

Winter-2015 Examinations

Subject Code: 17507

Model Answer

Page 1 of 43

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 a)	Attempt any THREE of the following:12 Marks			
a)	Compare a group drive and an individual drive.			
Ans:		(Any four point expected: 1 Mark each)		
	S.No.	Point	Group Drive	Individual Drive
	1.	Initial Cost	Less	High
	2.	Flexibility	Less Flexibility	More Flexibility
	3	Safety	It is less Safe	It is more safe
	4	Reliability	It has less reliability	It has high reliability
	5	Space required	Less	More
	6	Overload Capacity	Higher	Less
	7	Maintenance cost	Less	More
	8	Speed control	Difficult	Easily possible
	9	Mechanical Power	More Losses	Less losses
		transmission losses		
	10	Addition/Alternation	Easily not possible	Easily possible
			OR	
	S.No.	Point	Group Drive	Individual Drive
	1	Definition	In a group drive single larg	e In this type of drive each
			capacity electric drives is u	sed machine has its own
			to run number of machine	separate electric drive
			through a long common sha	aft. (motor). It may be directly
				coupled or indirectly

Winter- 2015 Examinations Model Answer

Page 2 of 43

				a courte d
	2	Cost	Lass	Lich
	2	Cost Total HD	Less	More
	3		Less Not good	Good
	4	Sofoty	It is loss Safe	It is more sefe
	5	Flovibility	Loss Elovibility	Moro Elovibility
	7	Porformanca	Batter if operated at full load	Rotter if operated at full
	/	renomance	Better II operated at full load	load
	8	Any one application of	Textile Industry (Similar	Lathe Machine (Similar
		each	application will be consider)	application will be consider)
b)	State va	arious applications of di	electric heating.	
Ans:	<u>App</u>	olications of Dielectric H	eating:- (Any four applic	ation expected: 1 Mark each)
	2 3 4 5 6 7 8	 bakeries. Cooking of food without milk. For Rubber vulcanizing In Tobacco manufactur In wood industry for m In plastic Industry for r In cotton industry for d In tailoring industry for 	ut removing outer shell (e.gboil g. ring industry for dehydration of to anufacturing of ply wood. naking different containers. rying & heating cotton cloths for r producing threads.	ed egg) and pasteurizing of obacco.
	Q) For manufacturing prod	ress of raincoats & umbrellas	
	1	()) In medical lines for star	rilization of instruments & hands	2000
	1	1) The leave of the ster	inization of instruments & banda	
	1	 For heating of bones & & diseases. 	tissues of body required for cert	ain treatment to reduces pains
	1	2) For removal of moistur	e from oil.	
	1	3) For quick drying gum u	used for book binding purpose.	
	1	4) In foundry for heating of	of sand, core, which are used in r	nolding processes.

S	Subject Code: 17507	Winter– 2015 Examinations <u>Model Answer</u>	Page 3 of 43
	Dielectric heating is	OR used in following purposes:	
	1. Plywood indu	istry	
	2. Sand core bak	king	
	3. Plastic industr	ry	
	4. Tobacco indu	stry	
	5. Bakeries		
	6. Electronic sev	ving	
	7. Dehydration of	of food	
	8. Electro medic	al application	
	9. Book binding		
c)	Define the following terms	s: i) Luminous Intensity ii) Lumen iii) Candle	power iv) Waste light factor.
Ans:	i) Luminous intensity:- The luminous in	Ea (Ea ntensity in any particular direction is the <u>lumi</u>	ch Definition: 1 Mark) nous flux emitted by source
	per unit solid angle is	called the luminous intensity of the source. A	And its unit is Candela
	OR $I = \frac{q}{v}$	$\frac{\phi}{w}$ (Where $\phi = lu \min ous \ flux$, $w = Solid$ Ang	gle)
	ii) Lumen:		
	It is defined as th	he luminous flux emitted by a source of one c	andle power per unit solid
	angle in all directions	S OR	
	It is unit of lumine	ous flux. One lumen is defined as luminous f	lux emitted per unit solid
	angle from a point so	urce of candle power.	
	iii) Candle power:		
	The candle po	ower is the radiation capacity of the light sou	rce in the given direction.
	The candle power is a	always given in lumens output per unit solid a	angle of the given light
	source. C.	$P = \frac{Lummens}{w}$, (Where $w = Solid$ Angle)	

_	Winter–2015 Examinations	n
S	Subject Code: 17507 <u>Model Answer</u>	Page 4 of 43
	iv) Waste light factor:	
	When a surface is illuminated by several numbers of the s	sources of light, there is
	certain amount of waste due to overlapping of light waves,	
	The waste of light is taken into account depending upon the	he type of area to be
	illuminated.	
	The value of waste Light factor 1 to 1.5	
d)	Explain any three disadvantages of low power factor and state th	ree methods to improve it
Ans:	Disadvantages of Low power Factor: -	
	(Any three disadvantages a	re expected: 1 Mark each)
	1) Cross section of conductor increases: -	
	C/s of conductor $\alpha I \alpha 1/(pf)$	
	As power factor reduces current increases, cross section of	conductor increases. Hence
	its cost increases.	
	2) Design of supporting structure: -	
	As power factor reduces, cross section of conductor	or increases, so its weight
	increases. To handle this weight design of supporting struct	ure becomes heavier, so its
	cost increases.	
	3) Cross section of terminals increases: -	
	As power factor reduces, current increases, Hence c	ross section of switch gear,
	bus bar, contacts, and terminals increases. So its cost increa	ses.
	4) Copper losses increases: -	
	As power factor reduces current increases. So copp	er losses increases. As an
	effect efficiency reduces.	
	Copper losses $\alpha I^2 \alpha \frac{1}{(P.f)^2}$	
	5) Voltage drop increases: -	
	As P.F. reduces current increases. Therefore voltage drop	p increases, so regulation
	becomes poor.	
	Voltage drop α I $\alpha \frac{1}{P.f}$	

		Winter- 2015 Examinations	
S	ubject Code: 17507	Model Answer	Page 5 of 43
	6) Handling Capac	eity of equipment reduces:	
	Handling of	capacity (KW) of each equipment such as Al	ternator, transformer
	reduces as powe	r factor reduces.	
	7) High KVA ratin	g of equipment required:- KVA α I α 1/ pf	· ,
	As power fai	ctor decreases KVA rating of all equipments	increases, so that its cost
		KVA rating $\alpha I \alpha \frac{1}{P. f}$	
	8) Cost/unit increa	ses: - From all above disadvantages it is seer	n that cost of generation,
	transmission & di	istribution increases. Also its performance ef	fficiency & regulation
	reduces, So that c	cost/unit increases.	
	Following are the meth	oods of improving power factor: (Any one m	nethods expected: 1 Mark)
	1) By use of static c	capacitor (Condenser)	
	2) By use of over ex	xcited synchronous motor (Synchronous con	denser)
	3) By use of over ex	xcited Schrage motor	
	4) By use of phase a	advancer.	
O.1B)	Attempt any ONE :		06 Marks
a)	What is electrical braking	ng ? Explain regenerative braking for D.C	. series motor.
Ans:			
	Meaning of Electrical b	raking :	(2 Mark)
	It is necessary to s	top the vehicle when mechanical work	ting is over or when
	required within reason	nable time. OR To reduce the speed of trai	n electrical system is used
	for braking e.g. Plugging	, dynamic braking & Regenerative braking.	

