

WINTER-15 EXAMINATIONS

Subject Code: 17455

Model Answer

Page No: ____/ N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. NO.	MODEL ANSWER	MARKS	T O T A L
1.	Attempt any five		20
a)	 i)The location of weld is indicated by an arrow and a reference line. For example, (a) When the weld symbol is below the reference line, the weld is made on the same side of the joint as the arrow-head, i.e. the arrow side. ii)When resistance welds are to be indicated, the arrow shall point towards the centre-line along which the welds are to be made [Fig.]. 	2m each	4m
b)	Arc Stability:- Arc is said to be stable if it is uniform and steady. A stable arc will produce good weld bead and a defect-free weld nugget. Defects commonly introduced by unstable arc slag entrapment, porosity, blow holes and lack of proper fusion. The stability of a welding arc is governed by so many factors, a few, as mentioned below. (a) Suitable matching of arc and power source characteristics. A little variation in arc length, i.e., arc voltage should not extinguish the arc. (b) Continuous and proper emission of electrons from the electrode (say cathode) and thermal iozation in the arc column. Emissivity of pure tungsten cathode is improved by making it thoriated or zirconiated. (c) Position and movements of cathode and anode spots. (d) Arc length and arc current (e) Electrode tip geometry in TIG welding. (g) Conditions promoting Arc Blow. (h) Presence of dampness, oil, grease etc. on the surface of workpiece. (i) Limited practice on the part of the welder. Advantages:- 1)A stable arc will produce good weld bead 2)A stable arc will produce a defect-free weld nugget 3)Production rate will increase 4)Arc will be stable, steady and uniform	3m 1m	4 m

c)	Factors Affecting Arc Blow are as follows:	1m each point	4m
	(a) magnetic fields produced in the workpiece adjacent to the welding arc, because of the current flow through the arc,	P •	
	(b) presence of bus bars carrying large direct currents, in the neighborhood of the place where welding is being carried out,		
	(c) With multiple welding heads, arc at one electrode may be affected by the magnetic field of the arc at the other electrode,		
	(d) The magnetic field produced in the workpiece around the earth connection may tend to drive the arc away from the point where this connection is made. This magnetic field is produced because of current flow from the earth connection to the workpiece.		
d)	 Factors effecting weldability of metal are as follows Composition of the metal Brittleness and strength of metal at elevated temperature Thermal properties of metal Welding techniques, fluxing material and filler material Proper heat treatment before and after the deposition of the metal. 	1m each point	4m
e)	The factors which influence the solidification mode are- Low values of G/\sqrt{R} indicate an increased tendency for constitutional super cooling, thus Z favoring the dendritic mode of solidification. On the other hand,steep temperature gradients in the liquid and slow growth rates favour cellular growth .Weld metal solidification rate influences metallurgical structure, properties and soundness of the weld	4m	4m
f)	Heat affected Zone (HAZ) Approximate 10 250 100 100 Fusion weld zi - Adjacent to the weld metal zone is the heat-affected zone that is composed of parent metal that did not melt but was heated to a high enough temperature for a sufficient period that grain growth occurred.	2m(1/2 m for diagra m)	4m

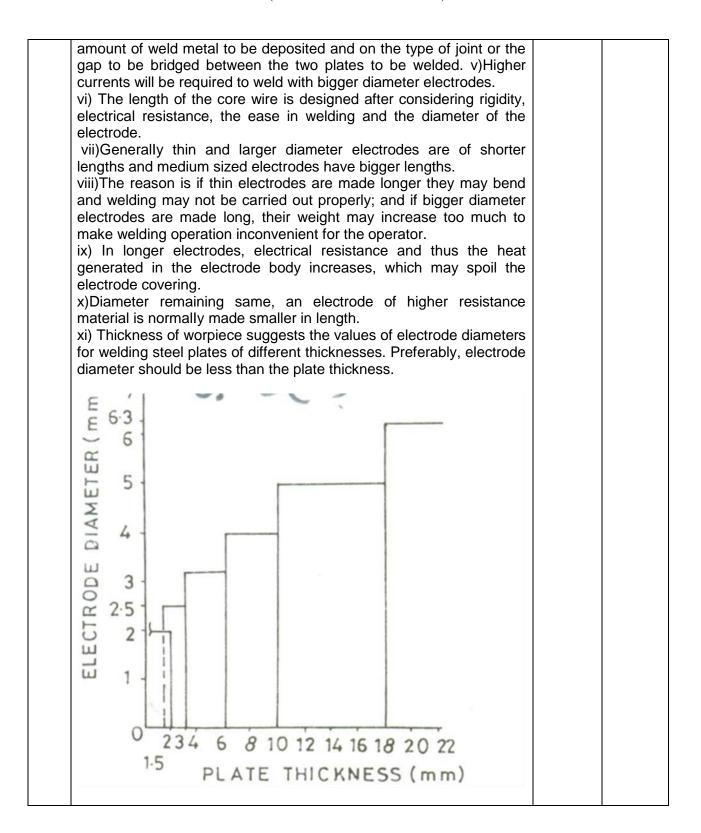
	- Heat -affer	ted zone is that portion	of the base metal whose		
	mechanical p				
	the heat of w				
	Characteristi				
	- The heat-a	2m(1m			
	•	• • •	ng) in which all temperatures	each	
		ting range of the steel dowr		point)	
		ratures are involved and HA			
	•	ded structures ringing the w			
		• •	rostructures. In plain carbon		
			very narrow regions of hard		
			ers HAZ, the weakest area in		
		failures originate in the he	defects in the weld deposit,		
		of HAZ varies according to			
		arc welds it extends only a			
			tro slag welds it is somewhat		
	wider.	, , , , , , , , , , , , , , , , , , ,	3		
	- The HAZ ir	n low carbon steel of norma	I structure welded in one run		
	with coated e	electrodes or by submerged	l arc process comprises		
		irgically distinguished regio	ns.		
	•	growth region			
	•	refined region			
	3. The transi	tion region			
	SR.	WELDING	BRAZING	1m	4m
	SR. NO			each	4m
g)		These are the	These are stronger		4m
g)		These are the Strongest joints used to	These are stronger than soldering but	each	4m
g)		These are the Strongest joints used to bear the load. Strength	These are stronger than soldering but weaker than welding.	each	4m
g)	NO	These are the Strongest joints used to bear the load. Strength of a welded joint may be	These are stronger than soldering but weaker than welding. These can be used to bear	each	4m
g)	NO	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength	These are stronger than soldering but weaker than welding.	each	4m
g)	NO	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal.	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent	each	4m
g)	<u>NO</u> 1	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in	each	4m
g)	NO	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent	each	4m
g)	<u>NO</u> 1	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone.	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing	each	4m
g)	NO 1 2	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in	each	4m
g)	<u>NO</u> 1	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone.	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are	each	4m
g)	NO 1 2	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be joined need to be	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are heated but below their	each	4m
g)	NO 1 2	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be joined need to be heated till their melting point. Mechanical properties	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are heated but below their melting point. May change in	each	4m
g)	NO 1 2 3	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be joined need to be heated till their melting point. Mechanical properties of base metal may	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are heated but below their melting point. May change in mechanical properties	each	4m
g)	NO 1 2	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be joined need to be heated till their melting point. Mechanical properties of base metal may change at the joint due	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are heated but below their melting point. May change in mechanical properties of joint but it is almost	each	4m
g)	NO 1 2 3	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be joined need to be heated till their melting point. Mechanical properties of base metal may change at the joint due to heating and	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are heated but below their melting point. May change in mechanical properties	each	4m
g)	NO 1 2 3	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be joined need to be heated till their melting point. Mechanical properties of base metal may change at the joint due to heating and cooling.	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are heated but below their melting point. May change in mechanical properties of joint but it is almost negligible	each	4m
g)	NO 1 2 3 4	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be joined need to be heated till their melting point. Mechanical properties of base metal may change at the joint due to heating and cooling. Heat cost is involved	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are heated but below their melting point. May change in mechanical properties of joint but it is almost negligible Cost involved and sill	each	4m
g)	NO 1 2 3	These are the Strongest joints used to bear the load. Strength of a welded joint may be more than the strength of base metal. Temperature required is upto 3800°C of Welding zone. Work piece to be joined need to be heated till their melting point. Mechanical properties of base metal may change at the joint due to heating and cooling.	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent It may go to 600°C in brazing Work pieces are heated but below their melting point. May change in mechanical properties of joint but it is almost negligible	each	4m

