

WINNTER – 15 EXAMINATIONS

Subject Code: 17329

<u>Model Answer</u>

Page No: ____/ N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

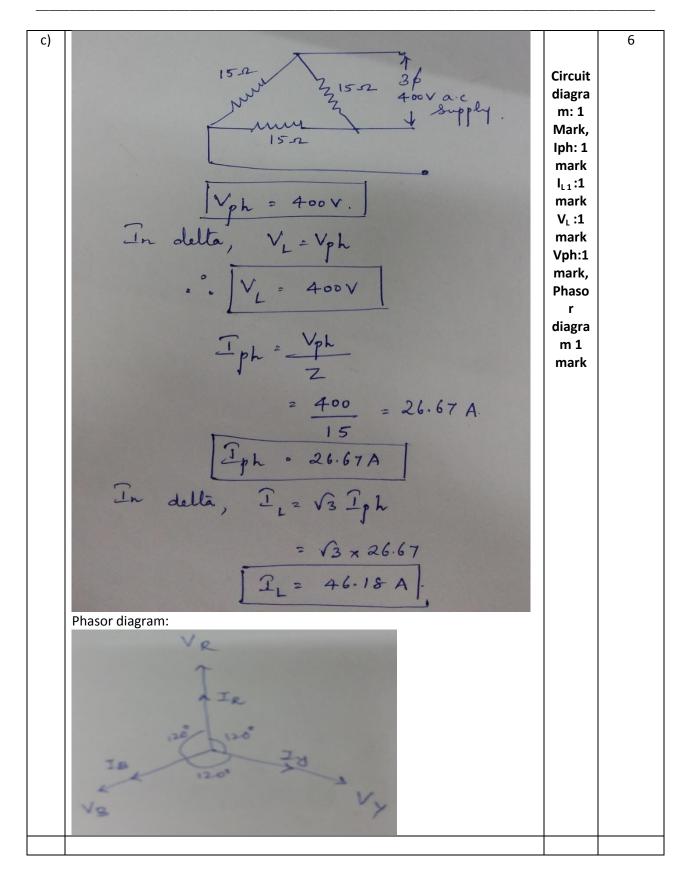
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	MODEL ANSWER	MARK	TOTAL
NO.		S	MARKS
	SECTION-I		
1	Attempt any FIVE	5 x 4	20
a)	Earthing : It means connecting to general mass of earth using a low resistance	2	4
- /	wire known as earth wire.	marks	
	Necessity of earthing: The purpose of earthing is to minimize risk of receiving	for	
	an electric shock if touching metal parts when a leakage current is present.	defini	
	Earthing is to ensure safety or Protection of electrical equipment and Human	tion,	
	by discharging the electrical leakage current to the earth.		
	OR	2	
	Earthing is provided to protect human from shocks due to leakage current.	Marks	
	Earthing provides protection to the electrical motors and appliances due to	for	
	leakage	neces	
	current.	sity	
	Earthing provides protection to the electrical motors to protect against over voltage		
b)	MCCB: It stands for moulded case circuit breaker. It consists of circuit breaker	MCCB	4
	and trip device assembled in a moulded case which can open and close the	2	
	electric circuit in case of fault.	Marks	
	Fuse: It is a current interrupting device. It consists of small piece of metal	, Fuse-	
	which melts in case of overload or fault and protects the circuit	2	
		Marks	
c)	Circuit Diagram:	Diagra	4
		m: 2	
	RUNNING WINDING	Marks	
	A 1 (000)		
	STARTING		
	WINDING 000		
	$(\phi) = \phi = \phi$		
	10 - 00		
	AL LT		
	Te Te		
	×		
	Explanation:	expla	
	It consists of two windings: Starting and running or Main winding. Capacitor	nation	
	and a centrifugal switch is connected in series with the starting winding. Both	: 2	
	the windings are connected 90 degrees apart. When the motor picks up	Marks	
	speed , the switch automatically opens and disconnects the starting winding .		
d)	i) Frequency: The number of cycles completed by an alternating quantity in	Each	4
	one second is called as frequency.	defini	
	ii) Phase: It is the angle between any two quantities current and voltage or	tion –	


