

Winter- 2015 Examinations

Subject Code: 17511

Mode<u>l Answer</u>

Page 1 of 37

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

	Winter-2015 Examinations			
Subje	ct Code: 17	511 <u>Model</u>	Answer	Page 2 of 37
	Explanat	ion: From the above characteri	stics:-	
	> Th	e torque equation of induction m	otor is given by:	
	≻ Th	e simplified form of the above to	rque equation-	
		$T \alpha S \times V^2 (\because \phi \alpha E$	E_1 , and $E_2 \alpha E_1$, and $E_1 \alpha V$)	
	> Fr	om the above equation it is clear t	that the torque at any speed is prop	portional to the
	> He	ence any change in supply voltage	e will be having great effect on run	ning torque and
	> As	s supply voltage decreases up to 5	0 % of the rated value, maximum	torque
	de ≻ Th	tis effect is shown in the above to	rque-speed characteristics	
b)	State the (iii) Brus	e function of following parts of hes and (iv) Frame.	of an induction motor (i) Slip-	rings, (ii) Fan,
Ans:			(Each parts of func	tion :1 Mark)
	S.No	Parts of Induction Motor	Function	
	i)	Slip-rings	Connect 3-Ph rheostat to the rot	or circuit via
			brushes	
	ii)	Fan	Air circulation and cooling.	
	iii)	Brushes	To provide connection between	external
			rheostat to rotor circuit through	Slip-ring
	iv)	Frame	Supports the stator core, protect	s inner parts
c)	(i) State th	e necessity of starter for three-pha	se induction motor.	
Ang	(ii) Write	the names of starters used for 3-ph cossity of starter for 3-ph induc	ase squirrel cage induction motor.	(2Mark)
Alls.	I) I lie lie	cessity of starter for 5-ph muuc		(21viai K)
	If	a 3-phase A.C supply is directly	given to a 3-phase induction moto	r, at starting the
	motor	will draw nearly 6-10 times its ful	ll load current at very low power f	actor. Such a
	huge c	urrent is harmful to the motor. Th	erefore there is necessity of starter	for 3-phase
	inducti	on motor to control the starting c	urrent. OR	
		The induction motor is similar in	n action to poly phase transformer	with short

	Winter-2015 Examinations			
Subje	ect Code: 17511 <u>Model Answer</u>	Page 3 of 37		
	circuited rotating secondary. Therefore if normal supply voltage is applie	d to such		
	stationary motor than as in case of transformer a very large initial current	t is taken by the		
	primary for short while. At starting the motor will draw nearly 6-10 times	s its full load		
	current at very low power factor. Such a huge current is harmful to the m	otor. And to		
	protect the motors from such heavy currents it is necessary to use starters for 3-phase			
	induction motor.			
	ii) The names of starters used for 3-phase squirrel cage induction motor	(2Mark)		
	1) DOL Starter			
	2) Star-Delta Starter			
	3) Stator resistance starter			
	4) Auto transformer Starter			
d)	Define the following terms and write their mathematical expression : (i) Pitch Factor and (ii) Distribution Factor related to the winding of al	ternators		
Ans:	1) Pitch factor:	(I Mark)		
	It is the ratio of the voltage generated in the short pitch coil to the in the full pitch coil.	voltage generated		
	Mathematical expression:-	(1 Mark)		
	$K_c = Cos \left(\frac{\alpha}{2}\right)$ Where $\alpha = Shorter$ angle than pole p	pitch		
	ii) Distribution factor related to the winding of alternators :	(1 Mark)		
	It is the ratio of vector sum of the emf in the individual coil to the	e arithmetical		
	sum if the coils are of concentrated type or all the coil sides are in only of	ne slot.		
	Mathematical expression:-	(1 Mark)		
	$K_{d} = \frac{Sin\left(\frac{m\beta}{2}\right)}{m.Sin\left(\frac{\beta}{2}\right)}$ Where $\beta = Angular \ dis \tan ce \ between \ two \ adjescent \ a$			
	m = No. of Slots / Pole / Ph			