Winter-2015 Examinations Subject Code: 17507 **Model Answer** Page 6 of 43 Schematic diagram of regenerative braking of D.C. series: (Figure: 2 Mark & explanation: 2 Mark) OH Conductor OH conductor current Limiting To limit To limit fu Under normal condition connection during ERE Fig. --- A Fig. --- B > Explanation of regenerative braking: > During normal running motors are connected in parallel with field winding in series w.r.t. armature as shown in figure A. > At the time of regenerating braking all the armature are connected in parallel without series field winding and all series field winding are connected in series with external resistance & are separately excited as shown in fig.B > At this time motor acts as a generator and excitation current is so adjusted that generated voltage (Eg) is greater than supply voltage (V), so that power will be fed back to supply. \succ This process is continued up to the speed of train reaches up to 20 to 16 km/hr. after that it is difficult to maintain generated voltage greater than supply voltage. So, electric regenerative braking is stopped \triangleright For final stop mechanical braking is applied. External Resistances are connected to limit the current. Describe any two methods of current flow control in welding transformer. b) Methods of current flow control in welding transformer: Ans: 1. Tapped Choke (Reactor) method 2. Moving coil method 3. Magnetic shunt method

Winter- 2015 Examinations Model Answer

Page 10 of 43

2	Attempt any FOUR : 16 Marks
a)	What is load equalization? Explain with neat diagram and graphs, the process of the load
Ance	equalization.
AIIS .	(Massing of Joan equalization.
	(Meaning : 2 Mark, Figure: 1 Mark & explanation: 1 Mark)
	There are many types of load which are fluctuating in nature e.g. wood cutting m/c,
	Rolling mill. Etc. For such type of loads, load equalization is necessary to draw the
	constant power from supply. Because,
	When there is sudden load on motor, it will draw more current from supply at start
	to meet additional power demand. Due to this heavy current there is large voltage drop in
	supply system. This will affect electrical instrument, equipment, m/c, other consumer etc.
	which are connected across same supply line.
	Also to withstand heavy current, size of input cable increases so cost of cable
	increases, Hence it is necessary to smooth out load fluctuations on motor.
	The process of smoothing out load fluctuation is called load equalization.
	Diagram of Load Equalization:
	Fly wheel
	How load equalization is done? Load equalization is done by means of <u>flywheel</u> . It is mounted on motor shaft.
	Flywheel stores kinetic energy when there is light or no load & it supplies kinetic energy

when there is sudden heavy load on motor. In this way load demand on supply remains practically constant.

not necessary to use large size of cable as it will not draw more current from supply.

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

Winter- 2015 Examinations Model Answer

Page 12 of 43

Compai	re AC and DC system of tra	action.	int ormaatada 1 Maula aa d
a N	D • ((Any four po	Dint expected: 1 Mark each
Sr.No	Points	AC System of Traction	DC System of Traction
1	Supply given to O/H conductor	1-ph, 25KV, AC 50Hz	DC 600/750V-Tromways 1500/3000V
			Urban/suburban
2	Type of drive used	1-ph, AC series motor	DC series motor for traction and DC compound motor for tramways.
3	Weight of traction motor	1.5 times more than D.C.	1.5 times less then A.C.
		series motor for same HP	series motor for same HP
4	Weight of motor coach	More Because of	less
		transformer in motor	
		coach and high weight of	
		A.C. series motor.	
5	Starting torque	Less starting torque than	High starting torque
		D.C. series motor	
6	Acceleration and	Less than D.C. series	High
	retardation	motor.	
7	Overload capacity	Less than D.C. series motor	High
8	Method of speed control	Not limited	Limited, except chopper control method
9	Maintenance cost of traction motor	More	Less
10	Starting Efficiency	More	Less
11	Chances of radio interference	Yes	No
12	Ridding quality	Less better than D.C.	Smooth (Better)
13	Insulation cost	High	Low
14	Cross section of conductor	Less	More
15	Design of supporting straight	light	Heavy
16	Distance between two substation	More	Less
17	No. of substation required for same track distance	Less	More

Winter- 2015 Examinations Model Answer

Page 13 of 43

	18	Size (capacity) of traction substation	More	Less
	19	Capital & maintenance	Less	More
		cost of substation		
	20	Cost track electrification	Less	More
	21	Applications	Main line services	Urban and suburban
				services
$\frac{d}{\Delta ns}$	Write a	ny eight desirable character	ristics of traction motors.	
All5.	math	n motor should posses rom	owing characteristics.	
			(Any eight Characteristic	cs expected: 1/2 Mark each)
	A) Me	chanical Properties or char	acteristics:	
	1) 1	It should be simple in design		
	2) I	t should be robust in construc	ction to withstand against con	ntinuous vibrations.
	3)	Weight of motor per HP shou	ld be minimum in order to in	crease pay load capacity.
	4) I	It must be small in overall dir	nensions, especially in overal	ll diameter.
	5) It must have totally enclosed type enclosure to provide protection against entry of dirt,			tection against entry of dirt,
	(dust, mud, water etc. in drive.		
	6) When motors are running in parallel they should share almost equal load. (even when			nost equal load. (even when
	t	here is unequal wear & tear of	of driving wheels)	
	7) 1	t should have high coefficien	t of adhesion.	
	8) I	t should have lower center of	f gravity.	
	B) Ele	ectrical Properties or charac	cteristics:	
	9) I	It should have high starting to	orque.	
	10)1	It should possess high rate of	acceleration & retardation.	
	11)]	It should be variable speed me	otor.	
	12)1	ts speed-torque characteristic	es should be such that it should	ld produce high torque at low
	5	speed and low toque at high s	peed.	
	13)1	Motor must be capable of tak	ing excessive overload in cas	e of emergency.
	14)]	It should have simple speed c	ontrol methods.	
	15) I	Electrical braking system sho	uld be reliable, easy to opera	te and control, especially
	1	regenerative braking is possib	le.	

		Winter- 2015 I	Examinations		
S	Subject Co	ode: 17507 <u>Model A</u>	Answer Page 14 of 43		
	16)1	Motor should draw low inrush current (St	arting current, and if supply is interrupted and		
	1	restore again.)			
	17)1	It should withstand for voltage fluctuation	n without affecting its performance.		
	18)1	It should have high power to weight ratio			
	C) General Properties or characteristics:				
	19)]	It should have low initial cost.			
	20)]	It should have less maintenance cost.			
	21)	It should have high efficiency			
	,				
e)	State th	ne difference between actual speed a	nd schedule speed of train. State the factor		
Ans:	affectin	g schedule speed of a train.	(Any two point expected: 1 Mark each)		
	S.No	Actual Speed	Schedule Speed		
	1	Distance / Time	Distance / Actual time of run + Stop time		
	2	Actual speed is the speed you are	Schedule speed is a true speed which		
		traveling at any given moment at any given point.	includes stop time also		
	3	Railway or any time table is not based	Railway or any time table is based on		
		on actual speed	schedule speed		
	4	Actual Speed is more	Scheduled Speed is less		
	The	following factors affect the schedule s	peed of a train:		
			(Any two point expected: 1 Mark each)		
	1	Acceleration	(Any two point expected. I Mark each)		
	1. Acceleration:				
		By increasing acceleration we can reduce actual time of run, so schedule speed			
	:	increases.			
	2.1	Retardation:			
		By increasing retardation we can re	duce actual time of run, so schedule speed		