between two same voltages and same current. OR Phase at any point on a given wave is the time that has elapsed since the quantity has passed through zero point of reference and pass positively. 1 iii) Average value: The average value of an alternating current is that steady current (d.c) which transfers across the circuit, the same amount of charge as would be transferred by by alternating current across the same circuit for the same time. Mark iv) R.M.S Value: The r.m.s value of an alternating current is that steady current (d.c) which when flowing through a given circuit for a given time produces the same amount of heat as produced by the alternating current when flowing through the same circuit for the same time. 1 4 e) 1. The relation between line and phase values of voltage and current in delta connected circuit. 1 4 VL=VAH IL=IPH for each relation between line and phase values of voltage and current in delta connected circuit. 1 4 1 As a power transformer: 1 4 4 2 The relation between line and phase values of voltage and current in delta connected circuit. 1 4 1 VL=VPH IL=IPH for each relation and phase values of voltage and current in delta connected circuit. 1 2 The relation between line and phase values of voltage and current in delta connected circuit. 1 4 1 As a power tran				
in star connected circuitMark each for each relati2 The relation between line and phase values of voltage and current in delta connected circuit.Nu= $\sqrt{3}$ VPH , IL=IPHapplic applicf)Application of single phase transformer: 2. As distribution transformer 3. In welding circuit 4. In many electronic applicationAny 2 application ations each- 2 Marks4 applic ations each- 2 Marksg)Voltage: The difference in potential of two charged bodies is called voltage Unit: Volt Current: It is defined as the rate of flow of free electrons in a conductor. Unit: AmpereDefini tion - 1 I4 mark, Unit- 1		given wave is the time that has elapsed since the quantity has passed through zero point of reference and pass positively. iii) Average value: The average value of an alternating current is that steady current (d.c) which transfers across the circuit, the same amount of charge as would be transferred by by alternating current across the same circuit for the same time. iv) R.M.S Value: The r.m.s value of an alternating current is that steady current (d.c) which when flowing through a given circuit for a given time produces the same amount of heat as produced by the alternating current when flowing through the same circuit for the same time.	Mark	
1. As a power transformer applic 2. As distribution transformer ations 3. In welding circuit each- 4. In many electronic application 2 Marks Marks Application of single phase autotransformer: 1. 1. Used for starting and speed control of induction motor. 2. As variac 3. As line booster 4. As furnace transformer g) Voltage: The difference in potential of two charged bodies is called voltage Unit: Volt 1 Current: It is defined as the rate of flow of free electrons in a conductor. 1 Mark, Unit- 1 1	e)	in star connected circuit $V_L = \sqrt{3} V_{PH} \ , IL = I_{PH}$ 2 The relation between line and phase values of voltage and current in delta connected circuit.	Mark each for each relati	4
Unit: Volt tion – Current: It is defined as the rate of flow of free electrons in a conductor. 1 Unit: Ampere mark, Unit- 1	f)	 As a power transformer As distribution transformer In welding circuit In many electronic application Application of single phase autotransformer: Used for starting and speed control of induction motor. As variac As line booster 	applic ations each- 2	4
	g)	Voltage: The difference in potential of two charged bodies is called voltage Unit: Volt Current: It is defined as the rate of flow of free electrons in a conductor.	tion – 1 mark, Unit- 1	4