Winter- 2015 Examinations Model Answer

Page 4 of 37

.			Winter– 2015 Examinations	
Subje	ct Code: I	/511	<u>Model Answer</u>	Page 6 of 37
	Fushave torque	Torque No Generating P	speed Generation	Tmex 0 Slip
	OR	V		or
	equivale	nt figure		
	equivale	nt figure		
Q.2	equivale Attempt	nt figure any FOUR :		16 Marks
Q.2 a)	equivale Attempt Compar	nt figure any FOUR : e squirrel cage an	d slip-ring induction motor on th	16 Marks he basis of :
Q.2 a) Ans:	equivale Attempt Compar (i) Starti	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov	nd slip-ring induction motor on t aver factor (iii) Speed control and	16 Marks he basis of : (iv) Applications. (Each Point -1 Mark)
Q.2 a) Ans:	equivale Attempt Compar (i) Starti	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov	d slip-ring induction motor on t ver factor (iii) Speed control and	16 Marks he basis of : (iv) Applications. (Each Point -1 Mark)
Q.2 a) Ans:	equivale Attempt Compar (i) Starti	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov Points	d slip-ring induction motor on t ver factor (iii) Speed control and Squirrel Cage Induction Motor	16 Marks he basis of : (iv) Applications. (Each Point -1 Mark) Slip Ring Induction Motor
Q.2 a) Ans:	equivale Attempt Compar (i) Starti S.No i)	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov Points Starting torque	d slip-ring induction motor on the set of th	16 Marks he basis of : (iv) Applications. (Each Point -1 Mark) Slip Ring Induction Motor Higher
Q.2 a) Ans:	equivale Attempt Compar (i) Starti S.No i) ii)	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov Points Starting torque Power factor	nd slip-ring induction motor on the wer factor (iii) Speed control and Squirrel Cage Induction Motor Poor Poor	16 Marks he basis of : (iv) Applications. (Each Point -1 Mark) Slip Ring Induction Motor Higher Higher
Q.2 a) Ans:	equivale Attempt Compar (i) Starti i) ii) ii) iii)	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov Points Starting torque Power factor Speed control	d slip-ring induction motor on the series of	16 Marks he basis of : (iv) Applications. (iv) Applications. (Each Point -1 Mark) Slip Ring Induction Motor Higher Higher Higher By stator & rotor control method
Q.2 a) Ans:	equivale Attempt Compar (i) Starti i) ii) ii) iii) iii) iii)	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov Points Starting torque Power factor Speed control Applications.	d slip-ring induction motor on the ver factor (iii) Speed control and Squirrel Cage Induction Motor Poor Poor By stator control method only For driving somehow constant	16 Marks he basis of : (iv) Applications. (iv) Applications. (Each Point -1 Mark) Slip Ring Induction Motor Higher Higher Higher By stator & rotor control method For driving heavy load For driving heavy load
Q.2 a) Ans:	equivale Attempt Compar (i) Starti i) ii) ii) iii) iii) iii)	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov Points Starting torque Power factor Speed control Applications.	ad slip-ring induction motor on the series of the serie	16 Marks he basis of : (iv) Applications. (iv) Applications. (Each Point -1 Mark) Slip Ring Induction Motor Higher Higher Higher By stator & rotor control method For driving heavy load where high starting torque
Q.2 a) Ans:	equivale Attempt Compar (i) Starti S.No i) ii) iii) iii) iiv)	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov Points Starting torque Power factor Speed control Applications.	ad slip-ring induction motor on the second control and control and second control and control and second control and and second control and second contro	16 Marks he basis of : (iv) Applications. (iv) Applications. (Each Point -1 Mark) Slip Ring Induction Motor Higher Higher Higher Higher For driving heavy load where high starting torque is required eg. Lift, Crane,
Q.2 a) Ans:	equivale Attempt Compar (i) Starti i) ii) iii) iii) iii)	nt figure any FOUR : e squirrel cage an ing torque (ii) Pov Points Starting torque Power factor Speed control Applications.	ad slip-ring induction motor on the second control and sec	16 Marks he basis of : (iv) Applications. (iv) Applications. (Each Point -1 Mark) Slip Ring Induction Motor Higher Higher Higher Higher For driving heavy load where high starting torque is required eg. Lift, Crane, Elevators, conveyor belts Elevators, conveyor belts

-

Winter- 2015 Examinations Model Answer

Page 7 of 37

b)	Explain why three phase induction motor is called as asynchronous motor. Also give				
D)	the formulae for rotor induced emf and frequency of rotor currents.				
Ans:	Explanation :				
	Reason f	or three phase induction	n motor is called as asynch	ronous motor : (2 Marks)	
	≻ Th	ree phase induction motor	never runs at synchronous	speed hence it is called as	
	asynchronous motor. OR I.M. always runs less than synchronous speed her			chronous speed hence it is	
	ca	lled as asynchronous moto	or.		
	Formulae for : rotor induced emf under running condition : (1 Marks)				
	E_{j}	$E = S E_2$ Where $S = Slip$	and $E_2 = rotor$ induced	d emf at s tan dstill	
			OR		
	$E_r = Ir \times Zr$ Where $Ir = rotorcurrent$ under runing & $Zr = rotorimpedancander$ runing				
	$E_r = (SI_2) \times (\sqrt{R_2^2 + S^2 \cdot X_2^2})$				
	Formulae for : frequency of rotor currents : (1 Marks)				
		f' = S f Where S	= Slip and f = Supply	frequency	
c)	Compare Operatin (iv) Appl	e salient pole rotor and si g speed (ii) Rotor constr ications.	mooth cylindrical rotor al uction (iii) Ratio of core l	ternator on the basis of : (i) ength to bore diameter and	
Ans:				(Each Point -1 Mark)	
	S.No	Points	Salient pole rotor Alternator	Cylindrical rotor Alternator	
	i)	Operating speed	Low medium	high	
	ii)	Rotor construction	Projected type bulky & heavy weight	Cylindrical poles type comparatively moderate weight	
	iii)	Ratio of core length to bore diameter	large	small	
	iv)	Application	In hydro power stations	Thermal power station	

Winter- 2015 Examinations Model Answer

Page 8 of 37

Subio	Winter- 2015 Exam	ninations er Bage 10 of 37
Subje	xt Coue: 17511 Mouer Answe	
	polarity of AC changes periodically, the dire	ection of current in armature and field
	winding reverses at the same time.	
	Thus, direction of magnetic field and the dir	rection of armature current reverses in such a
	way that the direction of force experienced b	by armature conductors remains same. Thus,
	regardless of AC or DC supply, universal m	otor works on the same principle that DC
	series motor works.	
f)	Practically if D.C. series motor has to be modification and refinements will have to be d	supplied with single phase A.C., what done on D.C. series motor ?
Ans:	(Fi	igure- 2 Marks & Explanation 2 Marks)
	Conductively compensated as s	series motor
		I I I I I I I I I I I I I I I I I I I
	acteriatics and a mail	mon Program Line Line
	browdg.ogleleeleet - Tog	Armature
	in current · opends abt	
	Te ductively Componented	
	ac series notors	u pritagnagena
	The D.C series motor can be run on	A.C supply also, but the following
	modifications will be done when D.C seri	ies motor works on A.C. Supply.
	•The field core has to be constructed of a	a material having low hysteresis loss.
	• The rotor and the stator have to be lamir	nated to reduce eddy current losses.
	•Also the pulsating nature of AC may cau	use the commutator segments and brushes to
	wear out and produce sparking. This can be	be eliminated by using high resistance leads
	to connect the coils to the commutator sea	gments.
	• The field winding is provided with small	Il number of turns. The field-pole areas is
	increased so that the flux density is reduce	red This reduces the iron loss and the
	reactive voltage dron	ca. This reduces the non ross and the
	•The number of armature conductors has	to increased in order to get the required
	torque with the low flux	to mereased in order to get the required
	• A in order to reduce the effect of country	in componenties winding is used as stirt
	•A in order to reduce the effect of armatu	are-compensation winding is used reaction,