Winter-2015 Examinations **Model Answer** Subject Code: 17507 Page 15 of 43 increases. 3. Both Acceleration and Retardation: For a given run by increasing both acceleration and retardation we can reduce actual time of run, so schedule speed increases. 4. Maximum speed: By increasing maximum speed we can reduce actual time of run, so schedule speed increases. 5. Stop time: By reducing stop time we can reduce the schedule time so schedule speed increases. 6. Coasting period: For a given run by reducing coasting period we can reduce actual time of time. so schedule speed increases. Attempt any TWO : 16 Marks **Q.3** A motor has to perform the following duty cycle: 1) Load rising from 200 kW to 500 kW in 4 minutes. 2) Uniform load of 350 kW for 2 minutes. a) 3) Regenerative braking power returned to supply from 150 kW to zero in 2 minutes. 4) Remains ideal for 1 minute. Determine power rating of motor. Ans: i) Load rising from 200 to 500 Kw :- 4 min ii) Uniform load of 350 Kw :- 2 min iii) Regenerative braking from 150 Kw to zero :- 2 min iv) idle for :- 1 min SOOKE 350 Km 00 2 min -50 kw or Equivalent fig-----(1 Mark)

		Winter-2015 Examinations	
S	Subject Code: 17507	Model Answer	Page 16 of 43
	Rating of Motor in K	W =	
	$KW = \sqrt{\frac{1/3}{\left(KW_1^2 + K\right)}}$	$\frac{W_1 K W_2 + K W_2^2 \times t_1 + K W_3^2 t_2 + \frac{1}{3} K W_4^2 t_3 + K W_5^2 t_4}{T} - \dots$	(1Mark)
	Where,	$T = t_1 + t_2 + t_3 + t_4$	
	T = 4 + 2 +	2 + 1	
	T = 9 min		(1 Mark)
	$KW = \sqrt{\frac{\frac{1}{3}\left(KW_1^2 + H\right)}{1}}$	$\frac{KW_{1}KW_{2} + KW_{2}^{2}}{9} \times t_{1} + KW_{3}^{2}t_{2} + \frac{1}{3}KW_{4}^{2}t_{3} + KW_{5}^{2}t_{4}}{9} - \frac{1}{9}$	(1 Mark)
	$KW = \sqrt{\frac{\frac{1}{3}(200^2 + 20)}{1}}$	$\frac{9}{W} = \sqrt{\frac{780000}{9}}$	(1 Mark)
		<i>KW</i> = 294.39 <i>KW</i> Answer	- (3 Mark)
	So, Select neare	est standard rating of motor available in the market.	
b)	A 50 kW, three phase, 44 for the three-star connec C and that of the charg emissivity as 0.91 and ra 1.016 X 10 ⁶ . What would	40 V resistance oven is to provide nickel-chrome strip cted heating elements. If the temperature of the wire ge is to be 1000° C, calculate a suitable width of t diation efficiency as 0.6. The specific resistance of nic be the temperature of the element, when charge is co	0 0.3 mm thick, e is to be 1500° he strip. Take chrome alloy is old at 20° C ?
Ans:	Given Data: $T_1 = 1500^{\circ}C = 1500$	$+273 = 1773^{0}$ K	
	$T_2 = 1000^0 C = 1000$	$+273 = 1273^{0}$ K	
	Radiation efficiency = 0.6 (NOTE :_ This proble	, specific resistance of Ni-Cr = 1.016x10 ⁻⁶ ohm m, emiss m is solved by taking value Specific resistance	sivity = 0.91. ce of Ni-Cr =
	1.016 x 10 ⁶ and also b	by taking value Specific resistance of Ni-Cr =	1.016 x 10 ⁻⁶ :
	Give marks to both a	nswers)	

	Winter-2015 Examinations	
Subject Code: 17507	<u>Model Answer</u>	Page 17 of 43
Solution By take Specify	ic resistance of Ni-Cr = 1.016 x 10 ⁶ :	
$\mathbf{H} = 5.72 \times 10^4 \ k$	$x.e\left[\left(\frac{T_1}{1000}\right)^4 - \left(\frac{T_2}{1000}\right)^4\right] w/m^2$	(1/2 Mark)
$\mathbf{H} = 5.72 \times 10^4 \ 0$	$0.6 \times 0.91 \left[\left(\frac{1773}{1000} \right)^4 - \left(\frac{1273}{1000} \right)^4 \right] w/m^2$	
H = 226602.97	w/m^2	
\Rightarrow Thickness : ($0.3 mm \qquad \therefore 0.3 \times 10^{-3} m$	(1 Mark)
$\therefore \frac{1}{1} =$	$\frac{V^2}{2}$	
w t	Ρρ	(1/2 Mark)
Voltgae	across each resistance = $\frac{V}{\sqrt{3}} = \frac{440}{\sqrt{3}}$	
Voltgae a	across each resistan ce = 254.03 volt	(1 Mark)
Power =	$\frac{50 \ KW}{3} = 16.6666 \times 10^3 \ watt$	(1 Mark)
$\therefore \frac{1}{W t} =$	$=\frac{V^2}{P\rho}$	
$\therefore \frac{1}{w \times (0)}$	$\frac{l}{(16.66 \times 10^3)^2} = \frac{(254.03)^2}{(16.66 \times 10^3) \times 1.061 \times 10^6)}$	
$\therefore \frac{l}{w} = -$	$\frac{(254.03)^2 \times (0.3 \times 10^{-3})}{(16.6666 \times 10^3) \times 1.061 \times 10^6)}$	
	$\frac{l}{w} = 1.1433 \times 10^{-9}$ EquationI	(1 Mark)
$\therefore \frac{t}{l^2}$	$\frac{1}{V^2} = \frac{2\rho H}{V^2}$	(1/2 Mark)

S	Subject Code: 17507	Winter– 2015 Examinations <u>Model Answer</u>	Page 18 of 43
	l^{2} $l = \sqrt{\frac{1}{2}}$ $l = \sqrt{\frac{1}{2}}$	$= \frac{V^{2} t}{2 \rho H}$ $\frac{V^{2} t}{2 \rho H}$ $(254.0341)^{2} \times 0.3 \times 10^{-3}$ $\times 1.016 \times 10^{6} \times 226602.97$	
	$\therefore l = 6.4$	841×10 ⁻⁶ <i>mtr</i> Equation II	(1 Mark)
	Putting in Equation : I		
	$\therefore \frac{\iota}{W} = 1$	1.1433×10 ⁻⁹	
	$\therefore w = \frac{6}{1}$	$\frac{4841 \times 10^{-6}}{1433 \times 10^{-9}}$	
	$\therefore w = 5$	671.3898 <i>mtr</i>	(1 Mark)
	Answer: ∴ Length l	$= 6.4841 \times 10^{-6} mtr \qquad \therefore Widgth w$	= 5671.3898 mtr
	PART - II: When charg	e is cold at 20° C?	
	Temperature of charge	$r = T_2 = 20^{\circ}C + 273^{\circ}C = 293^{\circ}C$	
	$\mathbf{H} = 5.72 \times 10^4 \ k$	$e\left[\left(\frac{T_1}{1000}\right)^4 - \left(\frac{T_2}{1000}\right)^4\right] w/m^2$	
	$\mathbf{H} = 5.72 \times 10^4 \times$	$0.6 \times 0.91 \left[\left(\frac{T_1}{1000} \right)^4 - \left(\frac{293}{1000} \right)^4 \right] w/m^2$	
	$T_1 = 16$	640 [°] K	(1/2 Mark)
		OR Student may solve this type	

