Examine $\mathrm{f}(x, \mathrm{y})=x \mathrm{y}$ subject to the constraint $\mathrm{g}(x, \mathrm{y})=4 x^{2}+\mathrm{y}^{2}=8$ for maximum and minimum value.
(b) Examine the following linear system of equation for consistency and solve if consistent :

$$
\begin{aligned}
& 4 x-2 y+6 z=8 \\
& x+y-3 z=-1 \\
& 15 x-3 y+9 z=21
\end{aligned}
$$

(c) Reduce the matrix to ECHLON form \& hence find its rank.

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 3 \\
3 & 4 & 5
\end{array}\right]
$$

(d) Find the angle between the vectors $\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+\overline{\mathrm{k}} \& \overline{\mathrm{~b}}=3 \overline{\mathrm{i}}+6 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}$.
3. Attempt any THREE of the following :
(a) If $\mathrm{f}(x, \mathrm{y})=x^{3}+\mathrm{y}^{3}+6 x y$ then find $\frac{\partial \mathrm{f}}{\partial x}, \frac{\partial \mathrm{f}}{\partial \mathrm{y}} \& \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y} \partial x}$.
(b) Find inverse of following matrix by elementary transformation :

$$
A=\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right]
$$

(c) Determine the value of λ for which the system of linear equation $3 x+2 y+4 z=3$, $x+y+z=\lambda, 5 x+4 y+6 z=15$ are consistent, also find its solution.
(d) Find the local minima of function $f(x, y)=2 x^{2}+2 x y+2 y^{2}-6 x$.

4. Attempt any THREE of the following :

(a) Show that the equations $2 x+6 y=-11,6 x+20 y-6 z=-3,6 y-18 z=-1$ are not consistent.
(b) Find a vector of magnitude $\sqrt{7}$ units \& perpendicular to the vectors $\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-3 \overline{\mathrm{k}} \& \overline{\mathrm{~b}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}$.
(c) Find the Scalar product of the vector $\overline{\mathrm{a}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}} \& \overline{\mathrm{~b}}=2 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}-5 \overline{\mathrm{k}} \&$ $\overline{\mathrm{c}}=2 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$.
(d) Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{cc}14 & -10 \\ 5 & -1\end{array}\right]$.
(e) If $\overline{\mathrm{a}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}, \overline{\mathrm{b}}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}} \& \overline{\mathrm{c}}=\overline{\mathrm{j}}+\overline{\mathrm{k}}$ find vector $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$.

5. Attempt any TWO of the following :

(a) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ at $x=0$ using suitable interpolation table:

\boldsymbol{x}	0	1	2	3	4	5
\mathbf{y}	4	8	15	7	6	2

(b) Find f(12) using Newton's forward difference interpolation table:

\boldsymbol{x}	10	15	20
$\mathbf{f}(\boldsymbol{x})$	14	18	28

(c) Solve the following linear programming problem graphically to find optimal solution :

$$
\begin{aligned}
& \text { Maximize } \mathrm{z}=5 x+3 \mathrm{y} \\
& \text { Subject to } 3 x+5 \mathrm{y} \leq 15 \\
& 5 x+2 \mathrm{y} \leq 10 \\
& x \geq 0, \mathrm{y} \geq 0
\end{aligned}
$$

6. Attempt any TWO of the following :
(a) Given the squares of integers in the following data. Find the value of $(13)^{2}$ using extrapolation.

\boldsymbol{x}	3	5	7	9
\mathbf{y}	9	25	49	81

(b) (i) Evaluate $\int_{2}^{7} \frac{1}{x} \mathrm{~d} x$ using trapezoidal rule and by dividing the interval [2, 7] into five equal sub-intervals.
(ii) Evaluate $\int_{0}^{2} \sqrt{x} \mathrm{~d} x$ by using Simpson's one third rule, by dividing the interval (0,2) into four sub-intervals.
(c) Solve the following linear programming problem using Simplex method to find optimal solution :

Maximize $\mathrm{z}=3 x_{1}+4 x_{2}$
Subject to $x_{1}+x_{2} \leq 450$

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 600 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