Winter– 2015 Examinations <u>Model Answer</u>

Page 12 of 37

	Explanation: From the above characteristics:-			
	 When Slip (S) ≅0 (i.e N≅Ns) torque is almost zero at no load, hence characteristics start from origin 			
	 As load on motor increases Slip increases and therefore torques increases. For lower values of load, torque proportional to slip, and characteristics will having linear nature. At a particular value of Slip, maximum torque conditions will be obtained which is R₂ = SX₂ 			
	For higher values of load i.e. for higher values of slip, torque inversely proportional to slip and characteristics will having hyperbolic nature. In short breakdown occurs due to over load.			
	> The maximum torque condition can be obtained at any required slip by changing			
	rotor resistance.			
b)	Describe with the help of curves the effect of variation of a rotor circuit resistance on			
Ans:	the torque-slip characteristics of an induction motor.			
Alls.	(Explanation of Effect- 2 Marks Characteristics -2 Marks)			
	Explanation: From the below characteristics:-			
	When rotor resistance increases, maximum torque condition occurs at higher values			
	of slip and characteristics shifts towards left hand side.			
	The maximum torque condition can be obtained at any required slip by changing			
	rotor resistance.			
	Figure:			
	or characteristics			

	Winter- 2015 Examinations
Subje	ct Code: 17511 <u>Model Answer</u> Page 13 of 37
c)	Derive the e.m.f. equation of a three phase alternator from first principle.
Ans:	EMF Equation of alternator :
	Let, $P = No.$ of rotor poles. $\phi = Flux$ per pole $Z = Number of stator conductors$
	N = Speed in rpm
	$\frac{1}{2}$ turns per phase (Tph) $-\frac{Z_{Ph}}{Z_{Ph}}$
	$\frac{1}{2}$
	Frequency of induced emf is
	f = Cycles per rotation x rotation per sec
	$\therefore = \frac{P}{2} \times \frac{N}{C}$
	2 60
	$\therefore f = \frac{PN}{120}$ (1/2 Marks)
	Consider one rotation of rotor then change in flux linkage is
	$d\phi = P, \phi$ Time required for one rotation is.
	$\frac{1}{1} = \frac{1}{60}$
	: $dt = \frac{1}{n} = \frac{1}{(N/60)} = \frac{33}{N} = \frac{1}{N} = \frac$
	By faradays law of Electromagnetic induction
	$\therefore Average \ emf \ per \ conductor = \frac{d\phi}{dt}$
	$\therefore E_{\text{ave}} / \text{Conductor} = \frac{P.\phi}{(N/60)}$
	$\therefore E_{\text{ave}} / \text{Conductor} = \frac{P \times \phi \times N}{60} \text{Volt} \text{Volt} \text{(1/2 Marks)}$
	$\therefore E_{\text{ave}} / \text{turn} = 2 E_{\text{ave}} / \text{Conductor} \frac{P \times \phi \times N}{60} Volt$
	$\therefore E_{ave} / turn = 2 \frac{P \times \phi \times N}{60} Volt$
	$\therefore \qquad = \frac{4P\phi N}{120} Volt (1/2 \text{ Marks})$
	$\therefore \qquad = 4 \left(\frac{P N}{120}\right) \phi$
	$\therefore \text{ E}_{\text{ave}}/\text{ turn} = 4 f \phi \therefore (f = \frac{P N}{120})$
	\therefore E _{ave} / Phs = E _{ave} / x Number of turns per phase
	$=4 f \phi \times T_{Ph} (1/2 \text{ Marks})$
	RMS Value per phase is given by,
	$E_{\rm ph} = E_{\rm ph}$ (ave) x Form Factor

	v	Winte	r– 2015 I	Examina	tions			
Subje	ect Code: 17511	l	Model A	nswer			Pag	e 14 of 37
		= 4 j	$f \phi \times T_{Ph}$	×1.11 -			(1	/2 Marks)
			$E_{ph} = 4.4$	4 ¢ .f T _{Ph}	volts			
	It is for full pitched concentrated winding. If winding is distr			g is distribu	ted & sho	ort pitche	d then	
	$E_{Ph} = 4.44 \phi.f. T_{Ph}. kd.kc$ volts]	(1	/2 Marks)		
	Where, Kc = coil spa Kd = Distribu	n fact tion f	or or ch actor	ording fa	actor			
d)	An 400 V, 125 kVA, 3-phase	e, star	· connec	cted alte	rnator has	open-cir	cuit cha	racteristics
	as under : Field Current (A) Open Circuit emf ('V)	0 0	10 140	20 30 250 340	40 400	50 460	60 520
Ans:	Short circuit characteristics and it is found that the S.C. Determine full load regulation 0.8 lagging and (ii) 0.8 leading Given Data:	of th . curn on of n <u>g. As</u>	e altern ent is o the alto <u>sume R</u>	nator is equal to ernator a is 0.15	a straight the full loa by Z, meth O.	line pass ad curren od at the	ing thro nt when e followi	ugh origin If is 20 A. ng p.f. : (i)
	3-Ph, 400V, $P = 125$ KVA Field current (Δ)		= 0.15 o	$\frac{1}{20}$	30	40	50	60
	Open circuit emf (V)	0	140	250	340	400	460	520
	Open circuit V per Phase	-	80.8	144.3	196.3	230.9	256.6	300
	Note : In Graph Scale may b	e diff	erent :				((1/2Mark)
	Eren & Lacker. Eren & Lacker. Eren & Lacker. 200 200 200 200 200 200 200 20	3. No		50		Tr YAXIS BEA BEA C.C.		
			- ATE			or	equivale	ent fig