	Winter-2015 Examinations	
Subject Code: 17507	Model Answer	Page 19 of 43
Solution By take Speci	ific resistance of Ni-Cr = 1.016 x 10 ⁻⁶ :	
$H = 5.72 \times 10^4$	$k.e\left[\left(\frac{T_1}{1000}\right)^4 - \left(\frac{T_2}{1000}\right)^4\right] w/m^2$	(1/2 Mark)
$\mathbf{H} = 5.72 \times 10^4$	$0.6 \times 0.91 \left[\left(\frac{1773}{1000} \right)^4 - \left(\frac{1273}{1000} \right)^4 \right] w/m^2$	
H = 226602.97	$7 w/m^2$	(1 Mark)
\Rightarrow Thickness :	$0.3 mm \therefore 0.3 \times 10^{-3} m$	
$\therefore \frac{1}{w t} =$	$=\frac{V^2}{P\rho}$	(1/2 Mark)
Voltgae	e across each resistan $ce = \frac{V}{\sqrt{3}} = \frac{440}{\sqrt{3}}$	
Voltgae	across each resistan $ce = 254.03$ volt	(1 Mark)
Power =	$\frac{50 \ KW}{3} = 16.6666 \times 10^3 \ watt$	(1 Mark)
$\frac{1}{w t}$	$\frac{1}{2} = \frac{V^2}{P \rho}$	
$\therefore \frac{1}{w \times (v)}$	$\frac{l}{0.3 \times 10^{-3})} = \frac{(254.03)^2}{(16.66 \times 10^3) \times 1.061 \times 10^{-6})}$	
$\therefore \frac{l}{w} =$	$=\frac{(254.03)^2 \times (0.3 \times 10^{-3})}{(16.6666 \times 10^3) \times 1.061 \times 10^{-6})}$	
	$\therefore \frac{l}{w} = 1143.24 \dots EquationI$	(1 Mark)
	$\frac{t}{V^2} = \frac{2\rho H}{V^2}$	(1/2 Mark)

	Winter-2015 Examinations	
Subject Co	de: 17507 <u>Model Answer</u>	Page 20 of 43
	$l^{2} = \frac{V^{2} t}{2 \rho H}$ $l = \sqrt{\frac{V^{2} t}{2 \rho H}}$ $l = \sqrt{\frac{(254.0341)^{2} \times 0.3 \times 10^{-3}}{2 \times 1.016 \times 10^{-6} \times 226602.97}}$	
	:. $l = 6.4841 \times 10^{-6} mtr$ Equation II	(1 Mark)
Putting	g in Equation : I	
	$\therefore \frac{l}{w} = 1143.24$	
	$\therefore w = \frac{6.4841}{1143.24}$	
	$\therefore w = 0.005671 mtr$	(1 Mark)
Answe	er: \therefore Length $l = 6.4841 mtr$ \therefore Widgth $w = 0.005671 mtr$	
PART	Γ - II: When charge is cold at 20° C?	
Ten	mperature of charge = $T_2 = 20^{\circ}C + 273^{\circ}C = 293^{\circ}C$	
	$\mathbf{H} = 5.72 \times 10^4 \ k.e \left[\left(\frac{T_1}{1000} \right)^4 - \left(\frac{T_2}{1000} \right)^4 \right] \ w/m^2$	
	$\mathbf{H} = 5.72 \times 10^4 \times 0.6 \times 0.91 \ \left[\left(\frac{T_1}{1000} \right)^4 - \left(\frac{293}{1000} \right)^4 \right] \ w/m^2$	
	$T_1 = 1640^0 K$	• (1/2 Mark)

s	Subject Co	Winter de: 17507	r– 2015 Examinati Model Answer	ons Page 21 of 43	
c)	What ar	e the different safety and pro	tective devices u	sed in elevators? Also state functions	
	of each device.				
Ans:	Safety	7 Devices used in elevators & i			
	(Any four safety device & their function expected: 1 Mark each)				
	S.No	Safety Devices		function	
	1	Door safety switch	Door will not of condition.	open when elevator is in operating	
	2	Over travel switch	It avoids over t	ravel	
	3	Over speed control switch	It controls the s	speed	
	4	Car safety switch	It protects the c	car	
	5	Car operating switch	It operates the	car	
	6	Emergency STOP Switch	In case of emer	gency this switch is operated	
	7	Fire Fighting Equipment	For Extinguish	ing Small Fire	
	(Any four Prot S.No Protective Devices		ective device & t	heir function expected: 1 Mark each) function	
	1	Main line service switch (main switch and fuse)		for a ON-OFF purpose	
	2	IUSC)			
		CB and overload relay		for protection against over current fault	
	3	CB and overload relay Phase failure protective relay.	(1-ph preventer)	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing	
	3	CB and overload relay Phase failure protective relay. Phase reversal protective relay	(1-ph preventer)	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction	
	3 4 5	CB and overload relay Phase failure protective relay. Phase reversal protective relay Over speed, slow down relay	(1-ph preventer)	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction It avoids to run motor in over speed	
	3 4 5	CB and overload relay Phase failure protective relay. Phase reversal protective relay Over speed, slow down relay	(1-ph preventer)	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction It avoids to run motor in over speed	
Q.4 A)	3 4 5 Attempt	CB and overload relay Phase failure protective relay. Phase reversal protective relay Over speed, slow down relay	(1-ph preventer)	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction It avoids to run motor in over speed 12 Marks	
Q.4 A) a)	3 4 5 Attempt Write classifi	CB and overload relay CB and overload relay Phase failure protective relay. Phase reversal protective relay Over speed, slow down relay any THREE : assification of electric welding	(1-ph preventer)	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction It avoids to run motor in over speed 12 Marks ges.	
Q.4 A) a) Ans:	3 4 5 Attempt Write classifie	CB and overload relay Phase failure protective relay. Phase reversal protective relay Over speed, slow down relay any THREE : assification of electric welding ation of electric welding :	(1-ph preventer)	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction It avoids to run motor in over speed 12 Marks ges. (2 Mark)	
Q.4 A) a) Ans:	3 4 5 Attempt Write cla Classifie i) <u>Re</u>	Ituse) CB and overload relay Phase failure protective relay. Phase reversal protective relay Over speed, slow down relay any THREE : assification of electric welding cation of electric welding : sistance Welding:-(Plastic / Note)	(1-ph preventer) y and its advantag n- Fusion / Pressu	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction It avoids to run motor in over speed 12 Marks ges. (2 Mark) re Welding)	
Q.4 A) a) Ans:	3 4 5 Attempt Write cla Classific i) <u>Re</u>	CB and overload relay CB and overload relay Phase failure protective relay. Phase reversal protective relay Over speed, slow down relay any THREE : assification of electric welding cation of electric welding : sistance Welding:-(Plastic / Nor 1) Spot welding	(1-ph preventer) y and its advantag n- Fusion / Pressu	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction It avoids to run motor in over speed 12 Marks ges. (2 Mark) re Welding)	
Q.4 A) a) Ans:	3 4 5 Attempt Write cla Classifie i) <u>Re</u>	and overload relay CB and overload relay Phase failure protective relay. Phase reversal protective relay Over speed, slow down relay any THREE : assification of electric welding cation of electric welding : esistance Welding:-(Plastic / Not 1) Spot welding 2) Seam welding	(1-ph preventer) y and its advantag n- Fusion / Pressu	for protection against over current fault It as good as single phase preventer, It protects motor to run on single phasing It avoids motor to run in reverse direction It avoids to run motor in over speed 12 Marks ges. (2 Mark) re Welding)	