		Heat treatment is	No heat treatment is		
	6	generally required to	required after brazing.		
	Ŭ	eliminate undesirable			
		effects of welding			
	7	No preheating of	Preheating is desirable to		
		workpiece is required	make strong joint as		
		before welding as it is	brazing is carried out at		
		carried out at high	relatively low temperature		
		temperature.			
2.					4.0
-)		ATTEMPT A	NY FOUR	0	16
a)				2m for	4m
	Inner Cone (3	300 Deg Celcius)		each	
				topic	
		Outer Envelope (126	50 celcius)	(1/2 m for	
			Neutral Flame	each	
				diag)	
				ulay)	
	Inner	Cone (Pointed)			
	/	Outer Envelope (Small	and Narrow)		
			Oxidizing Flame		
	,	TRAL FLAME:-			
			proximately equal volumes of		
		ylene are mixed in the weld	ding torch & burnt at the torch		
	tip.				
			of the order about 5900° F.		
			cone which is light blue in		
		urrounded by an outer env	velope which is much darker		
	than blue.	Mild at a l Aluminium Ctai	alage Steel Conner		
		Mild steel, Aluminium, Stai	niess Steel, Copper,		
	Cast iron	ISING FLAME:-			
	·		stablished the supply of an		
			he small white cone which is		
	•	• •	ainted than that of the neutral		
		•	xygen & which causes the		
		to rise as high as 6300 F.	Agen a mich daubes the		
	Applications:				
			Manganese steel, cast iron.		
		,	<u>.</u>		

b)	Free Flight Transfer. In which metal drops get detached from the electrode,pass through the arc and fall on the job. This category of metal transfer can further	3m for exp 1m for	
	be classified as follows:	diag	
	$ \begin{array}{c} \hline \\ \hline $		4m
	 (i) Sub-threshold type. The drop diameter is approximately equal to three times the electrode core wire diameter. (ii) Globular type. The drop diameter is approximately twice the electrode core wire diameter. This type of transfer is observed in both flux shielded metal arc welding and MIG welding processes. Globular transfer is observed at low arc currents or with longer arcs. The globules may pass freely through the welding arc or depending upon their size and arc gap they may short-circuit the arc. The number of drops transferred per second are very less. Globular transfer is associated with spatter loss and shallow penetration height. (ii) Spray type. 		
	In this case the drop diameter is approximately equal to electrode core wire diameter. The rate of drop transfer is much higher than that in globular transfer. There is a continuous spray of drops from the electrode to the job. This type of transfer occurs at high arc currents and low arc lengths. Spray transfer is observed in both flux-shielded metal arc welding and MIG welding. A mixture of argon and oxygen promotes spray transfer in MIG welding. Though associated with some spatter, spray mode of transfer produces a stable are, good weld bead, deep penetration, a strong joint and is recommended for thicker plates.		
	(iv) Jet type: In jet type of transfer the drop diameter is approximately equal to half the diameter of the wire. In this case the electrode end becomes tapered and a jet of drops comes out from the electrode .The temperature of the droplet formed from a steel electrode just as it detaches, ranges from 1800-2000 0C.The size of a droplet ranges between 0.5 to 5 mm. The velocity at which drop transfer takes place depends upon drop size.		

c)	 Pulsed type metal transfer 1) Pulsed-arc welding is a controlled method of spray transfer welding requiring a more sophisticated power source, whereas the types of transfer described previously can be obtained with standard power sources and wire feed units. 2) In spray transfer, droplets of metal are projected from the wire tip across the arc gap to the molten pool at a constant current. In dip transfer, metal is transferred to the molten pool somewhat irregularly during the periods of short circuiting. 3) Pulsed-arc welding enables droplets to be projected across the arc gap at a regular frequency, using pulses of current in the spray transfer range supplied from a special power source. 4) Transfer of metal from the wire tip to the molten pool occurs only at the period of pulse or peak current (see Fig.). 5)During the intervals between pulses a low 'background' current maintains the arc to keep the wire tip molten but no metal is transferred. 6) Pulsed transfer means that the weld metal is projected across the gap at high current, hut the mean welding current remains relatively low. 7) The operator can vary the pulse height and the background current to obtain full control of both the heat input and the amount of metal deposited; however, in many modern power sources the pulse procedure is preset by the manufacturer to simplify use. 	3m for exp 1m for diag	4m
----	---	---------------------------------	----

	Less-current arc keeps		
	weld pool molten.		
	Direction High-current pulse heats		
	of weld pool and melts		
	welding send of electrode.		
	Lange and the second se		
	High (screet) creates		
	pinch forces (A)		
	which detach droplet.		
	Dropist transferred		
	to wild pool at the end		
	of high-current pulsa.		
	20.		
	Arc returns to		
	low background		
	Cutters.		
	Time for complete		
	Time for complete sequence = 1/50th second		
	adaine - a built more		
d)	Welding characteristics of gray cast iron	4m	4m
	1) During welding a molten pool of gray cast iron, at the joint to be		
	welded, is created which when solidified forms the weld.		
	2) If the percentage of silicon in gray cast iron is proper, the amount		
	of carbon going into the combined state (as cementite etc.) or		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal.		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there.		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld,		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast iron part before welding to a temperature as high as 600-7000C.		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast iron part before welding to a temperature as high as 600-7000C. 5) Whether the preheating may be done only at and around the joint		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast iron part before welding to a temperature as high as 600-7000C. 5) Whether the preheating may be done only at and around the joint or the complete job maybe preheated, it depends upon the		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast iron part before welding to a temperature as high as 600-7000C. 5) Whether the preheating may be done only at and around the joint		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast iron part before welding to a temperature as high as 600-7000C. 5) Whether the preheating may be done only at and around the joint or the complete job maybe preheated, it depends upon the geometric shape and size of the workpiece.After the weld is		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast iron part before welding to a temperature as high as 600-7000C. 5) Whether the preheating may be done only at and around the joint or the complete job maybe preheated, it depends upon the geometric shape and size of the workpiece.After the weld is completed, the job is allowed to cool down relatively slowly by		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast iron part before welding to a temperature as high as 600-7000C. 5) Whether the preheating may be done only at and around the joint or the complete job maybe preheated, it depends upon the geometric shape and size of the workpiece.After the weld is completed, the job is allowed to cool down relatively slowly by covering the heated section of the component with asbestos, by		
	of carbon going into the combined state (as cementite etc.) or remaining in the free form (as flakes) will depend upon the cooling rate of the weld metal. 3)If the cooling rate is fast, most of the carbon will go in the combined state and the result will be a very hard, brittle, and un machinable white cast iron weld, Crack formation may also be there. 4) In order to obtain a soft, stress free and easily machinable weld, the weld metal cooling rate is retarded by preheating the gray cast iron part before welding to a temperature as high as 600-7000C. 5) Whether the preheating may be done only at and around the joint or the complete job maybe preheated, it depends upon the geometric shape and size of the workpiece.After the weld is completed, the job is allowed to cool down relatively slowly by covering the heated section of the component with asbestos, by burying it in dry sand etc.		