	Winter– 2015 Examinations	
Subject Code: 17511	Model Answer	Page 15 of 37
	Phase Resistance, $R_a = 0.15$ ohm	
	Phase Voltage V= $\frac{400}{\sqrt{3}}$ = 230.90 volts	(1/2 Mark)
	Full load Line current I = I _a = $\frac{125 \times 10^3}{\sqrt{3} \times 440}$ =180.42A	(1/2 Mark)
From OCC	C and SCC:-	
: Synci	<i>hronous impedance per phase</i> = $Zs = \frac{O.C Voltage / ph}{S.C Current / ph} = \frac{O.C Voltage / ph}{S.C Current / ph}$	<u>144.3</u> 180.42
$\therefore S_{1}$	ynchronous impedance per phase = $Zs = 0.8\Omega$	(1/2 Mark)
Synchroi	nous reactance, $X_s = \sqrt{Z_s^2 - R_a^2} = \sqrt{0.8^2 - 0.15^2} = 0.785$	58 Ω (1/2 Mark)
i) 0.8 Lagging Po	ower Factor;	
No. loa	$d \ emf \ E_0 = \sqrt{(V \ Cos\phi + I_a R_a)^2 + (V \ sin\phi + I_a X_s)^2} - \dots$	(1/2 Mark)
No. load emf E_0	$= \sqrt{(230.9 \times 0.8 + 180.42 \times 0.15)^2 + (230.9 \times 0.6 + 180.42 \times 0.15)^2}$	×180.42×0.7858) ²
	No. load emf $E_0 = \sqrt{(211.783)^2 + (280.31)^2}$	
	No. load emf $E_0 = 351.32$ Volt	
	$\operatorname{Re} gulation = \frac{E_0 - V_T}{V_T} \times 100 = 230.9 \times 100$	
	% Regulation = 52.15 %	(1/2 Mark)
ii) 0.8 leading Po	ower Factor;	
No. la	pad emf $E_0 = \sqrt{\left(V \cos\phi + I_a R_a\right)^2 + \left(V \sin\phi - I_a X_s\right)^2}$	
No. load emf E_0	$= \sqrt{(230.9 \times 0.8 + 180.42 \times 0.15)^2 + (230.9 \times 0.6 - 180.42 \times 0.15)^2}$	× 0.7858) ²
	No. load emf $E_0 = 211.81$ Volt	

	Winter–2015 Examinations			
Subje	ect Code: 17511 <u>Model Answer</u>	Page 16 of 37		
	Re gulation = $\frac{E_0 - V_T}{V_T} \times 100 = \frac{211.81 - 230.9}{230.9} \times 100$ % Regulation = -8.2674 %	(1/2 Mark)		
e)	"Single phase induction motor is not self starting." Justify the statement revolving theory.	by double field		
Ans:	Reason for single phase induction motor doesn't have a self starting torq	ue:		
	 When single phase AC supply is given to main winding it produces al 	Mark) ternating flux.		
	According to double field revolving theory, alternating flux can be rep two opposite rotating flux of half magnitude.	presented by		
	These oppositely rotating flux induce current in rotor & there interaction produces two opposite torque hence the net torque is Zero and the rotor remains standstill.			
	➢ Hence Single-phase induction motor is not self starting. OR			
	When single phase A.C supply is applied across the single phase stator winding, an alternating field is produced. The axis of this field is stationary in horizontal direction. The alternating field will induce an emf in the rotor conductors by transformer action. Since the rotor has closed circuit, current will flow through the rotor conductors. Due to induced emf and current in the rotor conductors the force experienced by the upper conductors of the rotor will be downward and the force experienced by the lower conductors of the rotor will be upward. The two sets of force will cancel each other and the rotor will experience no torque. Therefore single phase motors are not self starting.			
	Double field revolving theory: (2Mark)		
	1] At wat = 0 β_2 δ β_1 , $\beta_1 = \beta_1 - \beta_2$ 2] β_2 δ β_1 , At wat = g_0 . g_0 f g_0 $\beta_1 = \beta_1 + \beta_2$ g_1 g_0 $\beta_1 = \beta_2$ β_1 g_2 $\beta_1 = \beta_2 - \beta_2$ 4] At wat = 180° β_1 β_2 $\beta_1 = -\beta_1 - \beta_2$ β_1 β_2 $\beta_1 = -\beta_1 - \beta_2$ β_2 β_1 β_2 $\beta_1 = -\beta_2$	82 82 m 1 Ø 1		