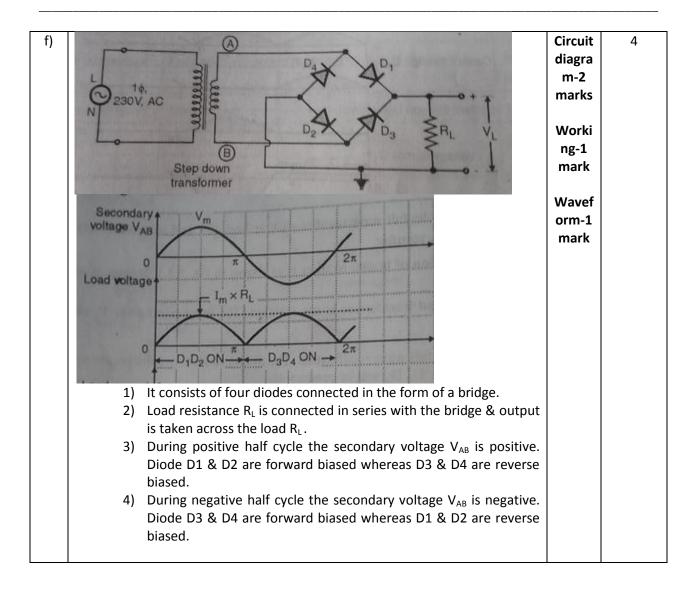
2 a)	Attempt any THREE	3 x 6 Diagra m: 3Mar ks, Worki ng – 3Mar ks	18 6
	Working: During normal conditions, currents through the phase and neutral wire are equal and opposite. But during earth fault condition, small leakage current starts returning back through the current transformer to the earthing conductor. This current energizes the relay coil which produces a tripping signal and applies it to the circuit breaker.		
b)	A.C. Input at Constant Voltage Converter D.C. Inverter A.C. Output Induction and Frequency Converter Converter or and Frequency is applied to the converter or rectifier which converts AC to DC. This voltage is applied as input to the three phase inverter. The output of the inverter is variable voltage, variable frequency which is applied to the stator of three phase induction motor.	Block diagra m: 3 Marks , Expla nation : 3 marks	3

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

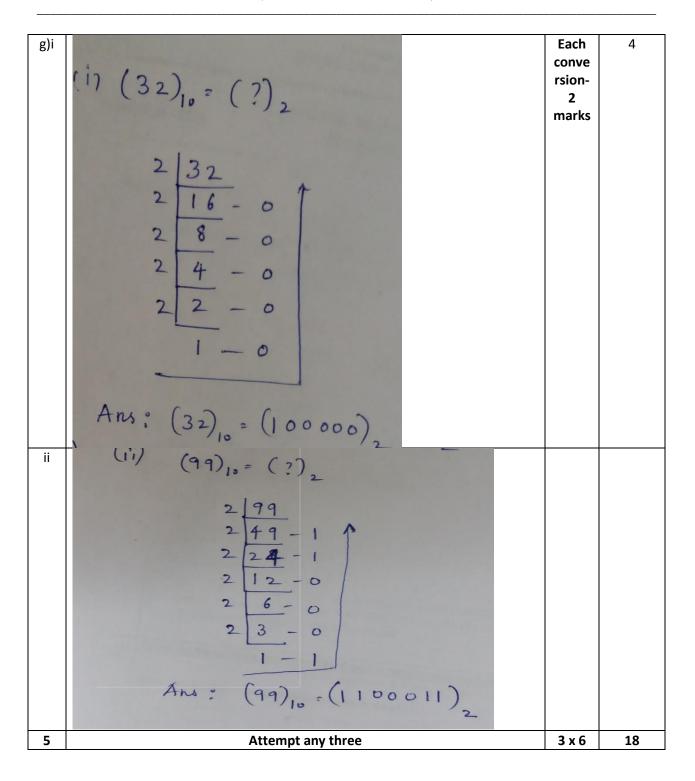
		58.45	6
d)	Note: EMF equation of secondary side can also be considered.	EMF	6
		equati	
	EMF equation of transformer in the primary side:	on: 2	
	E1=4.44 f N1 Φm	Marks	
		, Each	
	E1: Induced EMF on the primary side	term:	
	f : Frequency of input supply	1/2	
	N1: Number of turns on the primary side	mark,	
	Φm: Maximum value of flux in the core	each	
		defini	
	Voltage regulation: It is defined as the change in secondary terminal	tion -	
	voltage from No-Load to Full-Load with constant primary voltage.	1	
		mark	
	Note: Formula is optional and can be considered	-	
	Efficiency: It is defined as the ratio of output power to input power.		
3	Attempt any THREE	3 x 4	12
a)	Tariff: Tariff is the way of billing energy consumed by consumer.	Defini	4
	OR	tion-	
	The rate at which electrical energy is supplied to a consumer is known as	1	
	tariff.	Mark	
		and	
	Types of Tariff:		
	(i) Flat-demand Tariff		
	ii) Simple-demand Tariff or Uniform Tariff	any	
	iii) Flat-rate Tariff	three	
	iv) Step-rate Tariff		
		types- 3	
	v) Block-rate Tariff	-	
	vi) Two-part Tariff:	Marks	
	vii) Maximum demand Tariff		
	viii) Three-part Tariff		
L	ix) Power factor Tariff		
b)	1. Switching OFF the supply: when a person comes in contact with live	Any	4
	conductor, switch off the main supply immediately if it is nearby or cut the	Four	
	wires with insulated pliers from the wiring circuit.	Points	
	2. Removing the person from the contact of current:- Push a person with a	Expec	
	dry stick of wood or pull him by using hands with insulated hand gloves, or	ted: 1	
	use cotton thick cloth.	Mark	
	3. Removing the person from fire: If a person's cloth catches fire, then wrap	each	
	him in the blanket or coat & roll him on the ground to extinguish.	point	
	4. Call doctor immediately.		
	5. Before doctor arrives, if any burns or wound occurs on the body of the		
	person use proper oil/ medicine (first aid)		
	6. If the person is not breathing, immediately start artificial respiration until		
	the medical aid arrives.		
1		1	