e)	 METALLURGICAL EFFECTS OF WELDING ON METALS Welding operations give rise to many metallurgical effects : Weld metal is essentially a small casting, with the inherent defects and characteristics of a casting. An appreciation of these characteristics can be easily attained by a study of the mechanism of solidification ofmetals and alloys. Absorption of gases by weld metal and gas reactions is important in controlling the porosity of a weld, e.g., hydrogen in aluminium. Gas such as hydrogen is more easily dissolved in the molten metal at high temperature and may subsequently be trapped in the solid metal if cooling is rapid. The gas may either be retained in the microstructure or may form bubbles which can become trapped as porosity in the fast freezing metal. Gas-metal reaction may take one of the two forms: physical (endothermic)solution, or exothermic reaction to form a stable chemical compound. Endothermic solution does not exhibit fusion, but can result in porosity, either due to supersaturation of the weld pool with a particular gas or by reaction between two gases. Sometimes it may result in the crnbrittlement of HAZ also. Slag inclusions are frequently trapped in fusion welds due to joint or bead contour and there is difficulty of removing or melting the slag in subsequent runs. Hot cracking of welds. Under constrained welding conditions, the contractional strains, sometimes, cause intercrystalline 'lacks in hot welds, the fractured surface being tinted with oxidation film. 	1m per point	4m
f)	Good Brazing joint design should be such that: (i) The filler metal can be placed on one side of the joint and pulled through the joint by capillary action. (ii) There is an allowance for preplacement or feeding of the filler metal into the joint area. (iii) The joint meets service requirements, e.g. a)Mechanical performance b)Electrical and Thermal conductivity c) Pressure tightness d) Corrosion resistance e)Good appearance f)Service temperature. The type of joints used for brazing include the lap, scarf butt joint, square butt joint, tee joint, iv) The lap joint probably gives the most satisfactory results in terms of optimum strength requirements. The length of the lap should be equal to at least three times the thickness of the thinnest member of the joint.	1m each point	4m

3. a)	ATTEMPT ANY FOUR ADVANTAGES OF GAS WELDING 1. It is probably the most versatile process. It can be applied to a wide variety of manufacturing and maintenance situations. 2. Welder has considerable control over the temperature of the	2m for adv 2m for	16 4m
a)	1. It is probably the most versatile process. It can be applied to a wide variety of manufacturing and maintenance situations.	adv	4m
		limit	
	 metal in the weld zone. When the rate of heat input from the flame is properly coordinated with the speed of welding, the size, viscosity and surface tension of the weld puddle can be controlled, permitting the pressure of the flame to be used to aid in positioning and shaping the weld. 3. The rate of heating and cooling is relatively slow. In some cases, this is an advantage. 4. Since the sources of heat and of filler metal are separate, the welder has control over filler-metal deposition rates. Heat can be applied prefer- entially to the base metal or the filler metal. 5. The equipment is versatile, low cost, self-sufficient and usually portable. Besides gas welding, the equipment can be used for preheating, post heating, braze welding, torch brazing and it is readily converted to oxygen cutting. 6. The cost and maintenance of the welding equipment is low when compared to that of some other welding processes. 	(1m each point)	
	 LIMITATION OF GAS WELDING 1. Heavy sections cannot be joined economically. 2. Flame temperature is less than the temperature of the arc. 3. Fluxes used in certain welding and brazing' operations produce fumes that are irritating to the eyes, nose, throat and lungs. 4. Refractory metals (e.g., tungsten, molybdenum, tantalum, etc.) and reactive metals (e.g., titanium and zirconium) cannot be gas welded. 5. Gas flame takes a long time to heat up the metal than an arc. 6. Prolonged heating of the joint in gas welding results in a larger heat-affected area. This often leads to increased grain growth, 		
	 more distortion and, in some cases, loss of corrosion resistance. 7. More safety problems are associated with the handling and storing of gase. 8. Acetylene and oxygen gases are rather expensive. 9. Flux shielding in gas welding is not so effective as an inert gas shielding in TIG or MIG welding. Applications: sheet metal, heat exchangers, bridges, ship bodies, air craft, furnace parts, boilers etc 		
b)	 i)Depending upon the material of the electrode, it may melt and supply filler metal; if it is non-consumable, a separate filler addition generally becomes necessary. ii)The composition of the core wire depends upon the metal to be welded. iii) For example, to weld mild steel, core wire of similar composition will be prepared, in order to get a homogeneous welded joint. iv) The size or diameter of the core wire will depend upon the 	3m for exp(1m for diag)	4m

C)	 Spot welding Welding on cast iron involves repairs to castings, not joining casting to other members. Cast iron typically has a carbon content of 2% - 4%, roughly 10 times as much as most steels. The high carbon content causes the carbon to form flakes of graphite. This graphite gives gray cast iron its characteristic appearance when fractured. A critical temperature in most cast iron is about 1450° F. When at this temperature, conditions that can lead to cracking occur. The overall weldability of cast iron is low and depends on the material type, complexity, thickness, casting complexity and need for machinability. There are many different cast irons, many of which are totally unweldable as they will crack when you heat them When castings are made, molten iron is poured into a mold and allowed to slowly cool. When this high carbon material is allowed to cool slowly, crack free castings can be made. Because of its molten state getting cooled it cannot be forged so easily. A cast iron is an alloy of iron, carbon, and silicon, in which the amount of carbon is usually more than 1.7 percent and less than 4.5 percent. There are many different cast irons, many of which are totally unweldable as they will crack when you heat them. 	2m (1m each point) 2m (1m each point)	4 m
d)	 Various heat treatment to reduce stresses are: 1.Peening 2.Vibratory stress-relief 3. Thermal treatment 4. Thermo-mechanical treatment 5. Overstressing technique 1. Peening Peening has been employed with success for stress relieving purposes. When properly applied, peening causes plastic flow and subsequently relieves the restraint that set up in the residual stresses. Instead by hand, peening may be better controlled if a pneumatic chisel with blunt rounded edge is used. Peening reduces internal stresses of a very low intensity- far below any affected by heating below the critical point, because low temperature reduces only those internal stresses that are above the long-time yield point of the steel at the stress-relieving temperature. For this reason the general use of peening to reduce stresses below the fracture point during welding operations is 	2m for listing 2m for exp any one	4m