	winter– 2015 Examinations	
Subje	ect Code: 17511 <u>Model Answer</u>	Page 18 of 37
	When single phase supply is applied across the single alternating field is produced. The axis of this field is stationary in alternating field will induce an emf in the rotor conductors by tran rotor has closed circuit, current will flow through the rotor conductor Due to induced emf and current in the rotor conductors the upper conductors of the rotor will be downward and the force conductors of the rotor will be upward .The two sets of force will rotor will experience no torque .Production of rotating field with the help of two opposite of half magnitude is shown in the following diagram	phase stator winding, an horizontal direction. The asformer action. Since the ors. Is the force experienced by experienced by the lower cancel each other and the ely rotating fluxes each
	$\phi = \phi_{m} (05w)^{2}$ $\phi = \phi_{m} (05w)^{2}$ $g_{0} _{0}^{2} (1 + \phi_{m})^{2} $	or Equivalent fig.
Q.4 A)	Attempt any THREE of the following:	12 Marks
Q.4 A) a)	Attempt any THREE of the following: A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical lo stator losses 1500 W. Find (i) The Slip (ii) The rotor copper los and (iv) The line current.	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input
Q.4 A) a) Ans:	Attempt any THREE of the following: A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical lo stator losses 1500 W. Find (i) The Slip (ii) The rotor copper los and (iv) The line current. Given Data:	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input
Q.4 A) a) Ans:	Attempt any THREE of the following:A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical lo stator losses 1500 W. Find (i) The Slip (ii) The rotor copper los and (iv) The line current.Given Data: 3Ph, 50 Hz I.MMotor o/p = 15 x 10 ³ WN = Actual S	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input
Q.4 A) a) Ans:	Attempt any THREE of the following:A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical lo stator losses 1500 W. Find (i) The Slip (ii) The rotor copper los and (iv) The line current.Given Data: 3Ph, 50 Hz I.MMotor $o/p = 15 \ge 10^3$ WN = Actual S Assuming , N_S = 1000 RPM which is very close with N	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input
Q.4 A) a) Ans:	Attempt any THREE of the following:A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical loc stator losses 1500 W. Find (i) The Slip (ii) The rotor copper los and (iv) The line current.Given Data: 3Ph, 50 Hz I.MMotor o/p = 15 x 10 ³ WN = Actual SAssuming , N _S = 1000 RPM which is very close with N1) The Slip :% Slip = $\frac{N_s - N}{N_s} \times 100 = \frac{1000 - 950}{1000}$	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input
Q.4 A) a) Ans:	Attempt any THREE of the following:A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical lo stator losses 1500 W. Find (i) The Slip (ii) The rotor copper los and (iv) The line current.Given Data: 3Ph, 50 Hz I.MMotor o/p = 15 x 10 ³ WN = Actual S N = Actual S Assuming , N_S = 1000 RPM which is very close with N1) The Slip :% Slip = $\frac{N_S - N}{N_S} \times 100 = \frac{1000 - 950}{1000}$ % Slip = 0.05 or 5 %	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input Speed= 950RPM
Q.4 A) a) Ans:	Attempt any THREE of the following:A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical loc stator losses 1500 W. Find (i) The Slip (ii) The rotor copper los and (iv) The line current.Given Data: 3Ph, 50 Hz I.MMotor o/p = 15 x 10 ³ WN = Actual S Assuming , N_S= 1000 RPM which is very close with N1) The Slip :% Slip = $\frac{N_S - N}{N_S} \times 100 = \frac{1000 - 950}{1000}$ % Slip = 0.05 or 5 %Now,	12 Marksoutput of 15 kW at 950osses are 730 W and theses (iii) The motor inputSpeed= 950RPM
Q.4 A) a) Ans:	Attempt any THREE of the following:A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical loc stator losses 1500 W. Find (i) The Slip (ii) The rotor copper loss and (iv) The line current.Given Data: 3Ph, 50 Hz I.MMotor o/p = 15 x 10 ³ WN = Actual SAssuming , N _S = 1000 RPM which is very close with NN1) The Slip :% Slip = $\frac{N_s - N}{N_s} \times 100 = \frac{1000 - 950}{1000}$ % Slip = 0.05 or 5 %	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input Speed= 950RPM (1 /2Marks) ses
Q.4 A) a) Ans:	Attempt any THREE of the following:A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical loc stator losses 1500 W. Find (i) The Slip (ii) The rotor copper loss and (iv) The line current.Given Data: 3Ph, 50 Hz I.MMotor o/p = 15 x 10 ³ WN = Actual SAssuming , N _S = 1000 RPM which is very close with NN1) The Slip :% Slip = $\frac{N_s - N}{N_s} \times 100 = \frac{1000 - 950}{1000}$ % Slip = 0.05 or 5 %	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input Speed= 950RPM (1 /2Marks) ses
Q.4 A) a) Ans:	Attempt any THREE of the following:A 440 V, 6-pole, 3-phase, 50 Hz induction motor develops an r.p.m. If the input power factor is 0.86 lagging, mechanical lo stator losses 1500 W. Find (i) The Slip (ii) The rotor copper los and (iv) The line current.Given Data: 3Ph, 50 Hz I.MMotor $o/p = 15 \ge 10^3$ WN = Actual S Assuming , N_S= 1000 RPM which is very close with N1) The Slip :% Slip = $\frac{N_s - N}{N_s} \times 100 = \frac{1000 - 950}{1000}$ % Slip = 0.05 or 5 % Now,Gross Rotor output = Net Motor output + Mechanical Loss = (15000+730) watt = 15730 Watts	12 Marks output of 15 kW at 950 osses are 730 W and the ses (iii) The motor input Speed= 950RPM osses ses ses ses ses ses ses ses ses ses ses

	Winter- 2015 Examinations	
Subject Code: 17511	<u>Model Answer</u>	Page 19 of 37
	$=\frac{0.05}{15730}$	
	(1-0.05)	
	= 827.895 watts	
R	Rotor Copper Lossees \cong 827.9 Watts	(1/2 Marks)
3) Net Me	otor input:	
	Rotor Input = $\frac{\text{Rotor Copper losses}}{S}$	(1/2 Marks)
	Rotor Input = $\frac{827.895}{0.05}$	
	Rotor Input = 16557.92 Watts	
Net	Motor input = Rotor Input + (Stator Losses)	
Ne	t Motor input = (16557.92 +1500) Watts	
Net	t Motor input = 18057.92 Watts	(1/2 Marks)
N	let Motor input = $\sqrt{3} V_L I_L \cos \phi$	
4) Line C	urrent of Motor :	
	Net motor input	(1/2 Marks)
	$-\sqrt{3} V_L \cos\phi$	(1/2 1/11/15)
	=	
	$\sqrt{3} \times 440 \times 0.86$	
	$I_L = \frac{18057.92}{655.408}$	
	$I_L = 27.552 A$	(1/2 Marks)
b) Write any for	ir significances of a rotor resistance starter.	
Ans: Following	the significances of a rotor resistance starter :	townooted . 1 Mark analy
1 It radua	(Any Four poin)	и ехрестей : 1 магк еасп
1. It feduc	es starting torque of slip ring I M	
2. It increa	ists starting torque of sup fing f.W.	agnitude are obtain
4 It is also	useful for speed control of slip ring I M	agintude are obtain
- . It is also	s userul for speed control of sup ting 1.141.	