	7. Do not touch the person with bare hands.		
	8. Do not give liquid until the patient is conscious.		
	9. Give artificial respiration to the person who received electrical shocks by		
	any one Method		
c)	Note: Any other relevant application can be considered.	Each	4
		applic	
	1. Domestic applications	ation-	
	2. Solar panel	1	
	3. Small wind generator	Mark	
	4. Recreational vehicles		
d)	Diagram	diagra	4
	Field on the Stator	m: 2	
	Field off the otator	Marks	
	+ TT TIPP	,	
	the second se		
	HALL YL		
	Armature		
	Amature		
	A.C. or D.C. Supply		
	Explanation: It is a motor which can be operated on A.C or D.C. supply.	Expla	
	It is similar to a D.C series motor. The field winding is connected in series	nation	
	with the armature. It develops a uni-directional torque. It runs at very high	: 2	
	speed.	marks	
e)	Diagram:	Diagra	4
		m: 1	
		Mark,	
	TAL	expla	
		nation	
	input 2	: 2	
	34	Marks	
	vollage c 3		
	0 3 0/8		
	1 BI voltage		
	Y PL OV		
	Explanation: It is a transformer with a single winding part of which is common		
	to both primary and secondary. AB is the primary winding and BC is the	any	
	secondary winding. The flux set up in the core links with primary and	two	
	secondary winning. The nux set up in the core links with prinary and secondary.	specifi	
		cation	
	Specifications:	s- ½	
	1. KVA rating	Mark	
	2. Turns ratio	each)	