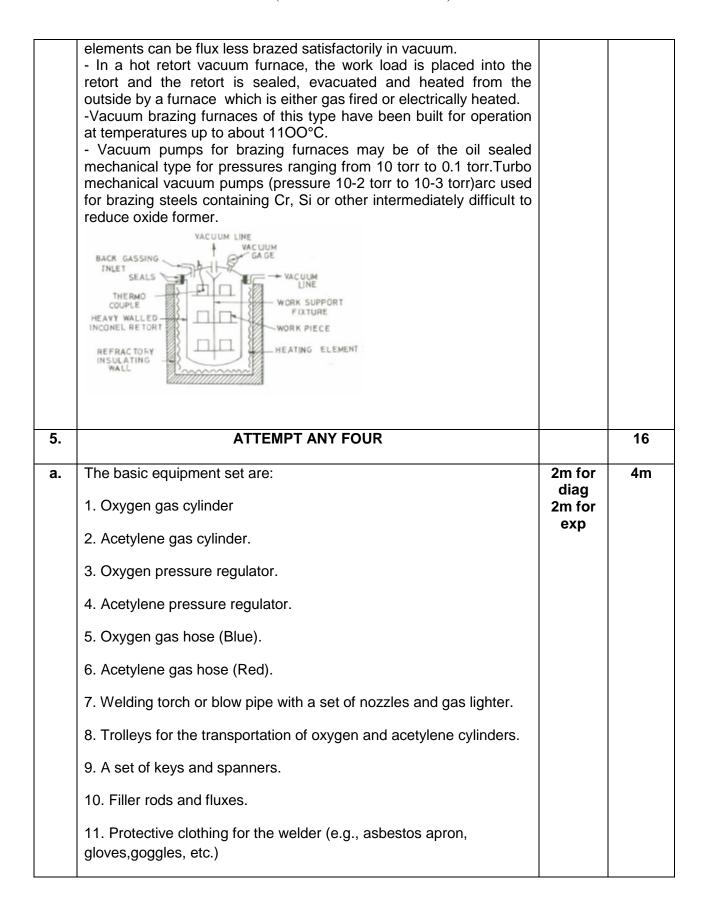
employed extensively. It eliminates need for successive heat treatments when welding a very thick section, say of 45 cm. - Peening also reduces distortion (stress relief by heat cannot accomplish this to the same degree). - Peening should not be employed on the first and last lavers (or beads) of the welds, because peening the first layer could actually pierce the weld or displace the member sideways and peening the last layer will cold work it and thus injure the weld metal (as there is no subsequent application of heat to anneal the last layer). - Excessive peening should not be carried out as it may result in (i) cold working and strain hardening of the weld metal. (ii) bending, and (iii) cracking of the weld. - Peening should be employed only when the weld metal possesses sufficient ductility to undergo necessary deformation. 2. Vibratory Stress-relief - Welded structures (e.g., press frames) are subjected to vibrations to relieve residual stresses. - In this method of stress-relieving an oscillating or rotating wave generator is mechanically coupled to the part to be stress relieved. The welded structure is placed on a platform that vibrates and in turn. the welded structure vibrates at one of its natural (resonant) frequencies. For such a system to be effective, it must produce plastic yielding in the region to be stress relieved. - If not all the welding stresses, vibratory method can at least reduce the magnitude of peak stresses". Even this (i) reduces distortion in parts machined after welding, (ii) improves resistance to brittle fracture. - Since vibratory stress-relief treatment does not change the metallurgical structure of welds or heat -affected zone, it does not alter mechanical properties, i.e., the strength or toughness of the weldment. 3. Thermal treatment - Thermal treatment proves to be a better substitute than vibratory stress relief because it improves the strength or toughness of the weldment by bringing changes in microstructures. - Thermal stress-relief treatment consists of heating a welded structure uniformly to a suitable temperature (preferably in a furnace) below the critical range of the parent metal, holding it at this temperature for predetermined period of time, followed by uniform cooling. Still air is very desirable after the furnace is opened and until the structure is fully cooled. - A desirable thermal stress relieving treatment for a welded steel structure is heating uniformly to 595 to 650°C, holding at that temperature 2 hour per 25 mm of thickness and cooling slowly in the furnace to approximately 125°C and preferably lower. After treatment, the structure may be removed and allowed to cool to room temperature. 595 to 650°C temperature is high enough to reduce the residual

stresses rapidly, in addition, this relatively low temperature avoids undue distortion of the weldment. - The temperature used for stress-relief heat treatment may be in the range of 525-740°C for weldment in plain carbon and low alloy steels. When lower temperature in the specified range is used, longer soaking times are necessary. - Thermal treatment reduces stresses to a level just below the yield point of the material at the temperature of the stress relief treatment. The residual stress remaining in a material after thermal stress relief will depend on the rate of cooling. Uneven cooling may undo much of the value of thermal treatment. - The percentage relief of welding stresses is dependent on steel type, composition or yield strength. 4. Thermo-mechanical stress relief-treatment - This technique aims at using thermal expansion to provide the mechanical forces required to set up another residual stress system to counteract and thereby cancel the original already set-up due to weldina. - In this process, two bands of heat (using two oxy-fuel gas torches moving in tandem along the weld) are applied to either side of a longitudinal welds (Fig.) & WELD JOB HEAT HEAT WELD IEAT -The progression of these heated bands of metal, parallel to the weld and adjacent to each side, results in a travelling zone of thermal expansion in the base metal and a reciprocal tensile stress in the weld. -The positions of heat bands are chosen such that this way developed residual stresses counteract and cancel the original stresses set-up due to welding. - The metal on either side of a welded joint is heated to a temperature of 175 to 205°C, while the weld itself'1, kept relatively cool. - Reductions in transverse residual stresses ranging up to 60%, as well as a considerable reduction in the longitudinal stresses, have been reported using thermo-mechanical stress relief treatment. - Since this low-temperature treatment, in most metals, does not improve metallurgical properties of weld metal and heat affected