Subje	Winter- 2015 Examinationsext Code: 17511Model Answer	Page 20 of 37
c)	Find the no-load line voltage of a star connected 3-phase, 6-pole alternat at 1200 rpm, having flux per pole of 0.1 Wh sinusoidally distributed. Its slots having double layer winding. Each coil has 8 turns and the coil is cl slot.	or which runs s stator has 54 horded by one
Ans:	Given Data:	
	$\phi = 0.1$ wb, Pole-6 N= 1200 rpm	
	\therefore Since winding is chorded by one slot, it is short pitched by 1/9 or 180° .	$9 = 20^0 = \alpha$
	$K_c = Cos\left(\frac{\alpha}{2}\right)$	(1/2 Mark)
	:. $K_{\rm C} = Cos(\frac{20^0}{2}) = 0.98$	(1/2 Mark)
	\therefore f =	
	$\frac{6 \times 1200}{120} = 60 \text{ Hz} \qquad \beta = \text{Slot pitch angle}, m = \text{No. of slots / pole / p}$	vhase
	:. Pole pitch = $\frac{54}{6} = 9$, $\beta = \frac{180^{\circ}}{9} = 20^{\circ}$, $m = \frac{54}{6 \times 3} = 3$	(1/2 Mark)
	$Kd = \frac{Sin \ m \times (\beta/2)}{m \ Sin \times (\beta/2)}$	
	$\therefore K_{\rm d} = \frac{Sin 3 \times (20^{\circ} / 2)}{3 Sin \times (20^{\circ} / 2)} = 0.96$	(1/2 Mark)
	$\therefore Z = \frac{54 \times 8 \times 2}{3} = 288$, $\therefore T = \frac{288}{2} = 144$	(1/2 Mark)
	$\therefore E_{Ph} = 4.44 \times 0.98 \times 0.96 \times 60 \times 0.1 \times 144$	- (1/2 Mark)
	$\therefore E_{Ph} = 3610 \text{ volt}$	(1/2 Mark)
	\therefore E _L = $\sqrt{3} \times 3610$	
	\therefore E _L = 6252.7034 <i>volt</i>	(1/2 Mark)

Winter- 2015 Examinations				
Subje	ct Code: 17511 <u>Model Answer</u> Page 21 of 37			
d)Explain the need of parallel operation of Alternators.Ans:The necessity of parallel operation of Alternators :				
	(Any Four Point expected: 1 Mark each)			
	1. Continuity in supply system:			
	Continuity in supply system is we have two or more alternator in parallel and if one is out of order then the power supply can be maintained with the help of another alternator.			
	2. More Efficiency:			
	The alternators can be put ON or cut OFF as per the load demand. The efficiency of alternator is maximum at full load. Therefore we can put ON required number of alternators as per load demand and operate the alternators at full load capacity.			
	3. Maintenance and repair:			
	With more number of alternators in parallel, any one can be taken out of maintenance and repair without disturbing the supply. The smaller units are very easily repairable.			
	4. Standby of reserved unit:			
	In case of number of small alternators in parallel, The standby alternator required is also of small capacity.			
	5. Future expansion:			
	Considering the probable increasing in demand in future, some additional units are installed and can be connected in parallel.			
	6. Saving In Fuel : Since almost all alternators are operated on full load no any one alternator operates lightly loaded.			
	OR			
	Advantages of parallel operation of alternator or transformer:-			
	1. Several small units connected in parallel are more reliable than a single large unit. If one of small units is disabled, the entire power supply is not cut –off.			
	2. The units may be connected in service and taken out of service to correspond with the load on the station. This keeps the units loaded to their full load capacity & increases the efficiency of the operation.			

Winter– 2015 Examinations	
ct Code: 17511 <u>Model Answer</u>	Page 22 of 37
3) Out of several units if one unit fails, it can be repaired easily without th supply to consumers.	ne failure of
4) Additional units can be connected in parallel with the resent units to control the growth of the load.	prrespond with
5) Cost of the spares if any required for repair, maintenance will be reduc	ced.
Attempt any ONE ·	06 Marks
Describe with the help of necessary graphs and phasor diagram, the	ne procedure to
calculate voltage regulation of a 3-phase alternator by synchronous imp	edance method.
Necessary graphs and phasor diagram :	(3 Marks)
() () () () () () () () () ()	
Open circuit voltage short circuit current	
Rated terminal voltage	ent
	et Code: 17511 <u>Model Answer</u> 3) Out of several units if one unit fails, it can be repaired easily without th supply to consumers. 4) Additional units can be connected in parallel with the resent units to compare the growth of the load. 5) Cost of the spares if any required for repair, maintenance will be reduced. Attempt any ONE : Describe with the help of necessary graphs and phasor diagram, the calculate voltage regulation of a 3-phase alternator by synchronous import Necessary graphs and phasor diagram : Necessary graphs and phasor diagram : Open circuit voltage Field-Current <i>I</i> , OR Open circuit voltage Field current <i>I</i> , O.C.C Field etermination of a short circuit current <i>I</i> , <i>Field</i> current <i>Field</i> current <i>Fi</i>