S	Winter- 2015 ExaminationsSubject Code: 17507Model Answer	Page 22 of 43
	4) Butt Welding	
	5) Flash Butt welding	
	ii) Arc welding (Fusion/Non pressure welding):-	
	1) Carbon Arc Welding:	
	a) shielded welding b) unshielded welding	
	2) Metal Arc Welding:	
	a) shielded welding b) unshielded welding	
	Advantages of electric welding: (Any Four advantages are expe	ected: 1/2 Mark each)
	1. It requires less time for joining (welding) two metals.	
	2. Two similar and dissimilar metals can be welded.	
	3. Control of current (temperature) and welding time can be control automatically.	lled accurately and
	4. More perfect (sound) and uniform weld is obtained.	
	5. Properties of weld and joining material remain same.	
	6. It is more reliable.	
	7. Welding process is clean	
	8. Easy to operate and handle.	
	9. Welding equipments are portable.	
	10. No Standby losses. So high efficiency.	
b)	Explain the operating principle and working of a fluorescent lamp. Me following components: i) Electrodes ii) Choke in) Capacitor in gl Capacitor connected across input terminals.	ention the function of low type starter. iv)
Ans:	Stastes. Stastes. CRF - radii inert gases gilament po:1 Choke E PF improvement Capacitor. P N	

		Winter-2	015 Examinations	
S	Subject Code: 17507	<u>Mo</u>	<u>del Answer</u>	Page 23 of 43
	Operation:			(2 Mark)
	When swi	tch is ON current flows th	rough the choke.	
	➤ At that tin	ne choke induces high v	oltage which is applied to	two filaments
	Due to thi	s there will be ionization	so that light will be emitted	d through the tube.
			OR	
	Fluoresce light when the lamps to enhance	nt lamps produce light by n ionized by current. An a 's electrodes, which have e electron emission.	y passing an electric curren uxiliary device known as a been coated with a mixtury	t through a gas that emits a ballast supplies voltage to e of alkaline earth oxides
	Function of foll	owing components:	(Each function of c	omponents: 1/2 Mark)
	i) Electrode ≻ I	: t is made by high resistiv	e element. to initiate an arc	
	ii) Choke: F	For providing high voltag	e at the time of starting and	limit the current.
	iii) Capacito	or in glow type starter: 7	To make and break the circu	uit to start the tube.
	iv) Capacito	or connected across inpu	t terminals: To improve t	he power factor, To
	minimize	the radio interference		
c)	Write short notes	on the following: i) Two	part tariff. ii) Power f	actor tariff
Ans:	i) Two part tariff:	-		(2 Mark)
	➢ In this t	ype of tariff energy bill is	split into two parts.	
	I	ENERGY BILL= FIXED	CHARGE which depends	on load (KW)
	-	-RUNNING CHARGE w	hich depends on actual ene	ergy consume (KWH)
	 Fixed cl report. 	harge which depends on l	oad (KW) which is declare	d by consumer on test
	➤ There is	s no separate meter is inst	alled to measure load.	
	> Only on	e energy meter is used to	measure number of units c	consumed.
	This type KW)	be of tariff system is used	for residential and comme	rcial consumers.(up to 20
	➤ This type	be of tariff is not used for	industrial consumers. e.g.	
		Not	e :- Table not necessary	

Winter-2015 Examinations

Subject Code	: 1750	7 <u>Model An</u>	swer	Page 24 of 43
	Ē	for Residential consumers: e.g.		
		Fixed/Demand Charge	Energy Charge (Rs./kWh)
	Si m Tł m	ngle Phase : Rs. 40 per onth nree Phase : Rs. 130 per onth	Flat rate e.g. Rs. 5 / Kwh for all units consumed OR Block rate tariff	-
	For	Industrial / commercial consumers load u	p to 20 Kw :- e.g.	7
		Fixed/ Demand Charge	Energy Charge (Rs./kWh	1)
		Rs. 190 per month	Flat rate e.g. Rs. 6 / Kwh for all units consumed OR Block rate tariff	
ii) Pow	er Fa	ctor Tariff:-		(2 Mark)
Tarif <u>cons</u>	<u>In a</u> f / Lo idera	ddition to basic tariff (Maximum ad factor tariff) <u>the tariff in which</u> tion. Is known as Power Factor Ta	Demand Tariff / KVA Maximu P.F. of industrial consumer riff.	ım Demand <u>is taken into</u>
	If the Lag.)	P.F. of consumer is less than P.F. d than penalty will be charged in ene	eclare by Supply Company (sa rgy bill.	y below 0.9
	If The	P.F. of consumer is more than P.F	. declare by Supply Company (say above
().95la	g.) than discount will be given in e	nergy bill.	
	As usi	al consumer has to pay actual energy	gy consumption charges	
► .	Applic	cation :-		
	This ty	ype of tariff is applicable to industr	ial consumer/H.T/ commercial	consumers
3	with c	ontract demand above 80 kw/ 1001	<u>Kva/107 hp</u> consumer.	
		Note :- Ta	ble not necessary	
>]	Incent	ives and Penalties to Power factor	tarrif :-	
	Power	<u>: factor incentive:- e.g.</u>		
		Power Factor	Percentage of incentive	
		0.95	0% of energy bill	
		Above 0.96	1% of energy bill	

		Winter– 2015 Exa	aminations	
5	Subject Code: 1750	7 Model Ans	swer	Page 25 of 43
		Above 0.97	2% of energy bill	
		Above 0.98	3% of energy bill	
		Above 0.99	4% of energy bill	
		At unity P.F.	5% of energy bill	
		Note :- Ta	ble not necessary	J
	Power	factor penalty:- e.g.		
		Power factor lagging	Percentage of penalty	
		For 0.90 Power factor lagging	0% of energy bill	
		For 0.89 Power factor lagging	2% of energy bill	
		For 0.88 Power factor lagging	3% of energy bill	
		For 0.87 Power factor lagging	4% of energy bill	_
		For 0.86 Power factor lagging	5% of energy bill	_
		For 0.85 Power factor lagging	6% of energy bill	_
		For 0.84 Power factor lagging	7% of energy bill	_
		For 0.83 Power factor lagging	8% of energy bill	
		For 0.82 Power factor lagging	9% of energy bill	
		For 0.81 Power factor lagging	10% of energy bill	
d)	Derive an expre	ssion for the most economical va	lue of power factor.	
Ans:	Derivation:			
	o /d	$F = \frac{kW}{1} + \frac{kVAR}{2} + \frac$	equivalent figure (1	l/2 Mark)
	Let,			
	P = Activ	e power KW		
	$\mathbf{S}_1, \mathbf{S}_2 = \mathbf{K}$	XVA Maximum demand before and	d after improving power facto	r