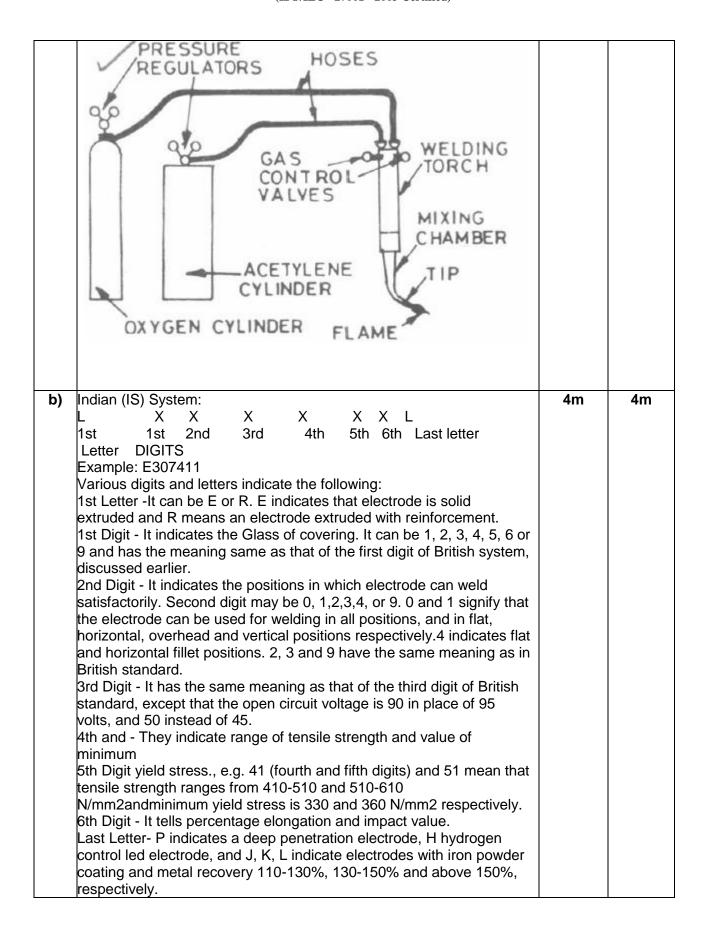
	r		
	zone, it is not considered as a good substitute for thermal stress		
	relief treatment to provide ductility and notch toughness.		
	5. Overstressing technique		
	- This method, more applicable to thin welds, has been applied for		
	many years by many operators.		
	It can be used for ductile welds and ductile steel.		
	- All that is necessary is to bring the applied stresses above the yield		
	stress of the material. Sometimes it is not necessary to load even		
	that much.		
	-In a structure where internal stresses are high it is only necessary to		
	apply such a load as will bring the total to the neighbourhood of the		
	yield, and the high internal stresses will relieve themselves without		
	much distortion.		
	- Welded pressure vessels may' be stress relieved by subjecting		
	them to internal pressures (say hydrostatically) of such a value that		
	the metal reaches the yield stress throughout.		
	-When such pressure are removed the residual stress will be bound		
	to have		
	largely disappeared.		
e)	NEED OF HEAT TREATMENT AFTER WELDING:-	1m per	4m
	1) Post weld heat treatment defined as any heat treatment after	point	
	welding, is often used to improve properties of a weldment.	-	
	2) the Post weld heat treatment can encompass many different		
	potential treatments; fabrication, the two most common procedures		
	however, in steel used are post heating and stress relieving		
	3) The need for Post weld heat treatment is driven by code and		
	application requirements, as well as the service environment. In		
	general, when Post weld heat treatment is required, the goal is to		
	increase the resistance to brittle fracture and relaxing residual		
	stresses.		
	Other desired results from Post weld heat treatment may include		
	hardness reduction, and material strength enhancements.		
	4)Post heating is used to minimize the potential for hydrogen		
	induced cracking (HIC).		
	5)Stress relief heat treatment is used to reduce the stresses that		
	remain locked in a structure as a consequence of manufacturing		
	processes.		
f)	TORCH BRAZING	3m for	4m
	- Torch brazing is the most versatile method and it finds wide	exp(1m	
	application in industry in both fabrication and repair work.	per	
	- Heat is usually provided by ordinary gas welding equipment by	point)	
	burning gas combinations such as air and acetylene, oxygen and	1m ́	
	acetylene, oxygen and hydrogen and air and propane.	diag	
	- Air-gas torches provide the lowest flame temperature as well as the	Ŭ	
	least heat, depending on the size of the torch. Oxy-hydrogen torches		
	are often used for brazing aluminium and other non-ferrous alloys.		
	- To braze, the operator plays the torch flame (which is neutral or		
	slightly reducing) on the thoroughly cleaned parts, being careful to		
	heat the heavier sections first. A flux is applied to the joint area to		
	prevent oxidation of the parts during heating. As the flux becomes		

	molten, it cleans the joint area of oxid surfaces for wetting by the filler meta fed to the joint area as soon as the joint temperature. - In many cases filler rods instead of in the form of a ring, washer, or inser - Commonly used filler metals need at temperature) of 0.05 to 0.125 mm for usually preferred.			
4.	ATTEMPT AN	IY FOUR		16
a)			1m per point	4m
	LEFTWARD TECHNIQUE	RIGHTWARD TECHNIQUE	•	
	The welding flame is directed	The welding flame is directed		
	away from the finished weld of the joint i.e towards the Unwelded	towards the finished weld of the joint ie away from the. the		
	part.	Unwelded part.		
	Welding begins at the right hand	Welding begins at the left hand		
	end of the weld and proceeds towards the left side end of the	end of the weld and proceeds towards the right side end of		
	joint.	the joint.		
	Sidewise motion of the torch is	No sidewise motion of the torch		
	necessary.	necessary.		
	This technique is used for relatively thin metals.	This technique is used for heavy sections.		
	More consumption of filler metal during welding so cost is higher.	Less consumption of filler metal so cost is low.		
	In this the welding torch is in	In this the filler rod is in		
	between the filler rod and Unwelded portion of the weld	between the welding torch and Unwelded portion of the weld.		

b)	 CARE AND STORAGE OF ELECTRODES Utmost care is required in handling and storage of electrodes. Due to Poor care and wrong storage the following disadvantages will take place: Electrode, with damp coating will produce a violent are, porosity and cracks in the joint. Electrodes with damaged coating will produce joints of poor mechanical properties. To avoid damage to coating, electrodes during storage should neither bend nor deflect, (b) electrode packets should not be thrown or piled over each other. Electrodes should be stored in dry and well-ventilated store rooms. Storage temperature should be about 12°C above that of external air temperature with 0-60% humidity. Cellulose electrodes arc not so critical but they should be protected against condensation and stored in a humidity of 0-90%. Before use the electrodes may be dried as per manufacturer's recommendations e.g. BS : E 616 H or IS : M 616478H electrodes may be dried at 150°C for 1 hour before use. All electrodes, and especially costlier ones, should be used till they arc left hardly 40-50 mm. Electrodes should preferably be retained in original (manufacturer's) packing for identification. Loss of identity of electrodes can waste a lot of time in recognizing them correctly. 	1m per point	4m
с)	 welding Methods for alloy steels The high strength alloy steels can be welded readily by all the common welding processes. 1. Oxy-acetylene Welding The type of filler rod employed depends upon the mechanical properties required. A high tensile steel rod will prove effective. For corrosion resistance, etc., the weld metal must match with the parent metal. A flux is used to counteract the oxidation of alloying elements. After welding, a postheat -treatment is necessary for the heat treatable low-alloy steels to refine the grain structure. 2. Flux-shielded Metal Arc Welding Mild steel electrodes will work very well with steels having a carbon content under 0.14%. Weld develops tensile strength as high as 80,000 psi (5600 kg/cm2) as the result of alloy pick-up from the base steel. Where higher strength at better ductility is desired, low alloy steel electrodes may be required. Because of greater crack sensitivity of the low alloy steel electrodes, preheating may be necessary. 	4m for any one exp	4m



	- Where corrosion is a factor, it may be advisable to use core wires]
	of the same composition as the base steel.		
	 3. Submerged Arc Welding Both hot rolled and heat -treated grades of low-alloy steels are welded by using the method very similar to that used for welding low carbon steels. Because of deep penetration characteristics of this process, mildsteel filler rods are usually satisfactory. Preheating is generally not necessary. 4. Thermit Welding Low alloy high strength steels can be therrnit-welded. Metallic elements are added to the thermit mixture to obtain composition close to that of the parent metal. Metallic elements are added either as metallic pieces or in the form of combinations of oxides of the required elements with aluminium. Stress-relieving heat-treatments, when required, should be carried out between 595 and 675°C. 		
	 5. Resistance Spot Welding Spot welding can be carried out satisfactorily. For alloys having high hardenability, special treatments such as preheating, grain refinement and tempering heat-treatments may be incorporated in the welding cycle. 		
d)	-weldability of low alloy steels is dependent upon the composition and the hardenability those exbiting low hardenability being welded	1m each	4m
	 with relative ease -welding of such steel is carried out on much the same lines as that of carbon steels of equilent carbon contents -alloys of high strength require filler metal of mechanical properties matching the base metal -special alloys with creep resistant or corrosion resistant properties must be welded with filler metal of same chemical analysis -welding of low alloy high strength steels with high hydrogen types of covered mild steel electrode, usually require that assembly be preheated -many high strength low alloy steels is the prevention of under bead or cold cracking which can be minimised by using low hydrogen type electrode and slower rate of cooling. -welding with low hydrogen electrodes generally does not requirepre heating except for highly restrained sections 	point	