Subje	Winter- 2015 Examinationsct Code: 17511Model AnswerPage 24 of 37			
b) i)	(i) Write the formulae for Xs, Z, of an alternator.			
	1. $Z_s = \frac{E_{o.C}}{I_{s.C}}$ OR (3 Marks)			
Ans:	$Z_{s} = \frac{Open \ circuit \ voltage}{Short \ circuit \ current} for \ the \ same \ field \ current$			
	2. $X_s = \sqrt{Z^2 s - R_a^2}$ $Ra = Armature \ D.C \ resistance$			
	All the above mentioned quantities are per phase quantities			
b) ii)	(ii) Explain the effect of armature reaction at various p.f. of loads of an alternator. Draw suitable wave-forms showing the effects.			
Ans:	The effect of armature reaction depends upon power factor the load:			
	1) For Resistive load or unity P.f.:- In this case the armature flux crosses the main			
	flux. This Effect is called <u>'Cross magnetizing effect</u> . Due to this, the main flux			
	will be distributed and terminal voltage drops ie $V_T \langle E$ (1 Mark)			
	2) For lagging P.f. or inductive load: - In this case the armature flux opposes the			
	main flux. This effect is called as de-magnetizing Effect. Due to this, the main			
	flux will be weakened and terminal voltage drops ie $V_T \langle E$ (1 Mark)			
	3) For leading P.f. or capacitive load: - In this case the armature flux assists the			
	main flux. This Effect is called as Strong magnetizing and due to this, the main			
	flux will be stronger & terminal voltage increases ie $V_T \rangle E$ (1 Mark)			
	OR Student May write this way			
	Waveforms showing the effect of armature flux:			
	1. Armature reaction in alternators for Unity Power factor:(1 Mark)			
	Main flux I aph Armature flux Eph Induced e.m.f. due to ϕ_r			
	or Equivalent fig			

Subject Code	Winter- 2015 Examinationse: 17511Model AnswerPage 29 of 37
	V_{L3} = Voltage across the lamps $L_3 = V_{B1} - V_{B2}$
À	The 3 lamp pairs $L_1 \& L_2$, and $L_2 \& L_2$, and $L_3 \& L_3$ of equal wattage and voltage rating are connected as shown in figure across the switch and to the bus bar and alternator terminals.
	The Phasor diagram of the bus bar voltages $(V_{R1}=V_{Y1}=V_{B1})$ and the Phasor diagram of voltage of incoming alternator $(V_{R2}=V_{Y2}=V_{B2})$ are shown in the figure.
	The lamps will still flickers in this case also and the rate of their flickering will depend on the amount of diff of the frequencies of the two alternators.
	The correctness of the phase sequence is indicated by the lamps blowing bright or dark, one after another and not simultaneously.
A	The correct instant of closing the synchronizing switch is when the straight connected lamps are dark and the cross connected lamps are equally bright.
	OR Student may write this way
	BUS BAR Incoming ALTERNATOR B D D D C D C D C D C D C D C D C D C D C D C D C D C D C D C D D C D D D D D D D D D D D D D
\triangleright	If the synchroscope is not available, synchronizing lamp method is used.
	There are different methods of lamp connection. The method of two bright and one
	dark lamp indication is illustrated in above figure.
	In this connection the lamps become bright and dark as follows for correct phase
~	sequence. "Two lamps bright and one lamp dark at a time".
	The switch is closed when the voltage, frequency and the lamps (2 bright and 1 Dark satisfy the condition of synchronism.

Winter-2015 Examinations

Subje	ct Code: 17511	Model Answer	Page 30 of 37		
d)	d) What are the conditions to be fulfilled when two alternators are to be connected in parallel?				
Ans:	The conditions to he fulfilled when two alternators are to be connected in parallel:				
	1. Magnitude of voltage:	(Any Four Condition	expected: 1 Mark each)		
	They must have the same	e o/p voltage rating.			
	2. Frequency:				
	The frequency of the al	ternators must be same.			
	3. Туре:				
	The alternator shoul wave form. They may diff	d be of same type so as to generat er in their KVA ratings.	e voltages of the same		
	4. Prime mover:				
	The prime mover of t which of course must be d o/p rating.	he alternators should have same spropping ones, so as to load genera	peed-load characteristics, tor in proportion to their		
	5. Reactance : The alternator should will be not operating in pa	l same have reactance in their arms rallel successfully.	ature, so otherwise they		
OR					
	1. Magnitude of voltage : The terminal voltage voltage.	of the incoming alternator must b	be same as that of bus bar		
	2. Frequency : The frequency of the frequency.	incoming alternator must be same	e as that of the bus bar		
	3. Phase Sequence : The phase sequence of t	the incoming alternator must be th	e same as that of a bus		
	bar. The phase of the incor bar voltage relative to the le bus-bar should be in phase between the windings of th	ning machine voltage must be the oad i.e. the phase voltages of the in opposition. So that there will be n e alternators already in operation a	same as that of the bus- ncoming machine and the o circulating current and the incoming machine.		
	4. The correct instant of synchronizing i.e phase coincidence (Polarity):				
	The polarity of the vo bus bar must be same or ide	ltage of incoming alternator and the entical.	he polarity of voltage of		

Winter- 2015 Examinations Model Answer

Page 33 of 37

Q.6	Attempt any Four: 16 Marks			
a)	Discuss about the split-phasing principle used in the starting of single phase induction motor. Explain the construction and working of resistance split phase induction motor in detail.			
Ans:	(Discussion: 1 Mark & Figure: 1.5 Mark & Construction- Working: 1.5 Mark)			
	Discuss about the split-phasing principle used in the starting of single phase induction			
	motor :			
	> A single phase induction motor is not self starting motor due to a pulsating torque.			
	> It has to be run up to about 70 % of synchronous speed by some method.			
	> The single phase induction can be made self starting by using split phasing principle			
	> This principle can be implemented by using a capacitor or a resistance in the starting			
	winding circuit.			
	Diagram of resistance split single phase induction motor:			
	Starting Winding Winding Adding S Rotor (a) (b) or equivalent figure			
	Construction and working of resistors split single phase induction motor:			
	> The starting winding is having high resistance and main winding is having high			
	reactance.			
	 These two currents produce two fluxes having a phase difference. 			
	These two fluxes are displaced in space by @ 90 ⁰ These two fluxes having time and space displacement produce a resultant rotating magnetic field and rotor starts rotating as per induction principle.			
	A centrifugal switch S is connected in series with the starting winding and is located on rotor of the motor.			
	It's function is to automatically disconnected the starting winding from the supply when the motor has reached 70 to 80 per cent of its full load speed.			