Subject Code: 17507	Winter- 2015 Examinations Model Answer	Page 27 of 43
	$= \operatorname{Rs} X \cdot P (\operatorname{sec} \phi_1 - \operatorname{sec} \phi_2)$	
4) Expenditure toward	rds KVAr to be neutralized:	(1/2 Mark)
= Rs Y ($Q_1 - Q_2$)	
= Rs Y ($P \tan \phi_1 - P \tan \phi_2$)	
= Rs YxI	P ($\tan \phi_1 - \tan \phi_2$)	
5) Net Saving:		(1/2 Mark)
= Saving	in KVA charges - Expenditure towards KVAr to be	e neutralized.
= [Rs X .	P (sec ϕ_1 - sec ϕ_2)] - [Rs Y (P tan ϕ_1 - P tan ϕ_2)]
Saving will be	maximum when differentiate above equation with r	respect to ϕ_2 and equate
to zero.		
$\frac{\mathrm{d}s}{\mathrm{d}\phi_2}$ =	$= \frac{d}{d\phi_2} \left[\operatorname{Rs} X P \left(\sec \phi_1 - \sec \phi_2 \right) \right] - \left[\operatorname{Rs} Y P \left(\tan \phi_1 - \sec \phi_2 \right) \right] \right]$	$\tan\phi_2$)
	$= 0 - X \operatorname{P} \sec \phi_2 \times \tan \phi_2 - 0 + Y \operatorname{P} \sec^2 \phi_2$	
	$0 = -\operatorname{Rs} X \operatorname{P} \sec \phi_2 \cdot \tan \phi_2 - 0 + \operatorname{Rs} Y \operatorname{P} \sec^2 \phi_2$	2
	Rs X P sec ϕ_2 . tan ϕ_2 = Rs Y P sec ² ϕ_2	
	$\therefore \operatorname{Rs} X \ \tan \phi_2 = \operatorname{Rs} Y \ \sec \phi_2$	
	$\therefore \operatorname{Rs} X \ \frac{\sin \phi_2}{\cos \phi_2} = \operatorname{Rs} Y \ \frac{1}{\cos \phi_2}$	
	$\therefore \operatorname{Rs} X \ \sin \phi_2 = \operatorname{Rs} Y$	
	$\therefore \sin \phi_2 = \operatorname{Rs} \frac{Y}{X}$	
6)	$\therefore \sin^2 \phi_2 + \cos^2 \phi_2 = 1$	(1/2 Mark)
	$\cos^2\phi_2 = 1 - \sin^2\phi_2$	

	Winter-2015 Examinations
S	ubject Code: 17507Model AnswerPage 29 of 43
	\blacktriangleright Heat is produced due to I ² R losses where 'R' is the contact resistance.
	> This heat is utilized to obtain welding temperature (to become a plastic state)
	When welding temperature is reached supply is cut down and external pressure is applied simultaneously across the job to complete weld.
	Magnitude of current varies from 1000A to 10000A.and the voltage between electrodes is usually less than 2V
	The period of flow of current and magnitude of current depends upon thickness of sheet
	(ich) to be welded
	(job) to be weided.
1)	
D)	Energy consumed = $36,000 \text{ kWh}$, Reactive energy = $23,400 \text{ KVAR}$. If the tariff is Rs. 80 per kW of maximum demand plus 8 paise per unit plus 0.5 paise per unit for each 1% of power factor below 86%, calculate the monthly bill of the consumer.
Ans:	Note: (4 Marks)
	Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
	In case some questions credit may be given by judgment on part of examiner of relevant answer
	based on candidate understands
	Given Data:
	Maximum demand = 50 kW Energy consumed = $36,000 \text{ kWh}$
	Reactive energy = 23,400 KVAR
	Total Bill = Annual Demand Charges + Annual energy charges + reactive energy/annum
	Total $Bill = (50) \times (Rs.80) + (36000) \times (0.08) + (23400) (0.005)$
	Total Bill = Rs.6997
	OR
	Total Bill = Annual Demand Charges + Annual energy charges + reactive energy/annum
	Total $Bill = (50) \times (Rs. 80) + (36000) \times (0.08)$
	$Total \ Bill = Rs.6880$
Q.5	Attempt any FOUR : 16 Marks
a)	Draw the following types of lamp fittings and lighting systems with the help of light

		Winter- 2015 Examination	s
8	Subject Code: 17507	Model Answer	Page 31 of 43
	4. Semi indirect lighting:		
			or equivalent figure.
	Semi	- Indirect : Most of the light goes (ipward or away (60–90%)
	Application:		
	It is mainly used	for interior decoration.	
b)	Describe carbon arc weld	ling with neat sketch.	
Ans:	Figure carbon arc weldi	ng: (Figure	: 2 Mark & Explanation: 2 Mark)
	Carbon	Arc Welding lead welding lead coble twe anade carbon electrode carbon electrode carbon electrode be differential compound generator.	or equiavlent figure
	It is explain on follow	ing points	
	Principle of arc welding:		
	The process in whic	h two metal parts to be welded are	brought to a molten state and then
	allowed to solidify is ca	lled as arc welding. Melting of me	tal is obtained due to heat developed
	by an arc struck betwee	n carbon electrode and metal to be	welded (Job) and the additional
	metal is deposited in the	weld from a filler rod.	
	Carbon arc weld	ing is explain on following points	s :- (Any four points are expected)

	Winter-2	2015 Examinations	
Subject Co	ode: 17507 <u>Mo</u>	del Answer	Page 32 of 43
	1. Type of supply used:	Only DC supply is used.	
	2. Type of Electrode:	Carbon Electrode are used.	
	3. Supply Equipment used:	D.C Differential component Ger	nerator or
		Rectifier	
	4. Arc Stability:	D.C Differential component. Ge	enerator has
		dropping characteristics.	
	5. Temperature obtain:	More	
	6. Possibility of arc blow is more.:	More	
	7. Capital Cost:	More	
	8. Running cost:	More	
	9. Maintenance cost:	More	
	10. Stand by losses:	More	
	11. Efficiency:	Less	
	12. Voltage required:	50 to 60 volt D.C	
	13. Types:	Flux is used and flux is not used	l
	14. Application:	For welding non ferrous metals	
	15. Limitation:	Not suitable for overhead welding	ng
c) What ar	e the requirements of ideal traction sy	stem ? What are the different traction	systems?
Ans: Ideal	Fraction system should processes	following requirement:-	
		(Any Four requirement expected	l: 1/2 Mark each)
	1. It should be Pollution free.		
	2. It should have low capital, Runr	ing and maintenance cost.	
	3. It should have quick starting tim	le.	
	4. It should have high starting torq	ue.	
	5 It should have high rate of accel	eration & retardation	
	6 Highest speeds are possible		
	o. Ingliest speeds are possible.	1 4 1	
	/. It should have easy speed control	ol method.	
	8. Its braking system should be read	liable and causes less wear.	
	9. It should have better riding qual	ity (less vibration)	