e)	SR.N O.	BRAZING	SOLDERING	1m per point	4m
	1	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent	These are weakest joint out of three. Not meant to bear the load. Use to make electrical contacts generally		
	2	It may go to 600C in brazing	Temperature requirement is up to 450C		
	3	Work pieces are heated but below their melting point	No need to heat the work pieces		
	4	May change in mechanical properties of joint but it is almost negligible.	No change in mechanical properties after joining		
	5	Cost involved and skill required are in between others two			
	6	No heat treatment is required after brazing.	No heat treatment is required		
	7	Preheating is desirable to make strong joint as brazing is carried out at relatively low temperature	before soldering is good for		
	8	Cost involved and sill required are in between others two	Cost involved and skill requirements are very low.		
	9	No heat treatment is required after brazing.	No heat treatment is required		
f)	vacuum - Becaus	type of furnace brazing. Inst is created in the furnace for c se of the stability of surface of	ead of a suitable atmosphere, arrying out brazing. oxides containing Cr, Mn, Ti,V, al of more than 2 or 3%of these		

 Example: E 307411 means (a) It is a solid extruded electrode. (b) Its covering contains appreciable amount of titania; a fluid slag. (c) It is all position electrode, (d) It can be operated on DCRP, DCSP or AC with a power sourcehaving, open circuit voltage 50 volts, (e) Weld metal tensile strength ranges between 410 and 510 N/rnm2 and minimum yield stress is 330 Nzmm", (10 N/mm2 = 1.02 kgf/mrn2). (f) Minimum percentage elongation of weld metal (in tension) is 20% of 5.65 v'SO and impact value of weld metal at s27°C is 4.8 kgf m (or 47 J). Where Sois the cross-section area of the specimen being tested 		
 c) TIG WELDING for aluminium Its suitability are as follows: TIG welding is the most commonly used method of welding aluminium today. Thinner gauges of aluminium can be joined without a filler metal. TIG welding involves striking an arc between a tungsten (alloy) electrode and the workpiece to provide heat for joiningA separate filler rod is employed when welding thicker workpieces. TIG welding resembles gas welding because both employ a heat source independent of the filler (metal) electrode. Gas welding employs a flux whereas TIG welding makes use of an inert gas to prevent any reaction between the molten weld metal and the atmosphere. Thicknesses of aluminium alloys commonly welded by TIG processrange from 1 to 10 mm for manual welding and from 0.25 mm to 25 mm for automatic welding. 		4m
 d i)Cracking causes Rigidity of the joint, i.e., joint members not free to expand or contract when subjected to welding heat and subsequent cooling (localized stresses). Poor ductility of base metal. Hardenability, high Sand C percentage of base metal. Concave weld bead. Fast arc travel speed. Electrode with high H2 content] Remedies Preheat Relieve residual stresses using backstep or block welding sequence Change welding current and travel speed Weld with covered electrode negative; butter the joint faces prior to welding. Change to new electrode bake electrodes to remove moisture Reduce root opening; build up the edges with weld metal Increase electrode size; raise welding current, reduce travel speed	1m each answer	4m

-Use filler metat low in sulfur -Fill crater before extinguishing the arc; use a welding current decay device when terminating the weld bead	
 2)INCOMPLETE PENETRATION Various causes of incomplete penetration are as follows: 1. Improper joints. (For example, it is simpler to obtain full penetration in U joint as compared to J butt joint). 2. Too large root face. 3. Root gap too small. 4. Too small bevel angle. 5. Less arc current. 6. Faster arc travel speed. 7. Too large electrode diameter. 8. Longer arc length. 9. Incorrect polarity when welding with direct current. 10. Wrongly held electrode. It should be in the centre of the joint Remdies 1) Increase included angle of groove joint. Change the groove design to a 'J' or a 'U' type. 2)Clean weld surfaces prior to welding 3)Maintain proper electrode position and current 4) Use correct manipulation techniques to melt the joint faces properly. 	
 UNDER-CUTTING In under-cutting a groove gets formed in the parent metal along the sides of the weld bead. Groove reduces the thickness of the plate and thus the area along the bead, which in turn weakens the weld. The main causes of undercutting are as follows: 1. Wrong manipulation and inclination of electrode and excessive weaving. 2. Too large electrode diameter. 3. Higher currents. 4. Longer arcs. 5. Faster arc travel speeds. 6. Magnetic arc blow. 7. Rusty and scaly job surfaces 	
 Remedies 1) Excessive current, causing the edges of the joint to melt and drain into the weld; this leaves a drain-like impression along the length of the weld. 2) If a poor technique is used that does not deposit enough filler metal along the edges of the weld. A third reason is using an incorrect filler metal, because it will create greater temperature gradients between the center of the weld and the edges 4)Right Selection of Gas Shielding 5)Correct welding Technique Correct Welding position 	

	1)Wet, 2.Base 3.Over 4.Over 5.Exce 6.Too t REMEI 1)Prope 2.Prope 3.Redu 4.Use p 5.Maint	v holes s of blow holes unclean or damaged electrode. metal surface covered with oil, rust travelling speed. currents ssively long or short arc length. hick base-metal or too fast cooling in DIES OF BLOW HOLES erly maintain and store electrode. erly clean base metal prior to weldin ice travel speed. proper welding current. tain proper arc length. eed proper pre-heating.	rate		
e)	2	Cold Cracking Cold cracking is cracking that occurs as the result of hydrogen dissolving in the weld metal and then diffusing into the heat affected zone (HAZ). Cold cracks mostly develop long after the weld metal solidifies, but sometimes appear sooner Cold weld cracking occurs at temperatures well below 600°F	formation of shrinkage cracks during the solidification of weld metal. This phenomenon occurs in almost all metals.	1m per point	4m
	3	Cold cracking is also known as hydrogen-induced cracking, delayed cracking or underbead cracking.	Hot cracking is also known as hot shortness, hot fissuring, solidification cracking and liquation cracking.		
	4	Cold cracking may occur fpr the following reasons: •There is hydrogen in the weld material or atmosphere •Susceptible microstructure	hot cracking occurs when: -Strain on the weld pool is too high •Liquid cannot reach		