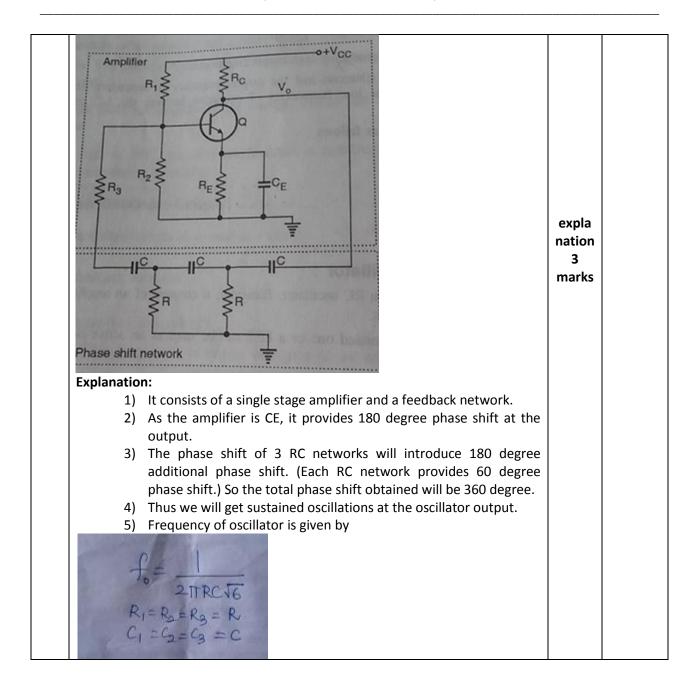
	4. Se 5. Cla	imary voltage condary voltage ass of insulation equency of operation					
		umber of phases Irrent					
	0. 00	SECTION	-				
				F A	20		
4 a)		Attempt any		5 x 4 Each	20 4		
,				point-			
	Sno.	Conductor	Insulator	1			
	1.	It has Free electrons	No free electrons.	mark			
	2.	No forbidden energy gap	Large forbidden energy gap				
	3.	Allows current to flow easily	Does not allow current to flow				
			easily				
	4.	Ex. Copper , aluminum	Ex. Plastic, glass, rubber				
b)	Basic bloc	k diagram of a regulated power	supply :	block	4		
	AC mains Tr	anetormori i	ilter rcuit Regulator Load Vo	diagra m-2 marks			
	Function o	of each block:		, Each			
	1) Transfo			functi			
	-		overt 230 V AC supply to required	on-			
		fAC supply.		1/2			
	2) Rectifie			mark			
		is an electrical device that conv	erts alternating current AC to direct				
	current.						
	3) Filter:						
		omponents or ripple present on the					
	outputof r 4) Regulat						
			t voltage irrespective of change in				
	inputvolta						
c)	Tas	2	4				
0		marks	-				
		for					
		diagra					
		m,					
	RB	_					
	Vinto	Vinio Ty Vice / Transter Transter					
	<i>I</i> _B	28=0 OFF ON					
	-		Hence Ic=0 and transistor operates	2			
			ter-base and collector-emitter are	marks			
	reverse bia	ased). Transistor operates as an	open switch.	for			

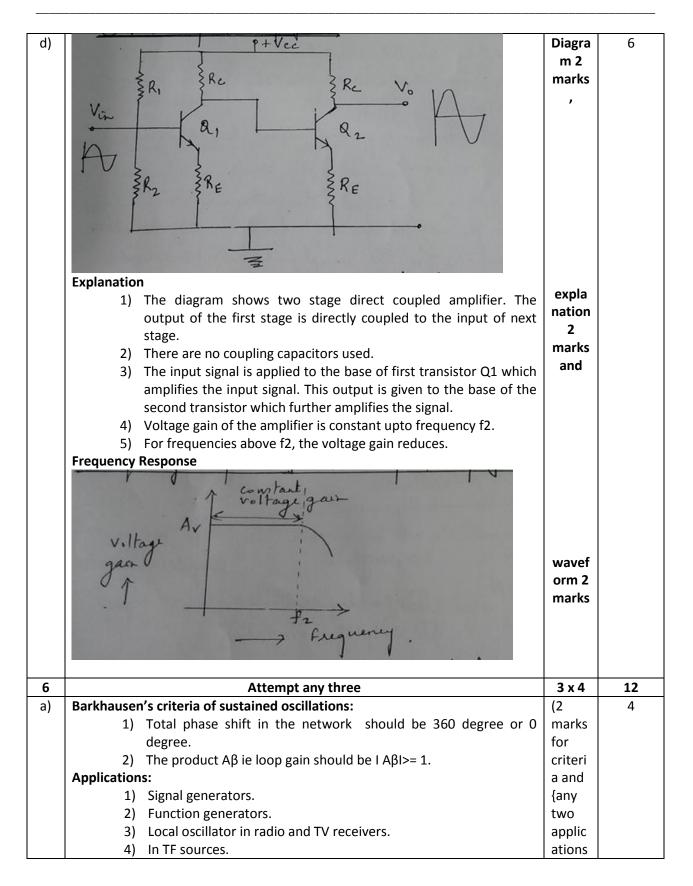


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)