Winter-2015 Examinations

Subject Code: 17511

Model Answer

Page 34 of 37

Ap	plications of each of the following:	(Each Motor Application : 1 Mark)
Sr.No	Types of 1-Ph Induction Motor	Applications (Any Two expected)
	(Any one Applications 1 Marks)	 Mixer Food processor Heavy duty machine tools Grinder Vacuum cleaners Refrigerators Driving sewing machines Electric Shavers Hair dryers Smell Fans
	Lincon Induction Materia	10) Small Fans 11) Cloth washing machine 12) portable tools like blowers, drilling machine, polishers etc
	(Any One Applications 1Marks)	 Application for Stationary Field Syste Automatic sliding doors in an electrical train, Metallic belt conveyer, Mechanical handling equipment, such as propulsion of a train of tubs along a certain route, Shuttle-propelling application. Applications for the moving field system
		 High and medium speed applications have been tried with linear motor propulsion of vehicl with air cushion or magnetic suspension. High speed application as a travelling crane motor where the field system is suspended from laist
3	Induction Generator	1. It is used in wind mills.

		Winter-2015 Exa	aminations
Subje	ct Code: 17511	<u>Model Ans</u>	wer Page 35 of 37
	(Any One	Applications 1Marks)	 It is used to assist the power received from weak transmission lines in the remote areas. To compensate reactive power from the supply. Regenerative breaking of hoists driven by the three phase induction motors with energy recovery systems in industrial processes
	4 Stepper Mo (Any One A	otor Applications 1Marks)	 Suitable for use with computer controlled system Widely used in numerical control of machine tools. Tape drives Floppy disc drives Computer printers X-Y plotters Robotics Textile industries Integrated circuit fabrication Electric watches In space crafts launched for scientific explorations of planets. In the production of science fiction movies Automotive Food processing Packaging
c)	State four advantage	es of rotating field over	rotating armature of a 3-phase alternator.
Alls:		(Ally IO	an route Expected each point r Marks)
	Following Advantages of rotating field over rotating armature of a 3-phase alter		stated as
	1) The concretion	vn loval of a c valtage m	σ statut as,
	1) The generation	on rever of a.c. voltage ma	ay be higher as 11 KV to 55 KV. This gets
	induced in the	e armature. For stationary	y armature large space can be provided to
	 accommodate large number of conductors and the insulations. 2) It is always better to protect high voltage winding from the centrifugal forces cau due to the rotation. So high voltage armature is generally kept stationary. This 		etors and the insulations.
			ge winding from the centrifugal forces caused
			mature is generally kept stationary. This

Subje	ct Code:	Winter– 2015 Examinations 17511 Model Answer	Page 36 of 37		
0	[3		
		avoids the interaction of mechanical and electrical stresses.	.		
	3)	It is easier to collect larger currents at very high voltage from a sta	tionary member		
		than from the slip ring and brush assembly. The voltage required t	to be supplied to		
		the field is very low (110 V to 220 V d.c.) and hence can be easily	supplied with the		
	help of slip ring and brush assembly by keeping it rotating.				
	4)	Due to low voltage level on the field side, the insulation required is less and h			
		field system has very low inertia. It is always better to rotate low in	nertia system than		
		high inertia, as efforts required to rotate low inertia system are alw	ays less.		
	5)	Rotating field makes the overall construction very simple. With sir	nple, robust		
mechanical construction and low inertia of rotor, it can be		mechanical construction and low inertia of rotor, it can be driven a	t high speeds. So		
		greater output can obtain from an alternator of given size.			
	6)	If field is rotating, to excite it be external d.c. supply two slip rings	are enough. Once		
		each for positive and negative terminals. As against this, in three p	hase rotating		
		armature the minimum number of slip rings required are three and	can not be easily		
	insulated due to high voltage levels.				
	7) The ventilation arrangement for high voltage side can be improved if it is kept				
		stationary.			
	8) Rotating field is comparatively light and can run with high speed.				
d)	Descri	be with neat sketch, the principle of operation of single pl	nase shaded pole		
Ans:	i) Sł	haded Pole Induction Motor : (Figure-2 Mark & Explana	tion: 2 Mark)		
	1-Ph supply	Stator	ntegné s		
	and his		At instant		
		Resultant flax	* 2		
	toritize:	(a) Resultant flux	(b)		
		Obstance			
	er viele	band tainstant	At instant		
		The second and the se	Resultant		
		flux (c)	(d) Or		

Winter-2015 Examinations **Model Answer** Subject Code: 17511 Page 37 of 37 Stator pole Shaded band stato, Wdg Squirel cag rotar Construction. OR Equivalent Fig. Working:-When single phase supply is applied across the stator winding an alternating field is created. The flux distribution is non uniform due to shading coils on the poles. Now consider three different instants of time t_1 , t_2 t_3 of the flux wave to examine the effect of shading coil as shown in the fig above. The magnetic neutral axis shifts from left to right in every half cycle, from non shaded area of pole to the shaded area of the pole. This gives to some extent a rotating field effect which may be sufficient to provide starting torque to squirrel cage rotor. Compare resistance split phase motor with capacitor split phase motor on the basis of e) (i) Output, (ii) Starting torque, (iii) Power factor and (iv) Applications. (Each Point -1 Mark) Ans: S.No Points **Resistance split phase Capacitor split phase** motor motor i) Output Low High High ii) Starting torque Low Power factor High iii) Low Applications Washing Machine, Fans, Grinder, compressors, iv) Blowers, Centrifugal Pump, Refrigerator, Air Small electrical Tools etc conditioners, drill machines etc

-----END------END-------