	11					
		(martensite)	the regions where it is			
		 Mechanical stresses (thermal or 	needed due to			
		residual stresses)	inadequate supply or			
			blockage/narrow			
			channels between			
			solidifying grains			
			•Temperature is >			
			1200°C			
			 Impurities such as 			
			carbon (C), sulfur (S)			
			or phosphorus (P) are			
			present			
	5	Cold weld cracking occurs at	Hot weld cracking			
		temperatures well below 600°F	occurs at			
			temperatures greater			
			than 1200° C			
,		IPLES OF GOOD SOLDERING PR	ROCESS		1m	4m
		nainta af na ait a dianin n' na atian i	بمماريها مبالم مبالمي بالممير			
		nciples of good soldering practice i			each	
	(i) Sele	ction of the proper joint design and			each point	
	(i) Sele (ii) Sele (iii) Ade	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint compone	clearance.			
	(i) Sele (ii) Sele (iii) Ade (iv) Flu:	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint compone xing and assembling components v	clearance.	nt or		
	(i) Sele (ii) Sele (iii) Ade (iv) Fluz additior	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components king and assembling components v n of solder.	clearance. ents. vith proper preplacemer			
	(i) Sele (ii) Sele (iii) Ade (iv) Flux addition (v) Hea	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components xing and assembling components v n of solder. ting the joint to the right soldering t	clearance. ents. vith proper preplacemer emperature for optimun	n		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu additior (v) Hea time.Th	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components king and assembling components v n of solder.	clearance. ents. vith proper preplacemer emperature for optimun by bringing molten solo	n Jer		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in of solder. Iting the joint to the right soldering the soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly	clearance. ents. with proper preplacemer emperature for optimun by bringing molten solo d heating the joint area t 55 to 8()<'e above the	n ler to a		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in of solder. Iting the joint to the right soldering the soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und	clearance. ents. with proper preplacemer emperature for optimun by bringing molten solo d heating the joint area t 55 to 8()<'e above the	n ler to a		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in and assembling components w n of solder. thing the joint to the right soldering to be soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur.	clearance. ents. with proper preplacement emperature for optimum by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, goo	n ler to a od		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components ing and assembling components w of solder. Iting the joint to the right soldering the soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur.	clearance. ents. with proper preplacemer by bringing molten solo d heating the joint area t 55 to 8()<'e above the er these conditions, goo ze as quickly as possibl	n der to a od e in		
	(i) Sele (ii) Sele (iii) Ade (iv) Flux additior (v) Hea time.Th in conta good w melting wetting (l'i) The order to internal	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components ing and assembling components w of solder. ting the joint to the right soldering the soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and frees o avoid disturbing the joint during so microcracks to form.	clearance. ents. with proper preplacemen by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, goo ze as quickly as possible olidification and causing	n der to a od e in		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The order to internal (I'ii) The	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in and assembling components w in of solder. Iting the joint to the right soldering to be soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and free: b avoid disturbing the joint during so microcracks to form. e soldered joint is then cleaned to r	clearance. ents. with proper preplacement by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, good ze as quickly as possible blidification and causing emove any undesirable	n der to a od e in l		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The order to internal (I'ii) The residue	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components ing and assembling components w of solder. ting the joint to the right soldering the soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and frees o avoid disturbing the joint during so microcracks to form.	clearance. ents. with proper preplacement by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, good ze as quickly as possible blidification and causing emove any undesirable	n der to a od e in l		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The order to internal (I'ii) The	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in and assembling components w in of solder. Iting the joint to the right soldering to be soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and free: b avoid disturbing the joint during so microcracks to form. e soldered joint is then cleaned to r	clearance. ents. with proper preplacement by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, good ze as quickly as possible blidification and causing emove any undesirable	n der to a od e in l		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The order to internal (I'ii) The residue	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in and assembling components w in of solder. Iting the joint to the right soldering to be soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and free: b avoid disturbing the joint during so microcracks to form. e soldered joint is then cleaned to r	clearance. ents. with proper preplacement by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, good ze as quickly as possible blidification and causing emove any undesirable	n der to a od e in l		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The order to internal (I'ii) The residue	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in and assembling components w in of solder. Iting the joint to the right soldering to be soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and free: b avoid disturbing the joint during so microcracks to form. e soldered joint is then cleaned to r	clearance. ents. with proper preplacement by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, good ze as quickly as possible blidification and causing emove any undesirable	n der to a od e in l		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The order to internal (I'ii) The residue	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in and assembling components w in of solder. Iting the joint to the right soldering to be soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and free: b avoid disturbing the joint during so microcracks to form. e soldered joint is then cleaned to r	clearance. ents. with proper preplacement by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, good ze as quickly as possible blidification and causing emove any undesirable	n der to a od e in l		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The order to internal (I'ii) The residue	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in and assembling components w in of solder. Iting the joint to the right soldering to be soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and free: b avoid disturbing the joint during so microcracks to form. e soldered joint is then cleaned to r	clearance. ents. with proper preplacement by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, good ze as quickly as possible blidification and causing emove any undesirable	n der to a od e in l		
	(i) Sele (ii) Sele (iii) Ade (iv) Flu: additior (v) Hea time.Th in conta good w melting wetting (I'i) The order to internal (I'ii) The residue	ction of the proper joint design and ection of the right solder and f/ILL equately cleaning the joint components in and assembling components w in of solder. Iting the joint to the right soldering to be soldering operation is performed act with the preheated surfaces and etting temperature. This is roughly point of the solder alloy itself. Und can occur. e solder is then left to cool and free: b avoid disturbing the joint during so microcracks to form. e soldered joint is then cleaned to r	clearance. ents. with proper preplacement by bringing molten solo d heating the joint area to 55 to 8()<'e above the er these conditions, good ze as quickly as possible blidification and causing emove any undesirable	n der to a od e in l		

6)		ATTEMPT ANY F	OUR		16
a)	(A) FILLE assist in f of the we - Filler mo Filler Roc - Filler roc as the ba - Welding	etal is usually available in rod forr ls. ds have the same or nearly the sa	etal forms an integral pa n. These rods are called ame chemical compositi ety of compositions (for	art each point)	4m
	 During value air combination quality, logging welding in during weight during weight facilitate in prevents The flux During value formed th 	of FLUXES welding, if the metal is heated/me nes with the metal to form oxides ow strength welds or, in some cas mpossible. In order to avoid this c elding A flux is a material used to removal of oxides and other unde the oxidation of molten metal. (material) is fusible and non-met welding, flux chemically reacts wit nat floats to and covers the top of helps keep out atmospheric oxyg	which result in poor es, may even make lifficulty, a flux is employ prevent, dissolve or sirable substances. A flu- allic. th the oxides and a slag the molten puddle of me	each point) ux is	
b)	Sr No 1 2		Horizontal In the horizontal position, the weld's axis is the horizontal plane. The axis of a weld is a line through the length of the weld, perpendicular to the cross section at its	1m each point	4m
	3	For a fillet weld this type of welding is performed from the upper side of the joint. The face of the weld is approximately horizontal.	center of gravity. For a fillet weld, welding is performed on the upper side of an approximately horizontal surface and		

r						
			against an			
			approximately vertical			
			surface. For a groove			
			weld, the face of the			
			weld lies in an			
			approximately vertical			
			plane.			
			plane.			
	4	1111111111111111 (16)				
			(20)			
c)	Section factors for p	ower sources: The fol	lowing factors influence	the	½ m	4m
	selection of a power		9		each	
			se, etc.). Where no powe	er is	point	
		ngine driven DC gene	rator may be used.			
	 Available floor sp Initial costs and ru 					
		ion (whether in the pl	ant or in the field).			
	5. Personnel availab					
	6. Versatility of equip					
	7. Required output.					
	8. Duty cycle.					
	9. Efficiency.	dee te be weed end	matala ta ha waldad			
			metals to be welded, steels are welded more			
	effectively with DC th					
	11. Type of work					
d)	Welding method for	non ferrous metal			4m	4m
, ~,	Welding method for					••••
	U		inium and aluminium all	oy		
	-	e discussed under the				
	1. Oxy-Gas Weldin		U -			
	2. Metallic Arc We	•				
	3. MIG Welding.	0				
	4. TIG Welding.					
	5. Resistance Welc	ling.				
	6. Solid-State Weld	•				
	7. Carbon-arc Weld	•				
	8. Atomic-hydroge	•				
1						