	2) When Vin is positive, large base current flows and saturates the transistor (both emitter base and collector emitter junction are forward biased). Transistor operates as a closed switch.	expla nation	
d)	NAND and NOR gates are called as universal gates because it is possible to implement any Boolean expression with the help of only NAND or only NOR gates.	2 marks for	4
	NOR Grate $Y = \overline{A+B}$ $A \longrightarrow Y$ $B \longrightarrow Y$ $B \longrightarrow Y$ $A \longrightarrow Y$ $A \longrightarrow Y = \overline{A+B}$ $O \longrightarrow 1$ $O \longrightarrow $	reaso n and	
	NAND Grate NOT + AND. A B $Y = \overline{A} \cdot \overline{B}$ $Y = \overline{A} \cdot \overline{B}$ \overline{Input} output \overline{B} $Y = \overline{A} \cdot \overline{B}$ \overline{Input} output \overline{B} $Y = \overline{A} \cdot \overline{B}$ \overline{O} O 1	1/2 mark for symb ol and ½ mark for	
		truth table for each NOR	
		gate and NAND gate	
e)	 Intrinsic (pure) semiconductor: 1) Semiconductor in its purest form is known as intrinsic semiconductor. Eg. Si(14), Ge(32) 2) It is practically not used for manufacturing of devices. 	2 marks for intrins ic semic	4
	 Extrinsic semiconductor: 1) Semiconductor in its impure form is known as extrinsic semiconductor. 2) To increase the electrical conductivity of intrinsic semiconductors impurity element is added to it. 3) The process of adding impurity is called doping. 4) Ex. N-type and p-type 	onduc tor and 2 marks for extrin sic	
		semic onduc tor	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)





a)	$\begin{array}{c} A \\ B \\ \hline \\ OR \\ gate \\ Y = A + B \\ \hline \hline \\ \hline$	1 mark each for the symb ol and 1 mark each for the truth table	6
b)	 Block Diagram: Explanation: Input stage: It has two inputs inverting and non inverting. This stage provides most of the voltage gain of op amp and decides the input resistance. Intermediate stage: This stage provides additional voltage gain to the input signal. Level shifting stage: This stage is used to bring the dc level to zero volt with respect to ground. Output stage: This stage increases the magnitude of voltage and raises the current supplying capability of op-amp. It also provides low output resistance. 	diagra m 3 marks expla nation 3 marks	6
c)	Diagram:	diagra m 3 marks	6