S	Subject Code: 17507	Winter– 20 <u>Mod</u>	15 Examinations el Answer	Page 33 of 43		
	10. It should be	e free from unbalance f	orces i.e. coefficient of adhesion sho	uld be more.		
	11. It should ha	we lower centre of grav	vity.			
	12. The locomo	otive should be self-cor	ntained and able to run on any route			
	13. There shou	ld be no standby losses	5.			
	14. It should ha	we high efficiency				
	15. Regenerativ	ve braking should be po	ossible.			
	16. The wear ca	aused on the track shou	ıld be minimum.			
	17. Equipment	should be capable of o	verloads for short periods.			
	18. Capability of	of withstanding voltage	e fluctuations.			
	19. Parallel run	ning usually more thar	n one motor (2 or 4 motors) should be	e possible.		
	20. Traction sys	stem should be clean &	z long life.			
	21. There should be no interference to the communication lines running along the lines.					
	Following are the diff	erent types of traction	n system are used:			
	1 04 5	·		(2 Marks)		
	1. Steam Eng	gine Traction system				
	2. Diesel Eli	gine (IC) Traction syst				
	J. Diesei-Eit	cure fraction system				
	4. Ballery of 5. Electric T	raction System	1			
	J. Electric I.	raction 5 ystem	OP			
	1 AC Tractio	n System	ŬK.			
	2. DC Traction	n System				
	3. Composite	traction system :-				
		a)1-Ph AC (1-ph,	25KV) – DC Supply System			
		b) Kando System	(1-Ph AC – 3-Ph AC)			
d)	Draw a neat diagram	of A.C. electric locon	otive and explain function of each	part in it.		
Ans:	Diagram of A.C. elect	tric locomotive:	(Figure: 2Mark & Function :	2 Mark)		

S	Subject Code: 17507	Winter– 2015 Examin <u>Model Answer</u>	nations <u>r</u> Page 35 of 43	
	7) Filter circuit (smooth	ning reactor):		
	It is used to o	obtain pure DC supply.		
	8) Motor control unit:	It controls operation of tractic	on motor.	
	9) Traction Motor:			
	It gives mechani	cal power to run the train DC	series motor is used as traction motor	
e)	With a suitable diagram	explain series-parallel cont	rol of D.C. series motor.	
Alls:	Series paranel control of	DC series motor:		
	1. For traction purpo	se, two motors are operated in	n following steps.	
	Series steps of traction n	notor:	(Steps for series control : 2 Mark)	
	Step 1 –			
	Two traction moto	ors M1 and M2 are connected	in series and started with all starting	
	resistances in serie	es.		
	Step 2 to 7 –			
	• The starting resistance series without any	ances are cut out one by one g resistance.	radually and finally two motors are in	
	• In series connection	on the supply voltage V is divi	ided in two motors. (Both motors get half	
	or (V/2) volts). So	speed is also half. (N/2)		
	-t1	Series Steps		
		Vdc —	S2 M2 M	
	step2	Vdc —	S2 M2 M	
	step3	Vdc	S2 M2 M	

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

Winter– 2015 Examinations <u>Model Answer</u>

Page 37 of 43

Winter-2015 Examinations

Subject Code: 17507

Model Answer

Page 38 of 43

It is based on principle of transformer. In this type of <u>Induction heating</u> primary winding is as usual which is wound around one limb of magnetic core but secondary winding is actually charge which is to be melted is kept in crucible.

When AC Supply is given to primary winding current flows through primary winding which creates alternating flux in magnetic core this flux links to the secondary winding i.e. charge through magnetic core. Hence according to faraday's law of electromagnetic induction emf will be induced in secondary winding that is in the charge.

As charge forms a close circuit (secondary) heavy current flows through charge this current is responsible to produce heat in charge due to I^2R losses. This heat is utilized to melt the charge.

Where, R = Resistance of charge & I secondary current.

Subject	Winter- 2015 Examinations de: 17507 <u>Model Answer</u>	Page 39 of 43
	OR Student may write construction also instead of principle	
Cons	ction of 'Ajax Wyatt' vertical core furnace:	
Vei	al core type induction heating furnace is nothing but transformer. It consist	ts of
	Magnetic Core:	
	Primary winding	
	Secondary Winding:	
	Refractory Wall	
	Opening	
2	Cooling arrangement	
	Filting arrangement	
	Control panel	
	APEC	
	Application of 'Ajax Wyatt' vertical core furnace: (Any Two expecte	d)
1.	t is used for melting metal having low resistivity.	
2.	t is used for heat treatment of silver, Copper, nickel etc.	
3.	Such type of furnace are used for continuous operations only and not used f	or intermittent
	ervices.	
Adva	ages: (Any Two expected)	
1)	As furnace has narrow 'V' shape crucible at bottom. So small quantity of m	olten metal
,	emains in narrow 'V' notch from previous operation, which will help to ke	ep secondary
	hort circuited.	1
	So no extra care is required to start the furnace	
2)	Agenetic coupling between primary & secondary winding is better because	both windings
	re on central limb of magnetic core. So there will be less leakage flux. Hen	ce leakage
	eactance is less, so power factor is better than horizontal crucible direct con	e type
	nduction furnace.	JP-

	Winter– 2015	Examinations	
Subject Code: 1750)7 <u>Model</u>	Answer	Page 40 of 43
>	Due to pinch effect in ordinar	y core type induction furnace the	ere are chances of
	temporary interruption in seco	ondary circuit when current dens	ity exceeds above
	$500 \text{A/cm}^2 \text{ OR } 5 \text{Amp/mm}^2$.		
\succ	But in this type of induction f	urnace there are no chances of in	nterruption in
	secondary circuit even if curre	ent density exceeds 500A/cm ² O	R 5Amp/mm ²
	Because tendency of weight o	f charge keep them in contact du	ue to narrow 'V'
	shape.		
\checkmark	So we can increase current de	nsity above 500A/cm ² OR 5Am	p/mm ² to obtain
	more heat in less time.		
1) Vert	ical crucible is always better the	an horizontal crucible for pourin	g and taking out
the m	netal. Also space required is less	3.	
2) As he	eat is produced directly in the cl	harge there is no heat transfer los	ss. So efficiency
3) As he	eat is directly produced in the cl	narge time required for melting r	metal is less. So
energ	gy consumption is less.		
4) As cu	arrent is directly induced in the	charge there is automatic stirring	g action taking
place	in the charge due to electroma	gnetic forces developed in the ch	harge due which,
	Uniform heating is possible	tal is possible.	
5) Accu	rate temperature control.		
6) Ideal	working condition in a cool atr	nosphere with no dirt, noise and	fuel.
The speed-time i) Uniform acc retardation of 6 iv) A stop time speed.	curve of a train consists of : eleration of 5 km phps for 3 5 km phps to stop the train. of 5 min. Find the distance	30 Sec. Free running for 10 1 between the stations, the aver	min. iii) Uniform age and schedule
Given Data:			
$t_1 = 30 \text{ sec}$	$t_2 = 10 \text{min} = 600 \text{ sec}$	$T_{stop} = 5 \text{ min} = 300 \text{ sec}$	
acceleration	$\alpha = 5 \text{ km pnps}$	retardation $p = 6$ km pnps	
6=	Acch Acch	ec)	1 /2Mark)
	Subject Code: 1750 Subject Code: 1750 1) Vert the m 2) As he of fun 3) As he energ 4) As cu place \searrow 5) Accu 6) Ideal The speed-time i) Uniform acc retardation of C iv) A stop time speed. Given Data: $t_1= 30$ sec acceleration	Subject Code: 17507 Model Model Due to pinch effect in ordinary temporary interruption in seco $500 \text{A/cm}^2 \text{ OR 5 Amp/mm}^2$. But in this type of induction for secondary circuit even if currer Because tendency of weight or shape. So we can increase current der more heat in less time. 1) Vertical crucible is always better that the metal. Also space required is less 2) As heat is produced directly in the cl of furnace is more. 3) As heat is directly produced in the cl energy consumption is less. 4) As current is directly induced in the cl place in the charge due to electromag > Through mixing of molten me > Uniform heating is possible 5) Accurate temperature control. 6) Ideal working condition in a cool atr The speed-time curve of a train consists of : i) Uniform acceleration of 5 km phps for 3 retardation of 6 km phps to stop the train. iv) A stop time of 5 min. Find the distance is speed. Given Data: $t_1 = 30 \sec t_2 = 10 \min = 600 \sec (1 + 1 + 2 + 1 + 3 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	 White-2015 Examinations Subject Code: 17507 <u>Model Answer</u> > Due to pinch effect in ordinary core type induction furnace the temporary interruption in secondary circuit when current dens 500A/cm² OR 5Amp/mm². > But in this type of induction furnace there are no chances of it secondary circuit even if current density exceeds 500A/cm² O Because tendency of weight of charge keep them in contact du shape. > So we can increase current density above 500A/cm² OR 5Am more heat in less time. 1) Vertical crucible is always better than horizontal crucible for pourin the metal. Also space required is less. 2) As heat is produced directly in the charge there is no heat transfer los of furnace is more. 3) As heat is directly produced in the charge there is automatic stirring place in the charge due to electromagnetic forces developed in the charge in the charge due to electromagnetic forces developed in the charge there is automatic stirring place in the charge control. 6) Ideal working condition in a cool atmosphere with no dirt, noise and The speed-time curve of a train consists of : i) Uniform acceleration of 5 km phps for 30 Sec. Free running for 10 treatadation of 5 km phps for 30 Sec. Free running for 10 treatadation of 5 km phps for 30 Sec. Free running for 10 treatadation of 5 km phps for 30 Sec. Free running for 10 treatadation are 5 km phps Through a phps for 20 Sec. Tree running for 10 treatadation are 5 km phps Through a final charge the developed in the distance between the stations, the aver speed. Given Data: t₁₂ 30 sec t₂₂ 10min = 600 sec T_{stop}= 5 min = 300 sec acceleration α = 5 km phps Through a phps Through a phps Totage 5 min = 500 sec retardation β = 6 km phps Through a phps Totage 5 min = 5 min = 500 sec retardati