	1
9. Brazing.	
OXY.GAS WELDING	
-Acetylene process is quite suitable for wrought and cast aluminum	
and aluminium alloys.	
- The choice of a suitable flux is essential to ensure success in	
aluminium welding.	
The flux must;	
(i) Attack and dissolve the aluminium oxide film (melting point	
approximatc1y 1930°C) which is always present on the surface	
of the metal.	
(ii) Prevent further oxidation during welding.	
(iii) Be lighter when melted than aluminum, so that it will float any	
impurities to the surface, where they can be easily removed.	
An aluminum flux' contains Lithium chloride Potassium fluoride	
Potassium chloride, etc. Most aluminum fluxes are very hygroscopic;	
they should be kept quite air-tight. Flux may be applied by ;	
(i) dipping the hot end of the filler rod into the flux. Thus coated	
flux melts by the welding heat, runs down on the work and flows	
along the joint ahead of the torch flame, removing the oxide	
film and leaving the metal in ap absolutely clean condition.	
(ii) brushing the flux paste onto the prepared edges of the sheet	
before weld	
2) METALLIC ARCWELDING	
- The metallic arc welding process for aluminium and its alloys has	
been developed more recently than gas welding owing chiefly to the	
inherently unstable nature of arcs between aluminium electrodes.	
-In the arc welding of aluminium there remains a tendency to	
unsoundness in the welds.	
-Aluminium sheets up to 6 mm can be butted together with no	
preparation, but with a gap between them for penetration heets	
thicker than 6 mm are prepared with 60° Vee	
- The parts should either be tack welded or held in position with	
clamps or fixtures.	
-In tack welding, the current can be increased approximately 40%	
above that for continuous welding.	
- A backing strip is usually employed so that the extremely fluid	
molten aluminium does not escape through the joint faces.	
-The backing strip may be of steel or copper and should preferably	
be provided with a shallow groove, which will allow a small convex	
underbead to be formed.	
- The gap provided between the two plates to be welded may either	
be in La per or parallel.	
-The taper may be of the order of 1.6 mm at the beginning and	
increasing at a rate of 1.6 mm/300 mm run of weld along the length	

of the seam. -A parallel gap width ranges from 1.6 mm to 3.2 mm or about half the thickness of the metal welded in order to allow the arc to melt both edges simultaneously. 3)MIG WELDING - An electric arc is struck between an aluminium or aluminium alloy continuously fed electrode (+) pulled from a spool by a wire-feeding mechanism and the job (-). A shielding gas is used to protect the weld pool.MIG welding deposits large quantities of weld metal in a short periodof time. Edge preparation is done by (i) Sawing (ii) Machining (iii) Rotary planing (iv) Plasma cutting etc. - Thicknesses from 3 mm to several mm can be welded by MIG, process 4)RESISTANCE WELDING - Aluminium and aluminium alloys whether they are cast or wrought, heat-treatable or non-heat-treatable, can be resistance welded, some more readily than others. Resistance welding processes are especially useful in joining the pigh strength heal treatable 5)SOLID STATE WELDING (a) Cold Welding - In cold welding coalescence is produced by the external application of mechanical force alone. Butt and lap joints are used. Since intimate contact between joint surfaces is essential to obtain good welds, they must be free from oxide, etc. Depending upon the type of alloy, pressures of 10.5 X 103 to 35 X 103 kglcm2 are required to make a proper weld. Lap welds have been made at room temperature in thicknesses from that of a thin foil to 6 mm plate.-Excellent lap welds are obtained with the lower strength nonheat treatable alloys. Butt cold welds can be made in most aluminium alloys. (b) Dlffusion Welding - Best weld strength and greatest ease of bonding is obtained through the use of an, intermediate layer such as silver, copper,etc. With an Alclad surface, AI-1.6 Cu-2.5 Mg-5.6 Zn-O.3 Cr (%) alloy can be welded in one hour at 163°C (1.68 x 103 kg/ern? pressure).

(c) Explosion Welding	
- Explosion welding is mostly applicable to lap welds and to cladding Welding will occur in aluminium parts if the plate velocity (under vacuum conditions) is about 15000 em/second and the impact angle is in the range of 2 to 4 degrees.	
(d) Ultrasonic Welding	
- Ultrasonic welding is used to join foils as well as sheet gauges of aluminium alloys The strength of ultrasonic welds is equal to or more than. that of the resistance spot welds	
6)CARBON ARC WELDING	
- Carbon arc welding is particularly adapted to butt joints in the lighter gauge metals from 0.9 to 2 mm. It can produce welds of quality comparable to oxy-acetylene process. Absence of distortion is a feature of this process.	
7)ATOMIC.HYDROGEN WELDING	
- The high cost of this process is a contributing factor in its limited use today. However, fillet or lap welds can be carried out on some of the aluminium alloys with a greater freedom from cracking or excessive heating of the welds. In general this process resembles oxy-acetylene welding	
 8)TIG WELDING Its suitability are as follows: -TIG welding is the most commonly used method of welding aluminium today. Thinner gauges of aluminium can be joined without a filler metal. TIG welding involves striking an arc between a tungsten (alloy) electrode and the workpiece to provide heat for joiningA separate filler rod is employed when welding thicker workpieces. -TIG welding resembles gas welding because both employ a heat source independent of the filler (metal) electrode. -Gas welding employs a flux whereas TIG welding makes use of an inert gas to prevent any reaction between the molten weld metal and the atmosphere. -Thicknesses of aluminium alloys commonly welded by TIG processrange from 1 to 10 mm for manual welding and from 0.25 	
mm to 25 mm for automatic welding.	

e)	 i)SPATTER Spatter can be minimized by correcting the welding conditions and should be eliminated by grinding when present. ii)INCOMPLETE PENETRATION/ FUSION: Remedies of incomplete fusion Follow correct welding procedure specification Maintain proper electrode position Reposition work, lower current, or increase weld travel speed Clean weld surface prior to welding iii)DISTORTION Reducing the metal weld volume to avoid overfill and consider the use of intermittent welding Minimizing the number of weld runs Positioning and balancing the welds correctly round the axis Using backstep or skip welding techniques, which involves laying short welds in the opposite direction Making allowance for shrinkage by pre-setting the parts to be welded out of position Planning the welding sequence to ensure that shrinkages are counteracted progressively Shortening the welding time iv)OVERLAPPING The overlap can be repaired by grinding off excess weld metal and surface grinding smoothly to the base metal. 	1m each	4m
f)	The main factors to be considered while selecting the soldering joint are: (i) Selection of the proper joint design and clearance. (ii) Selection of the right solder (iii) Adequately cleaning the joint components. (iv) Fluxing and assembling components with proper preplacement or addition of solder. (v) Heating the joint to the right soldering temperature for optimum time. The soldering operation is performed by bringing molten solder in contact with the preheated surfaces and heating the joint area to a good wetting temperature. This is roughly 55 to 8 above the melting point of the solder alloy itself. Under these conditions, good wetting can occur. (I'i) The solder is then left to cool and freeze as quickly as possible in order to avoid disturbing the joint during solidification and causing internal microcracks to form. (I'ii) The soldered joint is then cleaned to remove any undesirable flux residues on the surfaces and to ensure the integrity of the soldered joint.	1m each point	4m