b)Parameter Input resistanceCB Low MediumCE Medium4 pts 4 marks4 4 pts 4b)Imput resistanceLow Medium resistanceMedium marks4 a marks4 4 a marks4 4 a marksc)Imput Center tap transformerLess than 1 High Top					2	
Input Low Medium 4 resistance Output High Medium 4 cl Current gain Less than 1 High High Redium cl Imput figh High High High Rediand cl Imput figh High High High Rediand cl Imput figh High High High Rediand cl Imput figh Imput figh High High Rediand cl It consists of a step down center tapped transformer T1, two diodes and a load resistor. 1 marks for wave down and b load resistor. 1 cl In the negative half cycle diode D1 conducts as it is forward biased and D1 is off since it is reverse biased. 1 marks for wave down and D1 is off since it is reverse biased. 1 Imput fight						
Input Low Medium 4 resistance Output High Medium arks c: Current gain Less than 1 High High High Bight of the second seco	b)	Parameter	СВ	CE	4 pts	4
Image: constraint of the second se	,		Low	Medium	-	
resistance Current gain Less than 1 High Voltage gain High Higher than CB 2 4 c) Imarks for marks for 1 It consists of a step down center tapped transformer T1, two diodes and a load resistor. 1 It consists of a step down center tapped transformer T1, two diodes and a load resistor. 1 It consists of a step down center tapped transformer T1, two diodes and D2 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D2 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D1 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D2 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D1 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D1 is off since it is reverse biased. 0 0 It is called a full wave rectifier 0m 1 It consiste of a step down center tapped transformer T1, two diodes and D1 is obtained in both the half cycles of the ac supply, hence it is called a full wave rectifier 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•			marks	
resistance Current gain Less than 1 High Voltage gain High Higher than CB 2 4 c) Imarks for marks for 1 It consists of a step down center tapped transformer T1, two diodes and a load resistor. 1 It consists of a step down center tapped transformer T1, two diodes and a load resistor. 1 It consists of a step down center tapped transformer T1, two diodes and D2 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D2 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D1 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D2 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D1 is off since it is reverse biased. 1 It consists of a step down center tapped transformer T1, two diodes and D1 is off since it is reverse biased. 0 0 It is consider the half cycle so the ac supply, hence it is called a full wave rectifier 0 0 It is consider the half cycles of the ac supply, hence it is called a full wave rectifier 0 0 It is consider the half cycle so the ac supply, hence it is called a full wave rectifier 0 0 0 0 0 0 0 0 0		Output	High	Medium		
Voltage gainHighHigher than CB2c)Image: transformer1Image: transformer11)It consists of a step down center tapped transformer T1, two diodes and load resistor.112)In the positive half cycle diode D1 conducts as it is forward biased and D2 is off since it is reverse biased.1Image: transformer3)In the negative half cycle diode D2 conducts as it is forward biased and D1 is off since it is reverse biased.1Image: transformer4)Output is obtained in both the half cycles of the ac supply, hence it is called a full wave rectifier1Ince or source regulation : Line regulation is defined as the change in output voltage.2d)Ine or source regulation : Line regulation is defined as the change in input voltage.24% SR = ($\Delta V_0 / \Delta V_1$)*100regula tion &1Where ΔV_0 = change in output voltage.24		-				
 c) contract and the second sec		Current gain	Less than 1	High		
c) 2 4 1 1 center tap transformer 2 4 1 1 tconsists of a step down center tapped transformer T1, two diodes and a load resistor. 1 1 tconsists of a step down center tapped transformer T1, two diodes and D2 is off since it is reverse biased. 1 1 marks for wavef 3 In the negative half cycle diode D1 conducts as it is forward biased and D1 is off since it is reverse biased. 3 In the negative half cycle diode D2 conducts as it is forward biased and D1 is off since it is reverse biased. 4 4 0 0 Utip of since it is reverse biased. 6 3 0 0 Utip of since it is reverse biased. 7 4 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0			High			
d)Line or source regulation : Line regulation is defined as the change in output voltage of power supply that will occur per unit change in input voltage.24 M	c)	1) It corr and a 2) In the and I 3) In the and I 4) Outp	Center tap transformer nsists of a step down cent load resistor. e positive half cycle diod 22 is off since it is reverse e negative half cycle diod 21 is off since it is reverse ut is obtained in both the	er tapped transformer T1, two diodes e D1 conducts as it is forward biased biased. e D2 conducts as it is forward biased biased.	marks for diagra m, 1 marks for expla nation , 1 marks for wavef	4
output voltage of power supply that will occur per unit change in input voltage.marks for load% SR = $(\Delta V_0 / \Delta V_i)^* 100$ regula tion &Where ΔV_0 = change in output voltage.		3, ON		and ,		
Where ΔV_0 = change in output voltage. tion &	d)	output	voltage of power suppl	-	marks for	4
			• • •		-	
$\Delta V_i = \text{change in input voltage.} \qquad 2$		Where			tion &	
			ΔV_i = change in in	put voltage.	2	
marks					marks	
Load regulation: Load regulation is defined as the change in output for		Load r	egulation: Load regulatio	n is defined as the change in output	for	

voltage to the change in load current.% LR= $(V_{NL}-V_{FL})/V_{FL}$ *100 V_{NL} = output voltage on no load (zero load current) V_{FL} = output voltage on full load (maximum load current)				line regula tion	
e)	Sno.	ВЈТ	FET	(any 4	4
	1.	It is a bipolar device	It is a unipolar device.	pints -	
	2.	It is a current controlled device.	It is a voltage controlled device.	1 mark	
	3.	Low input impedance	High input impedance.	for	
	4.	High output impedance	low output impedance	each	
	5.	Noisy generated is high	Noise generated is less	point)	
	6.	BJT is bigger in size	FET is smaller in size.		