	Winter– 2015 Examinat	ions
Subject Code: 17507	Model Answer	Page 41 of 43
>	$\alpha = \frac{V_{\max}}{t_1}$	(1 /2Mark)
	$V_{\rm max} = t_1 \times \alpha = 30 \times 5$	
	$V_{\rm max} = 150 \ Km / \ hr$	Answer (1/2 Mark)
>	$\beta = \frac{V_{\text{max}}}{t_3}$	(1/2 Mark)
	$t_3 = \frac{V_{\text{max}}}{\beta} = \frac{150}{6}$	
	$t_3 = 25 \text{ sec}$	Answer (1 /2 Mark)
Distance cove	ered during Acceleration ($D\alpha$) =	
	$D\alpha = \frac{V_{\max}^{2}}{7200\alpha}$	(1 /2Mark)
	$D\alpha = \frac{(150)^2}{7200 \times 5}$	
	$D \alpha = 0.625 \text{ sec}$	-Answer (1/2 Mark)
Distance covered	during Retardation ($D\beta$) =	
	$D \beta = \frac{V_{\text{max}}^2}{7200 \beta}$	(1/2 Mark)
	$D \ \beta = \frac{(150)^2}{7200 \times 6}$	
	$D \beta = 0.5208 \text{ sec}$	Answer (1 /2 Mark)
:. D Fre	$e \ running = \frac{t_2 \times V_{\text{max}}}{3600}$	(1/2 Mark)

		Winter– 2015 Exan	linations
5	Subject Code: 17507	<u>Model Ansv</u>	Page 42 of 43
	D Free running	$g = \frac{600 \times 150}{3600}$	
	D Free running	$g = 25 \ Km$	(1 /2 Mark)
	$Dis \tan ce 'D' = D\alpha +$	$-D\beta + D$ Free runn	ng
	$Dis \tan ce 'D' = 062$	25 + 0.5208 + 25	
	$Dis \tan ce 'D' = 26$	5.1458 <i>Km</i>	(1 /2 Mark)
	<i>Time</i> ' <i>T</i> ' = $t_1 + t_2 + t_3 + t$	$t_3 = 30 + 600 + 25$	
	<i>Time</i> ' $T' = 655$ <i>Se</i>	с	Answer (1 /2 Mark)
	$\succ \qquad V_{av} = \frac{3600 D}{Time} $		(1/2 Mark)
	$V_{av} = \frac{3600 \times 26.1458}{655}$	-	
	$V_{av} = 143.702 \ Km / hr$		Answer (1 /2 Mark)
	$\succ \qquad V_{schv} = \frac{3600 D}{T + T_{stop}} \dots$		(1/2 Mark)
	$V_{schv} = \frac{3600 \times 26.1453}{655 + 300}$	8	
	$V_{schv} = 98.56 \ Km \ / hr$		(1 /2 Mark)
b)	A 3-phase, 50 Hz, 400 V mot efficiency 93%. A bank of ca power factor raised to 0.95 la V capacitors. Determine the c	tor develops 100 HP pacitors is connected gging. Each of the ca apacitance of each c	the power factor being 0.75 lagging and in delta across the supply terminals and apacitance unit is built of four similar 100 apacitor.
Ans:	Given Data		
	Volt : line volts $V = 400V$,	f= 50 Hz	P= 100 HP x 735.5/093 = 79.086 kW
	$\cos\phi_1 = 0.75$	$\cos\phi_2 = 0.95$	
	$\therefore Cos \phi_1 = 0.75$		

Winter–2015 Examinations			
Subject Code: 17507	Subject Code: 17507 <u>Model Answer</u>		
$\tan \phi_1 = 0.88$		(1 Mark)	
$\tan \phi_2 = 0.3286$		(1 Mark)	
$Q_1 = P \tan \phi_1$			
$= 79.086 \ge 0$.88		
= 69.595 KV	'AR	(1 Mark)	
$Q_2 = P \tan \phi_2$			
$= 79.086 \ge 0$.3286		
= 25.9876 K	VAR	(1 Mark)	
$Q_{\rm C} = Q_{1-} Q_2$			
$= \mathbf{P} \tan \phi_1 -$	$P \tan \phi_2$	(1 Mark)	
= 69.595 - 2	5.9876		
= 436074 K	VAR	(1 Mark)	
: Capacitor when connect	ed in Delta:-		
C per phase = $\frac{Q_{c}}{Q_{c}}$	<u></u>	(1 Mark)	
$\cos p \cos p \sin \omega s = \frac{3}{3} \omega V$	$\sqrt{2}$	(1 1/1/1/1/)	
C per phase	43.6074×10^{3}		
3×	$2\pi \times 50 \times 400^2$		
C per phase = 43	36074×10^{3}		
c per phase $-\frac{1}{3\times 1}$	50.265×10^{6}		
$C \ per \ phase = 2.89$	$1 \times 10^{-4} \text{F}$	(1 Mark)	
T 1.14	4		
In ease delta connected phas	e 4 similar 100 v capacitors are com	nected in series:	
The capacitance of each	a capacitor = $2.891 \times 10^{-4} \times 4$		
The conscitance of each	conscitor = 11564×10^{-4}	(1 Monte)	
The capacitance of each	$capacitor = 11.304 \times 10$	(1 магк)	

-----END-----